Fachbereich Mathematik Prof. Dr. K. Ritter M. Slassi M. Fuchssteiner

WS 2008/2009 19. Dezember 2008

9. Übungsblatt zur "Mathematik I für BI, WI(BI), MaWi, AngGeo und UI"

Gruppenübung

Aufgabe G1 ()

Bestimmen Sie für die folgenden Funktionen $f_i: \mathbb{R} \to \mathbb{R}, i = 1, \dots, 4$, für alle $z \in \mathbb{R}$ die Grenzwerte $\lim_{x \to z^+} f_i(x)$, $\lim_{x \to z^-} f_i(x)$ und $\lim_{x \to z^+} f_i(x)$, soweit diese existieren. Bestimmen Sie außerdem $\lim_{x \to +\infty} f_i(x)$ und $\lim_{x \to -\infty} f_i(x)$, $i = 1, \dots, 4$, sofern existent.

(a)
$$f_1(x) = \frac{1}{(x-4)^2}$$
 für $x \in D(f_1) = \mathbb{R} \setminus \{4\}$

(b)
$$f_2(x) = \frac{\sqrt{|x|}-3}{x-9}$$
 für $x \in D(f_2) = \mathbb{R} \setminus \{9\}$

(c)
$$f_3(x) = \frac{x-3}{|x-3|}$$
 für $x \in D(f_3) = \mathbb{R} \setminus \{3\}$

(d)
$$f_4(x) = \frac{2x}{x^2 - 5x}$$
 für $x \in D(f_4) = \{x \in \mathbb{R} : x^2 - 5x \neq 0\}$

Lösung: (a) Fall 1: $z \in D(f_1)$. Dann ist die Funktion stetig in z und es gilt $\lim_{x\to z^-} f_1(x) = \lim_{x\to z^+} f_1(x) = \lim_{x\to z^+} f_1(x) = f_1(z)$.

Fall 2: z = 4. Sei $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ mit $\lim_{n \to \infty} x_n = 4$ und $x_n < 4$. Dann ist $\lim_{n \to \infty} \frac{1}{(x_n - 4)^2} = \infty$ und somit $\lim_{x \to 4^-} f_2(x) = \infty$. Analog erhalten wir $\lim_{x \to 4^+} f_2(x) = \infty$. Damit gilt $\lim_{x \to 4^-} f_2(x) = \infty$. (b) Fall 1: $z \in D(f_2)$. Dann ist die Funktion stetig in z und es gilt $\lim_{x \to z^-} f_2(x) = \lim_{x \to z^+} f_2(x) =$

Fall 2: z = 9. Sei $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ mit $\lim_{n \to \infty} x_n = 9$, $x_n \neq 9$ und $x_n > 0$ für alle $n \in \mathbb{N}$. Dann gilt

$$\frac{\sqrt{x_n} - 3}{x_n - 9} = \frac{\sqrt{x_n} - 3}{(\sqrt{x_n} - 3)(\sqrt{x_n} + 3)} = \frac{1}{(\sqrt{x_n} + 3)}.$$

Damit erhalten wir $\lim_{x\to 9^-} f_2(x) = \lim_{x\to 9^+} f_2(x) = \lim_{x\to 9} f_2(x) = \frac{1}{6}$.

(c) Fall 1: z > 3. Dann ist f_3 in z stetig und es gilt $\lim_{x\to z^-} f_1(x) = \lim_{x\to z^+} f_1(x) = \lim_{x\to z} f_1(x) = f_1(z) = 1$.

Fall 2: z < 3. Dann ist f_3 in z stetig und es gilt $\lim_{x \to z^-} f_1(x) = \lim_{x \to z^+} f_1(x) = \lim_{x \to z} f_1(x) = f_1(z) = -1$.

Fall 3: z = 3. Mit den beiden obigen Fällen erhalten wir $\lim_{x\to 3+} f_3(x) = 1$ und $\lim_{x\to 3-} f_3(x) = -1$. Der Grenwert von $f_3(x)$ mit $x\to 3$ existiert nicht.

(d) Es gilt $D(f_4) = \mathbb{R} \setminus \{0, 5\}$.

Fall 1: $z \in D(f_4)$. Die Funktion ist stetig in z und es gilt $\lim_{x\to z^-} f_4(x) = \lim_{x\to z^+} f_4(x) =$

Fall 2: z = 0. Sei $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ mit $\lim_{n \to \infty} x_n = 0$ und $x_n \neq 0$ für alle $n \in \mathbb{N}$. Dann gilt

$$\frac{2x_n}{x_n^2 - 5x_n} = \frac{2}{x_n - 5}.$$

Wir erhalten $\lim_{n\to\infty} f_4(x_n) = -\frac{2}{5}$ und damit $\lim_{x\to 0-} f_4(x) = \lim_{x\to 0+} f_4(x) = \lim_{x\to 0} f_4(x) = -\frac{2}{5}$.

