\S 9 L_p Räume bezüglich des Lebesgue-Maßes

Im Folgenden sei μ stets das Lebesgue-Maß und \mathcal{M} die σ -Algebra der Lebesgue-messbaren Mengen.

9.1. SATZ.

(a) Sei $f,g\in L^1(\mathbb{R}^d)$. Dann existiert für fast alle $x\in\mathbb{R}^d$ das Integral

$$(f * g)(x) := \int_{\mathbb{R}^d} f(x - y)g(y) \, dy.$$

Es gilt ferner $||f * g||_1 \le ||f||_1 \cdot ||g||_1$.

(b) Ist $f \in L^p(\mathbb{R}^d)$ und $g \in L^q(\mathbb{R}^d)$, so existient

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$$
 für jedes $x \in \mathbb{R}^d$.

Desweiteren gilt $f * g \in L^{\infty}(\mathbb{R}^d)$ und $||f * g||_{\infty} \leq ||f||_p \cdot ||g||_q$.

(c) Sei $f \in L^p(\mathbb{R}^d)$, $g \in L^1(\mathbb{R}^d)$. Dann existiert für fast alle $x \in \mathbb{R}^d$ das Integral

$$(f * g)(x) := \int_{\mathbb{R}^d} f(x - y)g(y) \, dy.$$

Es gilt ferner $||f * g||_1 \le ||f||_1 \cdot ||g||_1$.

Beweis. (a) Für $f, g \in L^1(\mathbb{R}^d)$ gilt mit der Verwendung des Satzes von Fubini-Tonelli:

$$\int\limits_{\mathbb{R}^d} \int\limits_{\mathbb{R}^d} |f(x-y)| \cdot |g(y)| \, \mathrm{d}y \, \mathrm{d}x = \int\limits_{\mathbb{R}^d} |g(y)| \int\limits_{\mathbb{R}^d} |f(x-y)| \, \mathrm{d}x \, \mathrm{d}y = \int\limits_{\mathbb{R}^d} |g(y)| \cdot \|f\|_1 \, \mathrm{d}y = \|f\|_1 \cdot \|g\|_1.$$

Dies impliziert alle Aussagen.

(b): Ist $f \in L^p(\mathbb{R}^d)$ und $g \in L^q(\mathbb{R}^d)$ so erhält man nach der Hölder-Unleichung:

$$|f * g(x)| \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y)| \cdot |g(y)| \, dy \, dx \le ||f||_p \cdot ||g||_q.$$

Dies zeigt die Existenz von f * g(x) für jedes x, und die übrigen Aussagen folgen auch.

c): Verwende z.B. den Satz von Riesz-Thorin, oder siehe unter Haudorff-Young-Ungleichung (unten).

Bemerkung: Man kann leicht zeigen, dass die Banachalgebra $L^1(\mathbb{R}^d)$ kein Einselement besitzt.

Satz [Hausdorff-Young-Ungleichung]: Sei $f \in L^p(\mathbb{R}^d)$ und $g \in L^1(\mathbb{R}^d)$. So definiert $T_g f := f * g$ einen stetigen linearen Operator auf L^p mit $||T_g|| \le ||g||_1$, d.h., $||f * g||_p \le ||f||_p \cdot ||g||_1$.

Beweis. Sei $h \in L^q(\mathbb{R}^d)$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Nach dem Satz von Fubini und Satz 9.1(b)

$$\left| \int_{\mathbb{R}^d} h(x) \int_{\mathbb{R}^d} f(x - y) g(y) \, dy \, dx \right| \le \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x - y) h(x)| \, dx \, dy \le ||g||_1 \cdot ||f||_p \cdot ||h||_q.$$

Daraus folgt die Behauptung (siehe Korollar (c) von 8.6) (Linearität ist klar).

