Fachbereich Mathematik Prof. Dr. K. Ritter M. Slassi

M. Fuchssteiner

WS 2008/2009 9. Februar 2009

13. Übungsblatt zur "Mathematik I für BI, WI(BI), MaWi, AngGeo und UI"

Gruppenübung

Aufgabe G1 ()

Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 2\sin(x)$ für $x \in D(f) =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

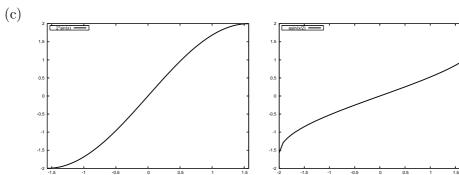
- (a) Geben Sie die Bildmenge von f an (ohne Beweis!).
- (b) Zeigen Sie, dass f eine Umkehrfunktion g besitzt. Geben Sie auch die Definitionsmenge und die Bildmenge von g an (ohne Beweis!). Bestimmen Sie die Umkehrfunktion g.
- (c) Skizzieren Sie f und g.
- (d) Berechnen Sie die Ableitung von g direkt und mit Hilfe des Satzes III.3.1. Vergleichen Sie beide Ergebnisse.

Lösung:

- (a) B(f) =]-2, 2[.
- (b) Es gilt

$$f'(x) = 2\cos(x) > 0, \quad x \in]-\frac{\pi}{2}, \frac{\pi}{2}[.$$

Daher besitzt f eine Umkehrfunktion $g: \mathbb{R} \to \mathbb{R}$ mit D(g) = B(f) nach Satz II.3.1. Außerdem gilt B(g) = D(f). Mit einer kurzen Rechnung erhält man $g(y) = \arcsin(\frac{y}{2})$.



(d) Nach Satz III.3.1 folgt daher

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{2\cos(\arcsin(\frac{y}{2}))}$$

Die direkte Rechnung liefert: $g'(x) = \frac{1}{2\sqrt{1-(\frac{x}{2})^2}}$. Mit der Identität $\cos(x) = \sqrt{1-\sin^2(x)}$ für $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ sieht man, dass beide Ergebnisse übereinstimmen.

Aufgabe G2 ()

Berechnen Sie $y_0 = \ln(2)$ mit dem Bisektionsverfahren mit einer Genauigkeit von $4 \cdot 10^{-2}$, indem Sie nur die Exponentialfunktion verwenden.

Lösung: Beachte, dass y_0 die Gleichung $\exp(y_0) - 2 = 0$ erfüllt. Wir starten das Bisektionsverfahren mit $a_0 = 0$ und $b_0 = 1$. Wie in der Vorlesung beschrieben wurde, ist der Fehler im n-ten Schritt höchstens $\frac{1}{2^n}$. Wir benötigen also 5 Schritte, um die geforderte Genauigkeit zu erreichen.

n	a_n	b_n	$f(a_n)$	$f(b_n)$	$f(\frac{a_n+b_n}{2})$
0	0	1	_	+	_
1	0,5	1	_	+	+
2	0,5	0,75	_	+	_
3	0,625	0,75	_	+	_
4	0 0, 5 0, 5 0, 625 0, 6875	0,75	_	+	+

Also: $y_0 \in]0.6875, 0.71875[$.

Aufgabe G3 ()

Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \frac{1}{(1+x)^2}$$
 für $x \in D(f) = [0,3].$

- (a) Bestimmen Sie die Bildmenge von f (Beweis!).
- (b) Zeigen Sie, dass f eine Umkehrfunktion g besitzt und bestimmen Sie diese.
- (c) Bestimmen Sie die Ableitung der Umkehrfunktion g direkt und mit Hilfe des Satzes III.3.1. Vergleichen Sie beide Ergebnisse.

Lösung:

(a) Es gilt f(0) = 1 und $f(3) = \frac{1}{16}$. Wegen

$$f'(x) = \frac{-2}{(1+x)^3} < 0, \quad x \in [0,3],$$

ist f streng monoton fallend, d.h. $B(f) \subset [\frac{1}{16}, 1]$. Da f insbesondere stetig ist, folgt mit dem Zwischenwertsatz $B(f) = [\frac{1}{16}, 1]$.

