
Department of Mathematics

Dr. Ulf Lorenz

Christian Brandenburg

winter term 2008/2009
02/02/2009

Introduction to Mathematical Software
7

th
Exercise Sheet

Exercise 1 (Fibonacci Numbers)

(a) Write a routine int fib(int n) that computes the n− th Fibonacci number by
recursively calling itself.

(b) Now write an iterative routine for computing the n − th Fibonacci using a for-
loop.

(c) Test both algorithms with n = 42. What do you observe? Does this mean
recursion as such is slow?

(d) What happens if you choose n = 50?

Exercise 2 (Matrix Multiplication)

Write a program to multiply two matrices.
More specifically, you are given an l×m-matrix A and an m×n-matrix B. Compute
the l × n-matrix C with C = A · B.

Hints:

• use the #define preprocessor directive to set the dimensions of the matrices, e.g.
#define L 3

#define M 2

#define N 4

L, M, N can then be used like ordinary variables of type int.

• write a subfunction
void MatMatMult (double A[L][M], double B[M][N], double C[L][N])

that computes AB and stores the result in C.

Exercise 3 (Efficient Fibonacci)

An efficient way for computing large Fibonacci numbers is the matrix multiplication
algorithm. This algorithm is based on the following observations:

The Fibonacci sequence can be described as a 2-dimensional system of difference
equations

(

Fn+2

Fn+1

)

=

(

1 1
1 0

) (

Fn+1

Fn

)

where Fn denotes the n-th Fibonacci number.

This yields the following closed form for the computation of Fibonacci numbers

(

1 1
1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

,

which is the basis of the algorithm.

From the closed form it follows that the n-th Fibonacci number is given as the upper
left element of the matrix

(

1 1
1 0

)n−1

,

so the problem of computing a Fibonacci number can be reduced to matrix multiplica-
tion. For an implementation, it is now important to perform the matrix multiplications
efficiently. However, we only have to compute matrix powers, which a computer can
do efficiently by using the binary representation of a natural number.

We will explain the procedure for the simpler case of raising a real number to an inte-
gral power. Say we want to compute ad for a ∈ R, d ∈ N. The binary representation
of d is given by a finite sequence {bi}

n
i=0, bi ∈ {0, 1} for an implementation dependent

n ∈ N. Now,

ad =
n

∏

i=0

abi·2
i

.

So, instead of multiplying a d-times by itself, we use the following procedure: starting
with r = 1, for i from 0 to n, we multiply r with abi·2

i

. In each iteration, the a(2i) is
computed as (a(2i−1))2

The procedure is summerized in the following algorithm:

Algorithm 1 Computation of the n-th Fibonacci number

1: input: natural number n

2: set d = n − 1, A = (1 1
1 0), M = (1 0

0 1)
3: while d > 0 do

4: if rightmost-bit of d is 1 then

5: M = M · A
6: end if

7: A = A2

8: shift d to the right by 1 bit
9: end while

10: output: Fn = M00

• Implement this algorithm.

Hints:

• use typedef unsigned long long int Integer to be able to compute larger
Fibonacci numbers than in exercise 1 (you should be able to compute F200 in the
computer pool room).

• write a function void MatMatMult (Integer M[2][2], Integer A[2][2]) for
computing the product of two 2× 2 matrices. The product should be written to
M.

• write a function void square (Integer A[2][2]) to compute the square of a
matrix. The result should be returned in A.

• checking whether the rightmost-bit of d is 1 can be done by (d & 1) (& is the
bitwise and operator).

• shifting d to the right by 1 bit can be done by d = d >> 1; (>> is the shift right
operator).

• for unsigned long long int, use %llu in printf statements.