Fall 3: z = 5. Sei $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ mit $\lim_{n \to \infty} x_n = 5$, $x_n < 5$ und $x_n \neq 0$ für alle $n \in \mathbb{N}$. Es gilt

$$\frac{2x_n}{x_n^2 - 5x_n} = \frac{2}{x_n - 5}.$$

Wir erhalten $\lim_{n\to\infty} f_4(x_n) = -\infty$ und damit $\lim_{x\to 5^-} f_4(x) = -\infty$.

Analog erhalten wir $\lim_{x\to 5+} f_4(x) = \infty$. Somit existiert der Grenzwert von $f_4(x)$ mit $x\to 5$ nicht.

Aufgabe G2 ()

Geben Sie eine Funktion $f: \mathbb{R} \to \mathbb{R}$ an, so dass folgende Eigenschaften erfüllt sind (mit Beweis!).

- $f(0) = \frac{1}{2}$
- $f(4) = \frac{1}{2}$
- $\lim_{x\to 2^-} f(x) = \infty$
- $\lim_{x\to 2+} f(x) = \infty$

Lösung: Sei $f : \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \frac{1}{|x-2|}$ oder $f(x) = \frac{2}{(x-2)^2}$ für $x \in D(f) = \mathbb{R} \setminus \{2\}$. Dann erfüllt f obige Bedingungen.

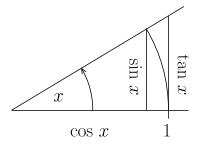
Aufgabe G3 ()

Bestimmen Sie $\lim_{x\to 0} \frac{\tan x}{x}$

- (a) mittels geometrischer Überlegungen.
- (b) indem Sie die aus der Vorlesung bekannten Ergebnisse ausnutzen.

Lösung: Behauptung: $\lim_{x\to 0} \frac{\tan x}{x} = 1$.

(a) Geometrische Betrachtungen: Der Flächeninhalt eines Kreises mit Radius 1 beträgt π . Folglich ist der Flächeninhalt eines Kreissektors mit Bogenmaß x gleich $\frac{x}{2\pi}\pi = \frac{1}{2}x$.



Betrachten wir den Kreissektor, so sehen wir, dass folgende Ungleichungen für $x \in]0, \frac{\pi}{2}[$ gelten müssen:

$$\frac{1}{2}\sin x\cos x \le \frac{1}{2}x \le \frac{1}{2}\tan x.$$

Teilen wir die Ungleichungen durch $\tan x$ und bilden die Kehrwerte, erhalten wir

$$1 \le \frac{\tan x}{x} \le \frac{1}{\cos^2 x}.$$

Da der Kosinus stetig ist, ergibt sich $\lim_{x\to 0+} \frac{\tan x}{x} = 1$. Analog ergibt sich $\lim_{x\to 0-} \frac{\tan x}{x} = 1$ und somit $\lim_{x\to 0} \frac{\tan x}{x} = 1$.

(b) In der Vorlesung wurde gezeigt, dass $\lim_{x\to 0} \frac{\sin x}{x} = 1$ gilt. Wegen $\tan x = \frac{\sin x}{\cos x}$ ergibt sich die Behauptung mit den Rechenregeln für Grenzwerte.

Aufgabe G4 ()

Bestimmen Sie alle stetigen Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x+y) = f(x) + f(y)$$

für $x, y \in D(f) = \mathbb{R}$.

Hinweis: Zeigen Sie zuerst für $a \in \mathbb{N}$, dann für $a \in \mathbb{Z}$, für $a \in \mathbb{Q}$ und zuletzt für $a \in \mathbb{R}$, dass für obige Funktionen gilt: f(ax) = af(x).

Lösung: Zuerst zeigen wir den Hinweis und dann die eigentliche Behauptung.

Behauptung: Für alle Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit obigen Eigenschaften und für alle $a, x \in \mathbb{R}$ gilt af(x) = f(ax).

Beweis: Seien $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit obigen Eigenschaften und $x \in \mathbb{R}$. Mit vollständiger Induktion lässt sich zeigen, dass der Hinweis für $a \in \mathbb{N}$ wahr ist. Wegen f(0+0) = f(0) + f(0) = 2f(0) gilt f(0) = 0. Weiter gilt 0 = f(x-x) = f(x) + f(-x) und damit -f(x) = f(-x). Also gilt der Hinweis auch für $a \in \mathbb{Z}$. Seien $p, q \in \mathbb{Z}$, $q \neq 0$, dann gilt $qf(\frac{p}{q}x) = f(px) = pf(x)$ und somit $f(\frac{p}{q}x) = \frac{p}{q}f(x)$. Seien nun $a \in \mathbb{R}$ und $(a_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$ mit $\lim_{n \to \infty} a_n = a$. Dann gilt wegen der Stetigkeit von f

$$f(ax) = f(\lim_{n \to \infty} a_n x) = \lim_{n \to \infty} f(a_n x) = \lim_{n \to \infty} a_n f(x) = af(x).$$

Behauptung: Eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x+y) = f(x) + f(y) für $x, y \in D(f) = \mathbb{R}$ ist von der Form

$$f(x) = cx$$

wobei $c \in \mathbb{R}$.

