Fachbereich Mathematik

Prof. Dr. J.H. Bruinier Fredrik Strömberg

WS 2008/09 27.1.2009

Höhere Mathematik I

11. Übung

Abgabe Hausübungen: W. 7

Gruppenübungen

(G44)

Berechnen Sie das Integral $\int_0^b f(x) dx$, $b \ge 0$, für $f(x) = x^2$ durch Approximation mit Treppenfunktionen. Betrachten Sie dazu folgende Folgen von Treppenfunktionen:

Für $n \in \mathbb{N}$ sei $x_k = \frac{b}{n}k$, $0 \le k \le n$. Zu dieser Unterteilung definieren wir die Treppenfunktionen

$$\varphi_n : [0,b] \rightarrow \mathbb{R}, \quad \varphi_n(x) = f(x_{k-1}) \text{ für } x \in [x_{k-1}, x_k),$$

$$\psi_n : [0,b] \rightarrow \mathbb{R}, \quad \psi_n(x) = f(x_k) \text{ für } x \in [x_{k-1}, x_k).$$

- (a) Zeichnen Sie f, φ_n, ψ_n für n = 4 und b = 2.
- (b) Berechnen Sie $\int_0^b \varphi_n(x) dx$, $\int_0^b \psi_n(x) dx$.
- (c) Zeigen Sie, dass

$$\lim_{n\to\infty}\int_0^b \varphi_n(x)\,dx = \lim_{n\to\infty}\int_0^b \psi_n(x)\,dx = \frac{b^3}{3}.$$

(d) Folgeren Sie, dass f integrierbar ist und berechnen Sie $\int_0^b f(x) dx$.

(Hinweise:
$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n (n+1) (2n+1)$$
.)

(G45)

Berechnen Sie die folgenden Integrale.

(a)
$$\int_0^{6\pi} \sin x dx$$
, (b) $\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 x dx$ (c) $\int_2^5 x^3 dx$, (d) $\int_0^{2\pi} e^{3x} dx$, (e) $\int_{-1}^1 x e^{x^2} dx$.

(G 46)

Berechnen Sie die folgenden unbestimmte Integrale unter Verwendung partieller Integration.

(a)
$$\int x^2 \ln x dx$$
, (b) $\int \arctan x dx$, (c) $\int x e^{-x} dx$,
(d) $\int \sqrt{x} \ln x dx$, (e) $\int e^x \cos x dx$.

(G 47)

Berechnen Sie die folgenden Integrale mit der Substitutionsregel.

(a)
$$\int \cos x e^{\sin x} dx$$
, (b) $\int_0^1 \frac{1}{e^x + 2 + 2e^{-x}} dx$, (c) $\int_{-1}^1 \frac{1}{x^2 + 2x + 3} dx$
(d) $\int \frac{1}{x \ln x} dx$, (e) $\int \frac{1}{\sin x + 2} dx$.

(Hinweise für (e): Die Substitution ist durch $u = \tan \frac{x}{2}$ gegeben. Siehe auch H13)

Hausübungen

(H 21) [2+2+2+2+2P]

Berechnen Sie die folgenden Integrale.

(a)
$$\int e^{-x} \sin x dx$$
, (b) $\int \frac{1}{\sin x + 2} dx$, (c) $\int (\ln x)^2 dx$, (d) $\int \ln (1 + x^2) dx$, (e) $\int \frac{\arctan x}{x^2 + 1} dx$.

(H 22) [2+2+2+2+2P]

Berechnen Sie die folgenden Integrale.

(a)
$$\int_0^1 e^x \ln(1+e^x) dx$$
, (b) $\int_0^1 \cos\left(x^{\frac{1}{3}}\right) dx$, (c) $\int_0^b \sqrt{a^2 - \left(\frac{a}{b}\right)^2 t^2} dt$, $a,b > 0$ Konst., (d) $\int_0^{2\pi} e^{-x} |\sin x| dx$, (e) $\int_{-1}^1 \frac{dx}{\cosh x}$.

(Hinweise: $\cosh x = \frac{1}{2} (e^x + e^{-x}).$)