9.2. SATZ. Der Raum $L^1(\mathbb{R}^d)$ versehen mit der Multiplikation f*g (Faltung) ist eine kommutative Banachalgebra. D.h. f*g = g*f, f*(g*h) = (f*g)*h, $(f = \lambda g)*h = f*h + \lambda(g*h)$, und $||f*g||_1 \le ||f||_1 \cdot ||g||_1$ gilt.

Beweis. Seien $f, g, h \in L^1(\mathbb{R}^d)$. Man rechnet leicht nach, dass $(f+\lambda g)*h = f*f+\lambda(g*h), f*(g*h) = (f*g)*h$ und f*g = g*f gelten. Die Submultiplikativität der Norm wurde im Satz 9.1 (a) bewiesen.

- **9.3.** SATZ. Sei $f \in C_c(\mathbb{R}^d)$ und $g \in L^1_{loc}(\mathbb{R}^d)$.
- a) Es existiert f * g und $f * g \in C(\mathbb{R}^d)$.
- b) Gilt ferber g=0 außerhalb einer kompakten Menge K, so ist $f*g\in C_c(\mathbb{R}^d)$. Genauer:

$$\operatorname{supp}(f * g) \subseteq \overline{\operatorname{supp} f + K} = \operatorname{supp} f + K.$$

Beweis. a): Sei $x_n \to x$ mit $|x_n - x| \le 1$. Es gilt

$$|(f * g)(x_n) - (f * g)(x)| \le \int_{\mathbb{R}^d} |f(x_n - y) - f(x - y)| \cdot |g(y)| \, dy$$

$$= \int_{x - (\text{supp } f + B(0,1))} |f(x - y)| \cdot |g(y)| \, dy \le \varepsilon \int_{x - (\text{supp } f + B(0,1))} |g(y)| \, dy$$

für $n \ge n_0(x)$ (dies folgt aus der gleichmässigen Stetigkeit von f auf der kompakten Menge x – (supp f + B(0,1)).

b): Nach Satz 9.1 $(f * g)(x) = \int f(x-y)g(y) dy$ existiert für alle $x \in \mathbb{R}^d$. Also

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy = \int_{(x - \text{supp } f) \cap K} f(x - y)g(y) \, dy.$$

Falls $x \notin \text{supp } f + K$, gilt $(x - \text{supp } f) \cap K = \emptyset$ und (f * g)(x) = 0.

9.4. SATZ [Faltung und die Ableitung]. Seien $f \in C^k_c(\mathbb{R}^d)$, $g \in L^1_{loc}(\mathbb{R}^d)$. Dann $f * g \in C^k(\mathbb{R}^d)$, und $D^{\alpha}(f * g) = D^{\alpha}f * g$. Insbesondere $f \in C^{\infty}_c$, $g \in L^1_{loc}(\mathbb{R}^d) \Longrightarrow f * g \in C^{\infty}(\mathbb{R}^d)$.

Beweis. Wie immer (f * g)(x) existiert für alle x. Sei $e_j \in \mathbb{R}^d$ ein Standardbasisvektor, $h \in \mathbb{R}$, $|h| \leq 1$. Setze $K := \text{supp } f + \overline{B}(0,1)$, dies ist auch kompakt. Dann

$$\frac{1}{h}((f * g)(x + he_j) - (f * g)(x)) = \int_{\mathbb{R}^d} \frac{1}{h}(f(x + he_j - y)g(y) - f(x - y))g(y) \, dy =
= \int_{K-x} \frac{1}{h}(f(x + he_j - y)g(y) - f(x - y))g(y) \, dy,$$

wo das Integrand konvergiert gegen $D_j f(x-y)g(y)$ für alle y. Außerdem gilt

$$\left|\frac{1}{h}(f(x+he_j-y)g(y)-f(x-y))g(y)\right| \le ||D_j f||_{\infty}|g(y)|.$$

Nach dem Satz von Lebesgue bekommen wir $D_j(f*g)(x) = ((D_jf)*g)(x)$, und so die Behauptung.

