§3 Transformationsformel

1. BEM

Substitutions regel im Falle n=1:

Ist $g:[a,b] \to \mathbb{R}$ stetig diff'bar und $f:D \to \mathbb{R}$ stetig mit $g([a,b]) \subseteq D$, dann

$$\int_{g(a)}^{g(b)} f(x) dx = \int_a^b f \circ g(x) \cdot g'(x) dx.$$

Volumenänderung bei Translation um $a \in \mathbb{R}^n$:

Ist $B \subseteq \mathbb{R}^n$ ein Normalbereich und

$$g: \mathbb{R}^n \to \mathbb{R}^n : x \mapsto x + a,$$

dann

$$\operatorname{vol}(g(B)) = \operatorname{vol}(B).$$

Volumenänderung bei Streckung um r > 0:

Ist $B\subseteq\mathbb{R}^n$ ein Normalbereich und

$$g:\mathbb{R}^n\to\mathbb{R}^n:x\mapsto rx,$$

dann

$$\operatorname{vol}(g(B)) = r^n \cdot \operatorname{vol}(B).$$

2. DEF $D \subseteq \mathbb{R}^n$ **Gebiet**, falls D offen und zusammenhängend, d.h.

$$\forall\,x,y\in D\quad\exists\,g:[0,1]\to\mathbb{R}^n$$
 stetig:
$$g([0,1])\subseteq D\quad\wedge\quad g(0)=x\quad\wedge\quad g(1)=y.$$

3. BSP Gebiete in \mathbb{R} sind genau die offenen Intervalle]a,b[, wobei $a,b\in\mathbb{R}\cup\{\pm\infty\}.$

4. SATZ Transformationsformel

Gegeben

- $D \subseteq \mathbb{R}^n$ Gebiet, $B_1 \subseteq D$ Normalbereich,
- ullet $g:D o\mathbb{R}^n$ stetig partiell diff'bar und injektiv mit

$$\forall x \in D : \det J_g(x) \neq 0,$$

• $B_2 = g(B_1)$ und $f: B_2 \to \mathbb{R}$ stetig.

Dann ist f auf B_2 int'bar und

$$\int_{B_2} f(x) dx = \int_{B_1} f \circ g(x) \cdot |\det J_g(x)| dx.$$

5. BEM Es genügt, wenn die Injektivität von g und die Invertierbarkeit von J_g nur auf einer Teilmenge $D_0 \subseteq D$ mit $\operatorname{vol}(D \setminus D_0) = 0$ vorliegt ("bis auf eine Nullmenge").

6. BSP
$$D=\mathbb{R}^n$$
, $A\in\mathbb{R}^{n\times n}$, $a\in\mathbb{R}^n$,

$$g(x) = Ax + a.$$

Dann $J_g(x)=A$. Im Falle $\det A \neq 0$ zeigt die Transformationsformel

$$vol(g(B_1)) = |\det A| \cdot vol(B_1).$$

Ebenso im Falle $\det A=0$. Vgl. Bem. 1 und Kap. VI \S 4, \S 6.

7. BSP Kugelkoordinaten im \mathbb{R}^3 Für $r, \varphi, \theta \in \mathbb{R}$

$$g(r, \varphi, \theta) = egin{pmatrix} r\cos\varphi\sin\theta \ r\sin\varphi\sin\theta \ r\cos\theta \end{pmatrix}.$$

Jacobi-Matrix

$$J_g(r,\varphi,\theta) = \begin{pmatrix} \cos\varphi\sin\theta & -r\sin\varphi\sin\theta & r\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta & r\sin\varphi\cos\theta \\ \cos\theta & 0 & -r\sin\theta \end{pmatrix}$$

und ihre Determinante

$$\det J_g(r, \varphi, \theta)$$

$$= \cos \theta \cdot (r^2 \sin \theta \cos \theta) \cdot (-1) - r \sin \theta \cdot (r \sin^2 \theta) \cdot (1)$$

$$= -r^2 \sin \theta.$$

Wähle in Satz 4

$$D =]0, \infty[\times]0, 2\pi[\times]0, \pi[,$$

$$B_1 = [r_1, r_2] \times [\varphi_1, \varphi_2] \times [\theta_1, \theta_2] \subseteq D.$$

Transformationsformel und Satz von Fubini

$$\int_{B_2} f(x_1, x_2, x_3) d(x_1, x_2, x_3)$$

$$= \int_{r_1}^{r_2} \int_{\theta_1}^{\theta_2} \int_{\varphi_1}^{\varphi_2} f(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) d\varphi$$

$$\cdot \sin \theta d\theta \cdot r^2 dr.$$

Ebenso (durch Grenzbetrachtung) für

$$B_1 = [r_1, r_2] \times [\varphi_1, \varphi_2] \times [\theta_1, \theta_2]$$

$$\subseteq [0, \infty[\times [0, 2\pi] \times [0, \pi].$$

Speziell für Kugeln und Kugelschalen

$$B_1 = [r_1, r_2] \times [0, 2\pi] \times [0, \pi],$$

$$B_2 = \{x \in \mathbb{R}^3 : r_1 \le ||x|| \le r_2\}.$$

8. BSP Rotationssymmetrische Funktionen

Gegeben $0 \leq r_1 < r_2$ und $h: [r_1, r_2] \to \mathbb{R}$ stetig diff'bar. Betrachte

$$B_1 = [r_1, r_2] \times [0, 2\pi] \times [0, \pi],$$

$$B_2 = \{x \in \mathbb{R}^3 : r_1 \le ||x|| \le r_2\}.$$

und

$$f(x) = h(||x||), \qquad x \in B_2.$$

Dann

$$\int_{B_2} f(x_1, x_2, x_3) d(x_1, x_2, x_3) = 4\pi \cdot \int_{r_1}^{r_2} h(r) \cdot r^2 dr.$$

Speziell für h=1 und $r_1=0$

$$vol(\{x \in \mathbb{R}^3 : ||x|| \le r_2\}) = \frac{4}{3}\pi \cdot r_2^3.$$

Vgl. §2.

