(Testfragen)

- a) Nein, die Funktionen $y_1(x), ..., y_n(x)$ sind auf I linear unabhängig, weil det $W(x_1) \neq 0$ ist. (S.39, Bem.(2)).
- b) Nein, die Funktionen $y_1(x), ..., y_n(x)$ können auch linear unabhängig sein. (Siehe, z.B. (H1)(b)).

(G 1) Lineare Unabhängigkeit von Funktionen

Lösung:

- a) det $W(x) = x + 2 x + 2 = 4 \neq 0$ für alle $x \in I$. Daher sind y_1, y_2 auf I linear unabhängig.
- b) Die Funktionen y_1, y_2 sind auf I linear abhängig, weil $y_1(x) = \frac{3}{4}y_2(x)$ für alle $x \in I$.
- c) Die Wronskische Determinante $\det W(x) = 2e^{3x} e^{3x} = e^{3x} \neq 0$ für alle $x \in I$. Daher sind y_1, y_2 auf I linear unabhängig.

(G 2) Lineare Differentialgleichungen

Lösung:

- a) Die Funktionen y_1, y_2 sind auf $I \equiv \{x : x > 0\}$ linear unabhängig, weil det $W(x) = 2x^2 + 2x > 0$ für alle x > 0 ist. Die Funktionen y_1, y_2 erfüllen die homogene Differentialgleichung. Nach Satz 5.4, s. 41 ist die allgemeine Lösung der homogenen DGL $y(x) = c_1(x+1)^2 + c_2x^2$.
- b) Wir suchen die Lösungen der inhomogenen Differentialgleichung in der Form $y(x) = v_1(x)y_1(x) + v_2(x)y_2(x)$. Das Gleichungssystem für $v_i(x)$ ist

$$\begin{cases} (x+1)^2 v_1' + x^2 v_2' = 0 \\ 2(x+1)v_1' + 2xv_2' = 2. \end{cases}$$

Die Lösung des Systems ist $v_1' = -\frac{x}{1+x}$, $v_2' = -\frac{1+x}{x}$. Durch integrieren erhält man $v_1 = -x + \ln(1+x) + c_1$, $v_2 = \ln x + x + c_2$. Die allgemeine Lösung ist daher $y(x) = c_1(x+1)^2 + c_2x^2 + (x+1)^2(\ln(1+x)-x) + x^2(\ln x + x)$.

(G 3) Homogene lineare Differentialgleichungen mit konstanten Koeffizienten

Lösung:

- a) Die Nullstellen des charakteristischen Polynoms $P(\lambda) = \lambda^2 + 2\lambda + 10$ sind $\lambda_{1,2} = -1 \pm 3i$. Die allgemeine Lösung ist daher $y(x) = e^{-x}(c_1 \cos 3x + c_2 \sin 3x)$.
- b) Die Nullstellen des charakteristischen Polynoms $P(\lambda) = \lambda^4 1$ sind $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = i, \lambda_4 = -i$. Die allgemeine Lösung ist $y(x) = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$.
- c) Die Nullstellen des charakteristischen Polynoms $P(\lambda) = 4\lambda^2 + 4\lambda + 1$ sind $\lambda_{1,2} = -\frac{1}{2}$. Die allgemeine Lösung ist $y(x) = e^{-\frac{x}{2}}(c_1x + c_2)$.