9.5. DEFINITION. Eine Folge $(\rho_n)_{n\geq 1}$ von Funktionen mit den Eigenschaften

i)
$$\rho_k \in C^{\infty}(\mathbb{R}^d)$$

iii) supp
$$\rho_k \subseteq B(0, 1/n)$$

ii)
$$\rho_n \geq 0$$

iv)
$$\int_{\mathbb{R}^d} \rho_n = 1$$

heißt Mollifier.

Beispiel: Betrachte $\rho \in C_c^{\infty}(\mathbb{R}^d)$, supp $(\rho) \subseteq B(0,1)$, $\rho \ge 0$, $\int \rho = 1$, und definiere $\rho_n(x) := 1/n^d \rho(nx)$.

Lemma [1]: Sei $f \in C(\mathbb{R}^d)$ und $(\rho_n)_{n\geq 1}$ ein Mollifier. Dann konvergiert $\rho_n * f \to f$ gleichmäßig auf kompakten Teilmengen von \mathbb{R}^d .

Beweis. Sei $K \subseteq \mathbb{R}^d$ kompakt. Dann für alle $\varepsilon > 0$ existiert $\delta > 0$ mit $|f(x-y) - f(x)| \le \varepsilon$ falls $|y| \le \delta$. Also

$$(\rho_n * f)(x) - f(x) = \int_{\mathbb{R}^d} (f(x - y) - f(x))\rho_n(y) \, dy = \int_{B(0, 1/n)} (f(x - y) - f(x))\rho_n(y) \, dy,$$

so für $n > 1/\delta$ gilt $|(\rho_n * f)(x) - f(x)| \le \varepsilon \int \rho_n = \varepsilon$ für $x \in K$.

Lemma [2 – Urysohn, C^{∞} -Version]: Sei $\emptyset \neq \Omega \subseteq \mathbb{R}^d$ offen, $K \subseteq \Omega K$ kompakt. Es existiert dann $\varphi \in C_c^{\infty}(\Omega)$ mit $0 \leq \varphi 1$ und $\varphi(x) = 1$, falls $x \in K$.

Beweis. Sei $0 < 1/n < \varepsilon < \varepsilon + 1/n < \operatorname{dist}(K, \Omega^c)$. Setze $U_{\varepsilon} := \{y \in \Omega : \operatorname{dist}(y, K) < \varepsilon\} \subseteq \Omega$ und $u\chi_{U_{\varepsilon}}$. Dann gilt $\varphi := \rho_n * u \in C^{\infty}(\mathbb{R}^d)$ und $\operatorname{supp} \varphi \subseteq \overline{B}(0, 1/n) + \overline{U}_{\varepsilon} \subseteq \Omega$, also $\operatorname{supp} \varphi \subseteq \Omega$ ist compact. Sei $x \in K$, dann $\varphi(x) = \int_{|y| \le 1/n} u(x-y)\rho_n(y) \, \mathrm{d}y = \int_{|y| \le 1/n} \rho_n(y) \, \mathrm{d}y = 1$. Ferner $\|\varphi\|_{\infty} \le \|\rho_n\|_1 \cdot \|u\|_{\infty} = 1$. Da $\varphi \ge 0$ folgt auch $0 \le \varphi \le 1$.