<u>Beweis:</u> Mit dem Hinweis sehen wir, dass $f(x \cdot 1) = xf(1)$ gilt. Setzen wir c = f(1), erhalten wir die Behauptung.

Hausübung

Aufgabe H1()

Zeigen Sie die Existenz der folgenden Limiten und bestimmen Sie ihre Werte:

(a)
$$\lim_{x\to 1} \frac{1}{x-1} \cdot \left(\frac{1}{x+3} - \frac{2}{3x+5}\right)$$

(b)
$$\lim_{x\to\infty} \frac{\sqrt{x^2+1}}{x+1}$$

(c)
$$\lim_{x\to 0} x \sin \frac{1}{x}$$

Lösung: (a) Es gilt

$$\frac{1}{x-1} \cdot \left(\frac{1}{x+3} - \frac{2}{3x+5}\right) = \frac{1}{x-1} \cdot \frac{x-1}{(x+3)(3x+5)} = \frac{1}{(x+3)(3x+5)}.$$

Damit erhalten wir

$$\lim_{x \to 1} \frac{1}{x-1} \left(\frac{1}{x+3} - \frac{2}{3x+5} \right) = \frac{1}{32}.$$

(b) Für $x \ge 0$ gilt $\sqrt{x^2+1} \le x+1$ und $\sqrt{x^2+1} \ge x$. Wegen $\lim_{x\to\infty} \frac{x}{x+1} = 1$ und dem Vergleichskriterium gilt

$$\lim_{n \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1} = 1.$$

(c) Es gilt $|x \sin \frac{1}{x}| \le |x|$. Mit dem Vergleichskriterium erhalten wir

$$\lim_{x \to 0} |x \sin \frac{1}{x}| = 0.$$

Aufgabe H2 ()

Es seien $a, b \in \mathbb{R}$. Die Funktion $f : \mathbb{R} \to \mathbb{R}$ mit D(f) = [0, 3] sei definiert durch

$$f(x) = \begin{cases} 2x + x^2 & \text{für } x \in [0, 1], \\ ax - x^3 + x & \text{für } x \in]1, 2[, \\ \frac{b(x^{5-a} - x - 1)}{x^2 + 1} & \text{für } x \in [2, 3]. \end{cases}$$

Bestimmen Sie a und b so, dass f auf D(f) stetig ist.

Lösung: Der linksseitige Grenzwert der Funktion f an der Stelle x=1 ist 3. In Abhängigkeit von a berechnet sich der rechtsseitige Grenzwert als $\lim_{x\to 1+} f(x) = a$. Für die Wahl a=3 stimmen also rechtsseitiger und linksseitiger Grenzwert der Funktion überein. An der Stelle x=2 ist der linksseitige Grenzwert 0. Da 2 keine Nullstelle von x^2-x-1 ist, bleibt für die Wahl von b nur b=0. In diesem Fall ist f eine auf ganz D(f) stetige Funktion (man beachte, dass x^2+1 keine Nullstellen in [2,3] besitzt).

Aufgabe H3()

Untersuchen Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 1 & \text{für } x \in \mathbb{Q}, \\ 0 & \text{für } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

für $x \in D(f) = \mathbb{R}$ auf Stetigkeit.

Hinweis: Verwenden Sie ohne Beweis, dass für alle $x \in \mathbb{R}$ und $\varepsilon > 0$ ein $y \in \mathbb{Q}$ und $z \in \mathbb{R} \setminus \mathbb{Q}$ mit $y, z \in [x - \varepsilon, x + \varepsilon] \setminus \{x\}$ existieren.

Lösung: Behauptung: Für $x \in \mathbb{Q}$ ist f in x nicht stetig.

Beweis: Sei $n \in \mathbb{N}$, dann existiert ein $x_n \in \mathbb{R} \setminus \mathbb{Q}$ mit $x_n \in [x - \frac{1}{n}, x + \frac{1}{n}]$ und $x_n \neq x$. Dann gilt $\lim_{n \to \infty} x_n = x$ (wieso?) und somit

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 \neq f(\lim_{n \to \infty} x_n) = f(x) = 1.$$

Behauptung: Für $x \in \mathbb{R} \setminus \mathbb{Q}$ ist f nicht in x stetig.

Beweis: Der Beweis geht analog.

Insgesamt erhalten wir, dass die Funktion in keinem Punkt stetig ist.