2nd exercise sheet Set Theory
 Winter Term 2008/2009

(E2.1)
Show the following strengthened version of the Knaster-Tarski Fixed Point Theorem:
Let $\mathbb{P}=(P, \leqslant)$ be a complete poset and $f: \mathbb{P} \rightarrow \mathbb{P}$ be a monotone map. Show that $\operatorname{Fix}(f)=\{x \in P: f(x)=x\}$ is again a complete poset.

Can the other fixed point theorems be strengthened in a similar way?
(E2.2)
(i) Use the Knaster-Tarski Fixed Point Theorem to prove Banach's Decomposition Theorem:

Let X and Y be sets and let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps. Then there exist disjoint subsets X_{1} and X_{2} of X and disjoint subsets Y_{1} and Y_{2} of Y such that $f\left(X_{1}\right)=Y_{1}$ and $g\left(Y_{2}\right)=X_{2}, X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$.
(ii) Use (i) to obtain the Schröder-Bernstein Theorem.

(E2.3)

Let $\mathcal{G}=(G, \rightarrow)$ be a directed graph. We call a set $T \subseteq G$ transitive, if

$$
x \rightarrow y \in T \Rightarrow x \in T .
$$

(i) Show that

$$
x_{0} \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{n} \in T \Rightarrow x_{0} \in T
$$

for any transitive T.
(ii) Use the Knaster-Tarski Fixed Point Theorem to show that any set $X \subseteq G$ there is a least (in the sense of \subseteq) transitive subset $T \subseteq G$ such that $X \subseteq T$. This set T is of course unique and called the transitive closure of X.
(E2.4)
(i) Show that there is a unique binary operation $+: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that the following recursion equations hold:

$$
\begin{aligned}
n+0 & =n \\
n+S m & =S(n+m)
\end{aligned}
$$

(ii) Show that + is associative, commutative and satisfies the cancellation law:

$$
m+x=n+x \Rightarrow m=n .
$$

(iii) Write down recursion equations for multiplication and exponentiation and prove the obvious things.

(E2.5)

Show that \mathbb{N} is infinite (and make sure that your argument can be formalised in BST + Infinity).

