Prof. Dr. U. Reif S. Fröhlich, N. Sissouno

SS 2006 03.07.2006

11. Übungsblatt

Gruppenübungen

Wiederholung Komplexe Zahlen II

1.) Bestimmen Sie Realteil Re und Imaginärteil Im der komplexen Zahlen

i)
$$\left(\frac{2+i}{1-\overline{(1+i)^2}}\right)^9$$
 ii) $\left(\frac{1+i}{1-i}\right)^{99}$.

G35 Die Wirkung, die x Einheiten eines Medikamentes t Stunden nach der Einnahme auf einen Patienten haben, kann in vielen Fällen durch die Funktionsvorschrift

$$W(x,t) = x^{2}(a-x)t^{2}e^{-t} \quad (0 \le x \le a, \ t \ge 0)$$

dargestellt werden.

- i) Beschreiben Sie in knapper Form, wie sich diese Vorschrift anschaulich interpretieren lässt. Skizzieren Sie hierzu Schnitte x=const. und y=const. Welche Bedeutung besitzt der Parameter a?
- ii) Untersuchen Sie die Funktion W bezüglich der Definitionsmenge

$$Def(W) = \{(x,t) \in \mathbb{R}^2 : 0 < x < a, \ t > 0\}$$

auf lokale Extrema. Nach welcher Zeit und bei welcher Dosis wird die Wirkung auf unseren Patienten am größten sein. Wie "wohl"wird er sich dann fühlen?

G36 Entwickeln Sie entweder nach der Taylorformel bis zur 2.Potenz von x, y oder geben Sie die allgemeine Reihe unter Verwendung bekannter Taylorreihen an:

- i) $f(x,y) = x^2 \sin \frac{xy}{2} \text{ um } (1,\pi),$
- ii) $f(x,y) = \frac{1}{1+x+y}$ um (0,0),
- iii) $f(x,y) = x^2 \cos \frac{x}{y}$ in $(\pi, 1)$,
- v) $f(x,y,z) = \cos x \sin y e^z$ um (0,0,0).

G37 Bestimmen anhand einer Skizze ohne Berechnung des Gradienten und der Hessematrix die Art des kritischen Punktes (0,0) folgender Funktionen:

i)
$$f(x,y) = xy$$
 ii) $f(x,y) = x^2 - y^2$ iii) $f(x,y) = x^2 + y^2$

iv)
$$f(x,y) = \sqrt{1 - x^2 - y^2}$$
 v) $f(x,y) = \cos(xy)\sin(xy)$ vi) $f(x,y) = x^2\sin(xy)$

G38 Bestimmen Sie für die Funktion $f(x,y) = x^3 + 3xy + y^3$ lokale Extrema und zugehörige Funktionswerte.

Hausübungen

H37

7 Punkte

7 Punkte

Es soll die Zahl 12 derart in drei positive Summanden zerlegt werden, dass deren Produkt möglichst groß wird.

 $\mathbf{H38}$ Die Schnittkurve K der beiden Flächen

$$z = f(x,y) = 2x^3y - x^2y^3$$

 $z = q(x,y) = 3xy^3 + x^3y^2 - 5$

durchstößt die xy-Ebene in der Nähe des Punktes $(x_0, y_0) = (1, 1)$. Zur Verbesserung dieses Wertes bestimme man:

- i) die Tangentialebene von z = f(x, y) in (x_0, y_0) ;
- ii) die Tangentialebene von z = g(x, y) in (x_0, y_0) ;
- iii) den Schnittpunkt (x_1, y_1) der Schnittgeraden dieser beiden Ebenen mit der x, y-Ebene;
- iv) die Werte $f(x_1, y_1)$ und $g(x_1, y_1)$.

H39

7 Punkte

Untersuchen Sie die durch $f(x,y,z) = x^4 + 2y^2 + z^2 - y(2x^2 + 8) + 4z$ gegebene Funktion auf kritische Stellen und deren Art

H40 9 Punkte

Bestimmen Sie für die Funktion

$$f(x,y) = x^2 e^{\frac{y}{2}} (y-3) - \frac{1}{2} y^2, \ (x,y) \in \mathbb{R}^2$$

- i) $\nabla f(x,y)$, die Hesse-Matrix $\nabla^2 f$,
- ii) die kritischen Stellen und deren Art
- iii) und berechnen Sie die Taylorreihe in (0,0) unter Verwendung bekannter Reihen.

2