Fachbereich Mathematik

Prof. Dr. J.H. Bruinier Fredrik Strömberg

WS 2008/09 15.1.2009

Höhere Mathematik I

8. Übung

Abgabe Hausübungen: W. 4

Gruppenübungen

(G 30)

Ableiten Sie folgende Funktionen

(a)
$$f(x) = \frac{x}{x+1}$$
,

(b)
$$g(y) = e^{\frac{y^2}{1+y}}$$
,

(c)
$$h(z) = \frac{2z+3}{\sqrt{4z^2+12z+10}}$$
,

(d)
$$F(x) = e^{g(x)}$$
.

(G31)

Berechnen Sie die Ableitung folgende Funktionen

(a)
$$f_1(x) = x \ln(x)$$
,

(b)
$$f_2(x) = \ln(1+x^4)$$
,

(c)
$$f_3(x) = \ln|3x - 4|$$
,

(d)
$$f_4(x) = (\ln(x))^2$$
,

(e)
$$f_5(x) = \ln(x)^x$$
.

(G32)

Sei $f : \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion und $a \in \mathbb{R}$.

Was bedeutet es geomtrisch für den Graphen Γ_f der Funktion f, wenn

(a)
$$f'(a) = 0$$
,

(b)
$$f'(a) > 0$$
,

(c)
$$f'(a) < 0$$

ist? Betrachten Sie die Tangente an Γ_f im Punkt (a, f(f)).

(G33)

Seien f_1, \ldots, f_m differentierbare Funktionen und sei $f(x) = \ln(f_1(x) f_2(x) \cdots f_m(x))$.

Zeigen Sie, daß $f'(x) = \frac{f_1'(x)}{f_1(x)} + \cdots \frac{f_m'(x)}{f_m(x)}$.

Hausübungen

(H 15) [10P]

Berechnen Sie die Ableitung folgende Funktionen

(a)
$$g_1(x) = (x^2 + 1)\sqrt{x^2 + 1}$$
,

(b)
$$g_2(x) = \ln(x + \sqrt{1 + x^2}),$$

(c)
$$g_3(x) = \ln\left(\frac{|x|}{1+x^2}\right)$$
,

(d)
$$g_4(x) = \ln |\ln |x||$$
,

(e)
$$g_5(x) = \frac{x}{\ln x}$$
.

(H 16) [10P]

Berechnen Sie die Ableitung folgende Funktionen

(a)
$$f_1(x) = e^{3x}$$
,

(b)
$$f_2(x) = e^{-1/x}$$
,

(c)
$$f_3(x) = x^x$$
,

(d)
$$f_4(x) = e^{x^2/(1+x)}$$
,

(e)
$$f_5(x) = (\ln(x))^{1-x}$$
.