

9. Übung zu Sobolev-Räumen

52. Es seien $m \in \mathbb{N}_0$, $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ und, $f \in W^{m,p}(\Omega)$ und $g \in W^{m,q}(\Omega)$. Beweisen Sie, dass $fg \in W^{m,1}(\Omega)$ und

$$D^{\alpha}(fg) = \sum_{\beta < \alpha} \binom{\alpha}{\beta} D^{\beta} f \cdot D^{\alpha - \beta} g \qquad \text{für } |\alpha| \leq m \text{ gelten}.$$

- 53. Die folgenden Aussagen oder Fragen sind zu beweisen bzw. zu beantworten.
- a) $[-1,1] \ni x \mapsto |x| \text{ liegt in } W^{1,1}((-1,1)).$
- b) Die Charakteristische Funktion $f = \chi_{(-2,0]} : (-2,2) \to \mathbb{R}$ ist keine Sobolev-Funktion. Wie könnte die Ableitung f' (wenn es existierte) interpretiert werden?
- c) Sei $f \in L^1_{loc}(\mathbb{R})$ mit schwacher Ableitung g, g(x) = 0 für fast alle $x \in \mathbb{R}^d$, dann ist $f \equiv c$ fast überall für eine Konstante c. Hiweis: Beweisen Sie, dass f = c fast überall auf $\Omega_N := B(0, N)$, $N \in \mathbb{N}$ gilt. Man betrachte dazu einen Mollifier ρ_n und die Faltung $\rho_n * (f\chi_{\Omega_N})$.
- **54.** Zeigen Sie, dass die Funktion

$$|||f||| := \max\{||D^{\alpha} f|_{p} : \alpha \le m\}$$

eine zu $\|\cdot\|_{W^{m,p}}$ äquivalente Norm definiert.

- **55.** Sei $I = (a, b) \subseteq \mathbb{R}, a < b$.
- a) Zeigen Sie, dass die Einbettungen

$$W^{m,p}(I) \hookrightarrow W^{1,p}(I) \hookrightarrow W^{1,1}(I)$$

stetig sind.

b) Sei $f \in W^{1,1}(I)$, mit f' die schwache Ableitung. Zeigen Sie, dass es eine Null-Menge $N \subset I$ existiert mit

(1)
$$f(y) - f(x) = \int_{x}^{y} f'(z) dz \quad \text{für alle } x, y \in I \setminus N.$$

Hinweis: Approximiere f aus $C^{\infty}(I) \cap W^{1,1}(I)$.

c) Sei $f \in W^{1,1}(I)$ und setze $h(y) := \int_a^y f'(z) \, \mathrm{d}z$. Zeigen Sie, dass h stetig (fortsetzbar) auf $[a,b] = \bar{I}$ ist und für ein $c \in \mathbb{R}$ g+c=f fast überall gilt. Das heißt: wir können zu $f \in W^{1,1}(I)$ eine stetigte Funktion $J(f) \in C(\bar{I})$ zuordenen mit J(f) = f fast überall. Zeigen Sie, dass die Abbildung

$$J:W^{1,1}(I)\hookrightarrow C(\overline{I})$$

(linear und) stetig ist. Hinweis: Verwenden Sie hierzu (1).

d) Beweisen Sie, dass für 1 die Einbettung

$$J: W^{1,p}(I) \hookrightarrow C(\overline{I})$$

kompakt ist. Hinweis: Verwenden Sie dazu (1) und die Hölder-Ungleichung.

Hausübungen

56.

- a) Es sei $\Omega := B(0,1) := \{x \in \mathbb{R}^2 : |x| < 1\}$. Geben sie Bedingung an $\alpha \in \mathbb{R}$ an, damit die Funktion $x \mapsto |x|^{\alpha}$ in $W^{1,2}(\Omega)$ liegt.
- b) Es sei $d \geq 3$ und $\Omega := B(0, 1/e) := \{x \in \mathbb{R}^d : |x| < 1/e\}$. Zeigen Sie, dass es eine "Funktion" aus $W^{1,2}(\Omega)$ gibt, die auf Ω nicht-stetig ist (genauer gesagt: die keine stetige Representante hat). Betrachte dazu Funktionen der Form

$$f(x) := \left(\log(1/|x|)\right)^s, \quad s \in (0, \infty).$$