Introduction to Mathematical Software

$4^{\text {th }}$ Exercise Sheet

Exercise 1 (Matrices)

Consider the following matrices.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
2 & -4 & 3 \\
4 & 5 & 9
\end{array}\right], \quad B=\left[\begin{array}{cc}
-1 & 2 \\
1 & 0 \\
7 & 4
\end{array}\right]
$$

Compute
(a) A^{-1}
(b) $A A^{T}$
(c) $B^{T} A B$
(d) $\left(2 A+B B^{T}\right) A^{T}$

Hint: You may want to have a look at the help of the package LinearAlgebra.
Exercise 2 (Determinants)
(a) Compute det $\left[\begin{array}{cccc}x^{2}+1 & x & 0 & 0 \\ x & x^{2}+1 & x & 0 \\ 0 & x & x^{2}+1 & x \\ 0 & 0 & x & x^{2}+1\end{array}\right]$
(b) Compute det $\left[\begin{array}{ccccc}x^{2}+1 & x & 0 & 0 & 0 \\ x & x^{2}+1 & x & 0 & 0 \\ 0 & x & x^{2}+1 & x & 0 \\ 0 & 0 & x & x^{2}+1 & x \\ 0 & 0 & 0 & x & x^{2}+1\end{array}\right]$
(c) Looking at the results of (a) and (b), do you have any idea what the determinant of a general matrix of the above form is? If so, check your conjecture for an 8 x 8 matrix. If not, compute the determinants for matrices of dimension 6 and 7 to get an idea.

Exercise 3 (3-dimensional geometry)
Let a sphere S and a line g be given. S has its center at $(0,0,0)$ and a radius $r=1$. g intersects the sphere at two points and goes through the point $(0,0,0)$. Produce a drawing of S, the line g intersecting the sphere, and a tangent plane such that line and plane are orthogonal to each other.
Helpful Maple-commands: with(geom3d), sphere, intersection, TangentPlane, line, draw, detail.
Especially look at the intersection-object of line and sphere: g_intersect1_S.
Exercise 4 (Number theory)
For each natural number n, the $n \times n$ matrix A_{n} is defined as

$$
A_{n}(i, j)=\operatorname{gcd}(i, j) .
$$

(a) Compute the determinant of A_{n} for $n=1,2, \ldots, 15$.
(b) Try to find a closed formula for the general case.

Hint: Find a connection to Euler's totient function (phi, numtheory)

