
Department of Mathematics

Dr. Ulf Lorenz

Christian Brandenburg

winter term 2008/2009
10/11/2008

Introduction to Mathematical Software
2

nd
Exercise Sheet

Exercise 1 (Representation of integers)

Preliminary Remark: In this exercise, you are supposed to develop an understanding
of how integers are represented in computers and how computations with them are
performed. Most of this exercise is a tutorial, but there are also some small exercises
within each section for you to check if you are familiar with the material.
You should not spend much more than half of the lab session on this exercise. If you
don’t get through with this exercise and still have questions, come and see us in our
office hours.

Binary Representation

For computers the least logical entity is a bit, which can have two states – typically
written as 0 and 1. Thus, in most programming languages the natural numbers are
represented binary, i.e. they are written in base 2.
For example, the pattern 1101(2) means

1101(2) = 1 · 23
(10) + 1 · 22

(10) + 0 · 21
(10) + 1 · 20

(10)

= 8(10) + 4(10) + 1(10)

= 13(10)

In fact, this representation works in exactly the same way as we are used to write
numbers in the decimal system, where we have base 10:

423(10) = 4 · 102
(10) + 2 · 101

(10) + 3 · 100
(10)

= 400(10) + 20(10) + 3(10)

Here, we have the letters 0, 1, 2, . . . , 9 = 10 − 1 and each position has 10 times the
value of the position one further to the right.

In the same manner, in base 2 we have the letters 0 and 1 and each position is 2 times
the value of the position one further to the right.

Conversion

As you have seen, conversion from base 2 to base 10 is straightforward; we just add
the values of the positions with non-zero digits. Unfortunately, the other way round
is more involved.

For converting from base 10 to base 2 there are two approaches, the naïve and the
systematic one. In the naïve approach we iteratively find the largest power of 2 which
is less than or equal to the number we want to convert, place a 1 at the corresponding
position of the binary representation and substract this power of two from our decimal
number.
For example, if we want to convert 817(10) to the binary representation, we find that
29 = 512 is the largest power of 2 less than or equal to 817(10). Thus, we place a 1 at
the 9th position from the right (note that we start counting positions with 0!) After
substracting, we have 817 − 512 = 305, we find that 28 = 256, place a 1 at the 8th
position and substract 305− 256 = 49. Continuing, we place ones at positions 5,4 and
0. Thus, the binary representation of 817(10) is given by 1100110001(2) .

In the systematic approach, we make use of the following properties:

• if we add a zero at the end of a binary number, we multiply it by 2

• if we erase the rightmost digit, we divide by two, neglecting the remainder

• every number can be written in the form 2n or 2n + 1

• we can read of the last digit of a binary number by checking if it is even or odd

Combining these properties, we arrive at an algorithm for converting numbers from
base 10 (and in fact from any base) to base 2:

• decide whether the number is even or odd; if it is even, we place a 0, otherwise
we append a 1 to the left of the binary representation (in the first iteration, we
just place the digit).

• divide by 2 without remainder and iterate until you arrive at 0.

With our example, this algorithm goes as follows:

decimal binary

817
408 1
204 01
102 001
51 0001
25 10001

decimal binary

12 110001
6 0110001
3 00110001
1 100110001
0 1100110001

Exercises:

(a) Convert the following decimals to binaries: 4(10), 5(10), 78(10), 127(10)

(b) Convert the following binaries to decimals: 111(2), 10101(2) , 10111(2) , 1110111(2)

Negative Numbers

To also represent negative integers, somehow the “−”-sign has to be represented. In
the “sign and magnitude”-approach, this is achieved by first fixing the number of bits
the representation of an integer may use (e.g. 8 bits) and then using the leftmost bit
for the sign. However, this approach has several disadvantages: Firstly, there exist two
represenations for “zero”, i.e. +0 and −0, and secondly, for all arithmatic operations
one needs special cases to check for signs.

Two’s Complement

Today, negative integers are typically represented by their “Two’s Complement”. The
Two’s Complement of a negative integer n is built by inverting all bits of the repre-
sentation of |n| and then adding 1 to it. To represent e.g. −13(10) in an 8 bits wide
representation, you first represent 13(10) = 00001101(2) , then invert all its bits to
11110010(2) and then add 1 to it, thus −13(10) = 11110010(2) + 1(2) = 11110011(2) .
Whether a signed binary number is positive or negative can be determined by looking
at the highest bit, which is 0 for nonnegative and 1 for negative numbers.

Exercises:

(a) Find the 8 bits wide representations for −27(10) and −78(10).

(b) Which integers may be represented at all with a

i. 8 bits wide representation?

ii. 32 bits wide representation?

(c) How could you build the Two’s Complement using decimal calculations?

Arithmetic

Arithmatic for the binary system works exactly as for the decimal system, which means
that you can reuse all the algorithms you learned in school. In fact, the correctness of
these algorithms is independent from the base.

Addition

Computing 15(10) + 5(10) = 20(10) in a binary 8-bit representation:

0 0 0 0 1 1 1 1

0 0 0 01 01 11 01 1

0 0 0 1 0 1 0 0

Note that, in this example, we produce a carry in each bit.

Substraction

For substracting two binary numbers, we can again use the algorithm taught in school,
or we can reduce the problem to addition by negating the second argument (using the
two’s complement).

For computing 5(10)−15(10) = −10(10) in a binary 8-bit representation, we first negate
the second argument using two’s complement: 15(10) is in binary representation given
by 00001111(2) , so its two’s complement is 11110000(2) +1(2) = 11110001(2) . Thus, we
can perform an addition:

0 0 0 0 0 1 0 1

1 1 1 1 0 0 01 1

1 1 1 1 0 1 1 0

Multiplication and Division

They also work as taught in school.

Exercises:

Do the following calculations like a computer using 8 bits:

(a) 13 + 8

(b) 27 − 78

(c) −27 − 78

(d) −78 − 78

(e) 7 · 6

What happens in (d)?

Exercise 2 (Lists and sets in Maple)

(a) Explain the difference of lists and sets in Maple.

(b) Use Maple to find the common divisors of 23545800, 25491186 and 229420674.

(c) Let Maple evaluate the function sin for all the solutions of the equation

x4 − 4x3π +
26

9
x2π2

+
4

9
xπ3 −

1

3
π4

= 0

by using the map command.

(d) Program a Maple function using lists that sums up all factorials that are less
than a given natural number.

(e) Program a Maple function that returns for a given set M and a given number k

all the subsets of M with exactly k elements.

Exercise 3 (Advanced Maple*)

(a) Find out which of the following numbers are factorials:
720, 4320, 39916800, 25852016738884976640000, 26976017466662584320000

(b) Find out by searching the internet what “perfect number” means. Then decide
which of the following numbers are perfect:
28, 120, 496, 8192, 13164036458569648337239753460458722910223472318386943117783728128