9.6. SATZ. Sei $1 \le p < \infty$. Dann ist $C_c(\mathbb{R}^d)$ dicht in $L^p(\mathbb{R}^d)$.

Beweis. Sei $f \in L^p(\mathbb{R}^d)$ und $\varepsilon > 0$. Es gibt ein R > 0, so dass $||f - \chi_{B(0,R)}f||_p \le \varepsilon$. Ferner existiert eine Treppenfunktion φ mit $||\chi_{B(0,R)}f - \chi_{B(0,R)}\varphi||_p \le \varepsilon$ (siehe Lemma 8.5). Die Funktion $\chi_{B(0,R)}\varphi$ hat die Form $\sum_{i=1}^N \alpha_i \chi_{A_i}$ mit $A_i \subset \mathbb{R}^d$ beschränkt. Wir zeigen, dass jede einzelne χ_{A_i} durch Funktionen in $C_c(\mathbb{R}^d)$ approximierbar ist. Wähle eine beschränkte, offene Menge G und eine kompakte Menge K mit $K \subset A_i \subset G$ und $\lambda_d(G \setminus K) \le \varepsilon$ (Existenz: Maßtheorie). Dann existiert nach Lemma von Urysohn ein $\psi \in C_c(G)$ mit $\varphi \equiv 1$ auf K. Es gilt:

$$\int_{\mathbb{R}^d} |\chi_{A_i} - \psi|^p \, d\lambda_d = \int_G |\chi_{A_i} - \psi|^p \, d\lambda_d = \int_{G \setminus K} |\chi_{A_i} - \psi|^p \, d\lambda_d + \int_{K} |\chi_{A_i} - \psi|^p \, d\lambda_d \le 2^p \lambda(G \setminus K) \le 2^p \varepsilon.$$

9.7. KOROLLAR. Sei $\emptyset \neq \Omega \subseteq \mathbb{R}^d$ offen und $1 \leq p < \infty$. Dann ist $C_c^{\infty}(\Omega)$ dicht in $L^p(\Omega)$.

Beweis. Sei $f \in L^p(\Omega)$, $\varepsilon > 0$ und $g \in C_c(\Omega)$ mit $||f - g||_{L^p(\Omega)} < \varepsilon$. Definiere g'(x) := g(x) für $x \in \Omega$ und g'(x) = 0 $x \in \mathbb{R}^d \setminus \Omega$. Dann $g' \in L^p(\mathbb{R}^d)$ und $||\rho_n * g' - g'||_{L^p(\Omega)} \to 0$ nach Satz 9.8. Ferner

$$\operatorname{supp}(\rho_n * g') \subseteq \overline{B(0,1/n)} + \operatorname{supp} g' \subseteq \Omega$$
 für n geeignet groß.

Setze $u_n := (\rho_n * g')|_{\Omega}$. Für n genügend groß gilt $u_n \in C_c(\Omega)$ undv $||u_n - g||_{L^p(\Omega)} \to 0$. Schließlich

$$||u_n - f||_{L^p(\Omega)} \le ||u_n - g||_{L^p(\Omega)} + ||g - f||_{L^p(\Omega)} \le 2\varepsilon.$$

_

9.8. SATZ. Sei $(\rho_n)_{n\geq 1}$ ein Mollifier.

a) Sei
$$1 \le p < \infty$$
 und $f \in L^p(\mathbb{R}^d)$. Dann $\|\rho_n * f - f\|_p \to 0$.

b) Sei
$$f \in BUC(\mathbb{R}^d)$$
. Dann $\|\rho_n * f - f\|_{\infty} \to 0$

Beweis. a) Sei $\varepsilon > 0$ und $g \in C_c(\mathbb{R}^d)$ so, dass $||f - g|| \le \varepsilon$. Nach Lemma 1 gilt $\rho_n * g \to g$ gleichmässig auf jedem kompakten $K \subseteq \mathbb{R}^d$. Anderseits ergibt Satz 9.3

$$\operatorname{supp}(\rho_n * g) \subseteq \overline{B(0, 1/n)} + \operatorname{supp} g \subseteq K$$
, wobei K kompakt.

Daraus folgt $\|\rho_n * g - g\|_p \to 0$. Schließlich

$$\|\rho_n * f - f\|_p \le \|\rho_n * (f - g)\|_p + \|\rho_n * g - g\|_p + \|g - f\|_p \le \|f - g\|_p + \|\rho_n * g - g\|_p + \|g - f\|_p \le \varepsilon + \varepsilon + \varepsilon,$$
 falls n groß genug ist.

b) Wiederhole den Beweis von Lemma 1.