Fachbereich Mathematik Prof. Dr. K. Ritter Dr. M. Geißert Dr. H. Heck

SS 2006 04.05.2006

2. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und VI

Gruppenübung

Aufgabe G1

Sei $A \in \mathbb{R}^{3 \times 3}$ gegeben durch

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 2 & 1 & 3 \end{array}\right).$$

Berechnen Sie nacheinander die Matrizen

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot A, \qquad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot A_1$$

und

$$A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \cdot A_2.$$

Beschreiben Sie die Wirkung der Matrixmultiplikation auf die Matrizen A_i .

Bestimmen Sie eine invertierbare Matrix B, so dass $B \cdot A_3$ eine obere Dreiecksmatrix ist. Welchen Rang hat die Matrix A.

Aufgabe G2

Betrachten Sie für die folgenden vier Matrizen jeweils die Mengen der Spaltenvektoren. Stellen Sie fest, welche dieser Mengen linear (un-)abhängig sind. Untersuchen Sie weiterhin, ob die lineare Hülle der jeweiligen Menge gleich \mathbb{R}^3 ist und ob diese Menge eine Basis des \mathbb{R}^3 bildet.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 3 & 3 & 5 \\ 5 & 3 & 6 & 6 \\ 2 & 3 & 2 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

Bestimmen Sie weiterhin alle Vektoren $v=\left(\begin{array}{c} v_1\\ v_2\\ v_3 \end{array}\right)$ mit Dv=0.

Hausübung

Aufgabe H1

Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 2 & 2 \end{array}\right).$$

Bestimmen Sie eine invertierbare Matrix B, so dass $B \cdot A$ eine obere Dreiecksmatrix ist. Prüfen Sie dies anhand einer Proberechnung nach! Lösen Sie anschließend das lineare Gleichungssystem

$$Ax = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

Aufgabe H2

Überprüfen Sie, ob die Spaltenvektoren s_1, s_2, s_3, s_4 der Matrix

$$A = \left(\begin{array}{rrrr} 1 & 17 & 3 & 4 \\ 0 & 2 & -1 & 13 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 4 \end{array}\right)$$

linear unabhängig sind. Geben Sie eine Basis des Unterraums $U = \mathbf{Lin}(s_1, s_2, s_3, s_4) \subseteq \mathbb{R}^4$ an.