Analysis II für M, HLM, Ph

11. Tutorium Lösungsvorschlag

Gruppenübung

G 30 Taylorformel

Berechne näherungsweise $1,05^{1,02}$ mit Hilfe des Taylorpolynoms 2. Grades einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$. Das Restglied braucht nicht bestimmt zu werden.

$$f(x,y) = x^y$$
.

G 31 Eine Verallgemeinerung des Banachschen Fixpunktsatzes

Sei $T : \mathbb{R}^n \to \mathbb{R}^n$ eine Abbildung, so dass für ein festes $m \in \mathbb{N}$ ein q mit 0 < q < 1 existiert, so dass

$$||T^m x - T^m y|| \le q||x - y||$$
 für alle $x, y \in X$

gilt. Zeige

- 1. Es gibt einen eindeutig bestimmten Fixpunkt $\bar{x} \in \mathbb{R}^n$ von T, das heißt $T(\bar{x}) = \bar{x}$.
- 2. Für jedes $x \in \mathbb{R}^n$ gilt $T^k(x) \xrightarrow{k \to \infty} \bar{x}$.

Hinweis: Der herkömmliche Banachsche Fixpunktsatz (Beh. für m=1) kann verwendet werden.

Gilt für jede Abbildung $g: \mathbb{R}^n \to \mathbb{R}^n$, dass aus $g^m(\bar{x}) = \bar{x}$ folgt $g(\bar{x}) = \bar{x}$?

Applying the Banach Fixed Point Theorem, T^m has a unique fixed point x. However,

$$T^{m}(T(x)) = T^{m+1}(x) = T(T^{m}(x)) = T(x),$$

so T(x) is also a fixed point of T^m . Since the fixed point of T^m is unique, we must have T(x) = x, so x is a fixed point of T. Let us prove now that it is unique. If $y \in X$ is such that T(y) = y, then $T^m(y) = y$, so (by uniqueness of fixed points of T^m) y = x.

Natürlich ist die Antwort auf die Frage nein. Denn sei g(x) = -x. Dann hat g nur 0 als Fixpunkt und für g^2 sind 0 und 1 Fixpunkte.