Fachbereich Mathematik Prof. Dr. K. Ritter Dr. M. Geißert Dr. H. Heck

SS 2006 13.7.2006

12. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und VI

Gruppenübung

Aufgabe G1

Sei $r \in [-1, 1)$. Durch die Menge

$$K_r = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 \le 1, x_3 \le r\}$$

wird eine Kugelkappe der Einheitskugel beschrieben. Veranschaulichen Sie diese Menge mit Hilfe einer Skizze und bestimmen Sie das Volumen von K_r .

Aufgabe G2

Gegeben seien die Funktionen

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \exp(x+2y),$$

 $g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x,y) = x^2 + y^2 - 4$

und die Mengen

$$M = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\},\$$

$$N = \{(x, y) \in \mathbb{R}^2 : g(x, y) \le 0\}.$$

Bestimmen Sie die globalen Extrema von $f|_M$ und $f|_N$. Begründen sie dabei zuerst, weshalb globale Minima bzw. Maxima für beide Probleme existieren.

Aufgabe G3

Es sei durch

$$Q = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : 1 \le x_1 \le 3, \ 1 \le x_2 \le 2, \ -1 \le x_3 \le 1\}$$

und die Dichtefunktion

$$\rho: Q \to \mathbb{R}, \quad \rho(x_1, x_2, x_3) = x_2(x_1 - 2)^2 \exp(-x_3)$$

ein inhomogener Quader gegeben. Berechnen Sie die Gesamtmasse

$$M := \int_{Q} \rho(x_1, x_2, x_3) d(x_1, x_2, x_3)$$

sowie den Schwerpunkt $S = (S_1, S_2, S_3)$, gegeben durch

$$S_i := \frac{1}{M} \int_Q x_i \rho(x_1, x_2, x_3) d(x_1, x_2, x_3), \quad i = 1, \dots, 3,$$

des Quaders. Zeigen Sie zunächst, dass die Integrale existieren.

Hinweis:
$$\frac{d}{dz}((z+1)\exp(-z)) = -z\exp(-z)$$
.

Hausübung

Freiwillige Abgabe

Aufgabe H1

Bestimmen Sie das Volumen des Körpers, der unterhalb der Fläche

$$\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in [0, 2]^2, z = xy^2 + y^3\}$$

und oberhalb des Quadrats

$$\{(x, y, z) \in \mathbb{R}^3 : (x, y) \in [0, 2]^2, z = 0\}$$

liegt.

Aufgabe H2

Es sei B der Bereich im ersten Quadranten zwischen den Parabeln $y=\sqrt{x}$ und $y=x^2$. Skizzieren Sie B und berechnen Sie

$$\int\limits_{B} \sqrt{xy} \ d(x,y).$$