Introduction to Mathematical Software
 $7^{\text {th }}$ Exercise Sheet

Exercise 1 (Fibonacci Numbers)
(a) Write a routine int fib (int n) that computes the $n-t h$ Fibonacci number by recursively calling itself.
(b) Now write an iterative routine for computing the $n-t h$ Fibonacci using a forloop.
(c) Test both algorithms with $n=42$. What do you observe? Does this mean recursion as such is slow?
(d) What happens if you choose $n=50$?

Exercise 2 (Matrix Multiplication)

Write a program to multiply two matrices.
More specifically, you are given an $l \times m$-matrix A and an $m \times n$-matrix B. Compute the $l \times n$-matrix C with $C=A \cdot B$.
Hints:

- use the \#define preprocessor directive to set the dimensions of the matrices, e.g.
\#define L 3
\#define M 2
\#define N 4
L, M, N can then be used like ordinary variables of type int.
- write a subfunction
void MatMatMult (double A[L] [M], double B[M] [N], double C[L] [N]) that computes $A B$ and stores the result in C.

Exercise 3 (Efficient Fibonacci)

An efficient way for computing large Fibonacci numbers is the matrix multiplication algorithm. This algorithm is based on the following observations:
The Fibonacci sequence can be described as a 2-dimensional system of difference equations

$$
\binom{F_{n+2}}{F_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{n+1}}{F_{n}}
$$

where F_{n} denotes the n-th Fibonacci number.
This yields the following closed form for the computation of Fibonacci numbers

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

which is the basis of the algorithm.
From the closed form it follows that the n-th Fibonacci number is given as the upper left element of the matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n-1}
$$

so the problem of computing a Fibonacci number can be reduced to matrix multiplication. For an implementation, it is now important to perform the matrix multiplications efficiently. However, we only have to compute matrix powers, which a computer can do efficiently by using the binary representation of a natural number.
We will explain the procedure for the simpler case of raising a real number to an integral power. Say we want to compute a^{d} for $a \in \mathbb{R}, d \in \mathbb{N}$. The binary representation of d is given by a finite sequence $\left\{b_{i}\right\}_{i=0}^{n}, b_{i} \in\{0,1\}$ for an implementation dependent $n \in \mathbb{N}$. Now,

$$
a^{d}=\prod_{i=0}^{n} a^{b_{i} \cdot 2^{i}}
$$

So, instead of multiplying a d-times by itself, we use the following procedure: starting with $r=1$, for i from 0 to n, we multiply r with $a^{b_{i} \cdot 2^{i}}$. In each iteration, the $a^{\left(2^{i}\right)}$ is computed as $\left(a^{\left(2^{i-1}\right)}\right)^{2}$
The procedure is summerized in the following algorithm:

```
Algorithm 1 Computation of the n-th Fibonacci number
    input: natural number \(n\)
    set \(d=n-1, A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\)
    while \(d>0\) do
        if rightmost-bit of \(d\) is 1 then
            \(M=M \cdot A\)
        end if
        \(A=A^{2}\)
        shift \(d\) to the right by 1 bit
    end while
    output: \(F_{n}=M_{00}\)
```

- Implement this algorithm.

Hints:

- use typedef unsigned long long int Integer to be able to compute larger Fibonacci numbers than in exercise 1 (you should be able to compute F_{200} in the computer pool room).
- write a function void MatMatMult (Integer M[2] [2], Integer A [2] [2]) for computing the product of two 2×2 matrices. The product should be written to M.
- write a function void square (Integer A[2] [2]) to compute the square of a matrix. The result should be returned in A.
- checking whether the rightmost-bit of d is 1 can be done by ($d \& 1$) (\& is the bitwise and operator).
- shifting d to the right by 1 bit can be done by $\mathrm{d}=\mathrm{d} \gg 1$; (>> is the shift right operator).
- for unsigned long long int, use $\%$ llu in printf statements.

