

1. Übung zu Banachräumen

1.

a) Für $1 \le p < \infty$ und $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ setze

$$||x||_p := \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \quad ||x||_\infty := \max_{1 \le i \le d} |x_i|.$$

- i) Zeigen Sie, dass $(\mathbb{R}^d, \|\cdot\|_p)$ Banachräume sind.
- ii) Skizzieren Sie für d=1,2 und $p=1,2,\infty$ die Einheitskugeln $B_p=\{x\in\mathbb{R}^d: \|x\|_p\leq 1\}.$
- iii) Zeigen Sie: $||x||_p = \lim_{r \to p} ||x||_r$ für jedes $1 \le p \le \infty$.
- iv) Beweisen Sie, dass in einem normierten Vektorraum die Einheitskugel B eine konvexe Menge ist (d.h., wenn zwei Punkte x, y in B liegen, so gehört die Verbindungslinie zwischen x, y auch zu B).

2.

a) Zeigen Sie: $\ell^1 \subsetneq \ell^p \subsetneq c_0 \subsetneq \ell^\infty$ für 1 . Es gelten aber nicht:

$$\bigcup_{1 \le p < \infty} \ell^p = c_0, \quad \bigcap_{1 < p \le \infty} \ell^p = \ell^1.$$

- b) Beweisen Sie: Ist $x \in \ell^1$ so gilt $||x||_1 = \lim_{p \to 1} ||x||_p$. Falls $x \in \ell^p$ für ein $1 \le p < \infty$, so gilt $||x||_{\infty} = \lim_{r \to \infty} ||x||_r$.
- c) Zeigen Sie: $(c_0, \|\cdot\|_{\infty})$ ist ein Banachraum.
- d) Ergänzen Sie den Beweis aus der Vorlesung für die Vollständigkeit des ℓ^1 -Raums.
- e) Beweisen Sie die Vollständigkeit von ℓ^p !
- **3.** Zwei normierte Vektorräume $(X, \|\cdot\|)$ und $(Y, \|\|\cdot\|\|)$ heißen isometrisch isomorph $(X \simeq Y)$, falls ein linearer (algebraischer) Isomorphismus J zwischen X und Y existiert, welcher auch eine Isometrie ist: $\||Jx\|| = \|x\|$. Zeigen Sie: X ist vollständig genau dann, wenn Y vollständig ist.

Hausübungen

4. Für a < b sei $X := C^1([a,b]) := \{ f \in C([a,b]) : f \text{ stetig differenzierbar in } [a,b] \}$. Für $f \in X$ sei

$$p_1(f) := \sup\{|f(s)| : s \in [a, b]\}$$

$$p_2(f) := \sup\{|f'(s)| : s \in [a, b]\}$$

$$p_3(f) := |f(a)| + \sup\{|f'(s)| : s \in [a, b]\}$$

Zeigen Sie:

- a) p_1 ist eine Norm auf X; p_2 ist keine Norm auf X.
- b) (X, p_1) ist kein Banachraum.
- c) (X, p_3) ist ein Banachraum.
- 5. Es sei X:=C([a,b]) für a< b und $\omega:[a,b]\to\mathbb{R}$ eine beschränkte, nichtnegative Funktion. Wir setzen

$$p_{\omega}(f) := \sup \{ \omega(s) | f(s) | : s \in [a, b] \}.$$

- a) Welche Bedingungen muss man an ω (genauer an $\omega^{-1}(0)$) stellen, damit p_{ω} eine Norm ist?
- b) Es existiere $\varepsilon > 0$ so, dass $\omega(s) \ge \varepsilon$ für alle $s \in [a, b]$. Dann ist (X, p_{ω}) ein Banachraum.

PDGl: Funktionalanalytische Methoden

Bálint Farkas 17. Oktober 2008

Zusatzübungen

Z.1. Sei Lip([0,1]) :=
$$\{f: [0,1] \to \mathbb{R}: f \text{ Lipschitz-stetig}\}$$
. Für $f \in \text{Lip}([0,1])$ sei $\|f\|_{\text{Lip}} := |f(0)| + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right|$

Zeigen Sie, dass $(\mathrm{Lip}([0,1]),\|\cdot\|_{\mathrm{Lip}})$ ein Banachraum ist.

Z.2. Zeigen Sie, dass die Funktion

$$\|\cdot\|_p: \mathbb{R}^d \to \mathbb{R}, \quad \|x\|_p:=\left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \quad x \in \mathbb{R}^d$$

für $0 und <math>d \ge 2$ keine Norm ist! Skizzieren Sie die "Einheitskugel" für d = 2! Was passiert für $p \to 0$? Dazu beweisen Sie: für 0 und <math>a,b > 0 gilt $(a+b)^p < a^p + b^p$. Hinweis: es reicht $(1+x)^p \le 1+x^p$ zu zeigen.