(b) Da f'(x) < 0 für $x \in [0,3]$, besitzt f nach Satz III.3.1 eine Umkehrfunktion g. Man erhält

$$g(x) = \frac{1 - \sqrt{y}}{\sqrt{y}}$$
 für $y \in D(g) = [\frac{1}{16}, 1].$

(c) Nach Satz III.3.1 folgt:

$$g'(x) = \frac{1}{f'(g(y))} = \frac{\left(1 + \frac{1 - \sqrt{y}}{\sqrt{y}}\right)^3}{-2} = -\frac{1}{2\sqrt{y^3}}.$$

Die direkte Rechnung zeigt: $g'(y) = -\frac{1}{2} \frac{1}{u^{\frac{3}{2}}}$. Offenbar stimmen beide Ergebnisse überein.

Hausübung

Aufgabe H1 (7 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \cos(2x)$ für $x \in D(f) =]0, \frac{\pi}{2}[$.

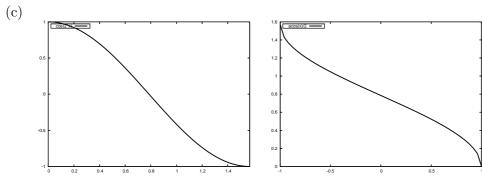
- (a) Geben Sie die Bildmenge von f an (ohne Beweis!).
- (b) Zeigen Sie, dass f eine Umkehrfunktion g besitzt. Geben Sie auch die Definitionsmenge und die Bildmenge von g an (ohne Beweis!). Bestimmen Sie die Umkehrfunktion g.
- (c) Skizzieren Sie f und g.
- (d) Berechnen Sie die Ableitung von g direkt und mit Hilfe des Satzes III.3.1. Vergleichen Sie beide Ergebnisse.

Lösung:

- (a) B(f) =]-1,1[.
- (b) Es gilt

$$f'(x) = -2\sin(2x) < 0, \quad x \in]0, \frac{\pi}{2}[.$$

Daher besitzt f eine Umkehrfunktion $g: \mathbb{R} \to \mathbb{R}$ mit D(g) = B(f) nach Satz II.3.1. Außerdem gilt B(g) = D(f).



(d) Es gilt $g(y) = \frac{1}{2}\arccos(y)$. Nach Satz III.3.1 folgt daher

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{-2\sin(\arccos(y))}.$$

Die direkte Rechnung liefert: $g'(x) = -\frac{1}{2\sqrt{1-x^2}}$. Mit der Identität $\sin(x) = \sqrt{1-\cos^2(x)}$ für $x \in]0, \frac{\pi}{2}[$ sieht man, dass beide Ergebnisse übereinstimmen.

Aufgabe H2 (4 Punkte)

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ besitze die Umkehrfunktion $g: \mathbb{R} \to \mathbb{R}$ und die Funktion $g: \mathbb{R} \to \mathbb{R}$ besitze die Umkehrfunktion $h: \mathbb{R} \to \mathbb{R}$. Zeigen Sie f = h (Denken Sie auch an die Definitionsmenge!).

Lösung: Es gilt D(g) = B(f) und B(g) = D(f). Also: D(h) = B(g) = D(f). Wegen $(g \circ f)(x) = x$ und $(h \circ g)(x) = x$ für $x \in D(g) = D(f)$ gilt:

$$h(x) = h((g \circ f)(x)) = (h \circ g)(f(x)) = f(x).$$

Aufgabe H3 (4 Punkte)

Zeigen Sie

$$\ln(xy) = \ln(x) + \ln(y), \quad x, y > 0.$$

Hinweis: Benutzen Sie die Identität $\exp(x+y) = \exp(x)\exp(y), x, y \in \mathbb{R}.$

Lösung: Sei x, y > 0. Da $B(\exp) =]0, \infty[$, existieren $\tilde{x}, \tilde{y} \in \mathbb{R}$ mit $x = \exp(\tilde{x})$ und $y = \exp(\tilde{y})$. Mit dem Hinweis folgt:

$$\ln(xy) = \ln(\exp(\tilde{x})\exp(\tilde{y})) = \ln(\exp(\tilde{x} + \tilde{y})).$$

Da ln die Umkehrfunktion von exp ist, erhalten wir:

$$\ln(xy) = \tilde{x} + \tilde{y} = \ln x + \ln y.$$