9. BEM Weitere Koordinatentransformationen:

Zylinderkoordinaten, elliptische Koordinaten, etc.

Wahl: problemabhängig.

§4 Oberflächenintegrale

1. BSP Für r>0 sei $S=\{x\in\mathbb{R}^3:\|x\|=r\}$ und $f:S\to\mathbb{R}$ stetig.

Wie "groß" ist die Fläche S? Was ist der "Mittelwert" von f?

Dazu: "Beschreibung" von Flächen in \mathbb{R}^3 durch Funktionen von zwei reellen Parametern.

2. BSP Für Sphäre gem. Bsp. 1:

$$Q = [0, 2\pi] \times [0, \pi]$$

 $\text{ und für } (u,v) \in Q$

$$g(u,v) = \begin{pmatrix} r\cos u \sin v \\ r\sin u \sin v \\ r\cos v \end{pmatrix}.$$

Also

$$S = g(Q)$$
.

Vgl. Bsp. §3.7.

Im folgenden

ullet $D\subseteq\mathbb{R}^2$ offen, $g:D o\mathbb{R}^3$ stetig partiell diff'bar,

•
$$Q = [a_1, b_1] \times [a_2, b_2] \subseteq D$$
.

Bezeichnungen

$$J_g(u,v) = (g_u(u,v), g_v(u,v)) \in \mathbb{R}^{3 \times 2}$$

mit

$$g_{u}(u,v) = \begin{pmatrix} \frac{\partial g_{1}}{\partial u}(u,v) \\ \frac{\partial g_{2}}{\partial u}(u,v) \\ \frac{\partial g_{3}}{\partial u}(u,v) \end{pmatrix}, \qquad g_{v}(u,v) = \begin{pmatrix} \frac{\partial g_{1}}{\partial v}(u,v) \\ \frac{\partial g_{2}}{\partial v}(u,v) \\ \frac{\partial g_{3}}{\partial v}(u,v) \end{pmatrix}$$

sowie (das Innere von Q)

$$\mathring{Q} =]a_1, b_1[\times]a_2, b_2[.$$

3. DEF S=g(Q) (reguläres) Flächenstück mit Parameterdarstellung $g|_Q$, falls

- $ullet g|_{\mathring{Q}}$ injektiv,
- $\forall (u, v) \in \mathring{Q}$: rang $J_q(u, v) = 2$.

(Analog für allgemeinere Mengen Q).

4. BSP Sphäre, Fortsetzung von Bsp. 2, also

$$Q = [0, 2\pi] \times [0, \pi], \quad D = \mathbb{R}^2,$$

$$g(u, v) = \begin{pmatrix} r \cos u \sin v \\ r \sin u \sin v \\ r \cos v \end{pmatrix}.$$

Dann ist $g|_{\mathring{Q}}$ injektiv. Beachte: $g|_{Q}$ nicht injektiv. Weiter

$$g_u(u,v) = r \sin v \cdot \begin{pmatrix} -\sin u \\ \cos u \\ 0 \end{pmatrix},$$

$$g_v(u, v) = r \cdot \begin{pmatrix} \cos u \cos v \\ \sin u \cos v \\ -\sin v \end{pmatrix}$$

Zeige für $(u,v)\in \mathring{Q}$: $\operatorname{rang} J_g(u,v)=2$, d.h.

 $g_u(u,v), g_v(u,v)$ linear unabhängig.

Bew: Seien $\lambda, \mu \in \mathbb{R}$ und $(u,v) \in \mathring{Q}$, gelte

$$\lambda \cdot g_u(u, v) + \mu \cdot g_v(u, v) = 0.$$

Dann $\sin v \neq 0$. Es folgt

$$\mu = 0 \land (\lambda = 0 \lor \sin u = \cos u = 0).$$

Also $\mu=\lambda=0$. Somit $\operatorname{rang} J_g(u,v)=2$. Beachte: $\operatorname{rang} J_g(u,v)=1$ für $v\in\{0,\pi\}$.

5. BSP Graphen als Flächenstücke

Für $h:D\to\mathbb{R}$ stetig partiell diff'bar und $(u,v)\in D$ sei

$$g(u,v) = \begin{pmatrix} u \\ v \\ h(u,v) \end{pmatrix}.$$

 $\operatorname{Dann} g(Q) = G_{h|_Q} \operatorname{und}$

$$J_g(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial h}{\partial u}(u,v) & \frac{\partial h}{\partial v}(u,v) \end{pmatrix}.$$

Graph von $h|_Q$ ist Flächenstück mit Par'darstellung $g|_Q$.

Im folgenden: Flächenstück S=g(Q) mit Parameterdarstellung $g|_Q$ und

$$(u_0, v_0) \in \mathring{Q}, \quad x_0 = g(u_0, v_0) \in S.$$

6. BEM Betrachte Kurven (**Parameterlinien**)

$$[a_1, b_1] \to S \qquad [a_2, b_2] \to S$$

$$u \mapsto g(u, v_0) \qquad v \mapsto g(u_0, v) \qquad .$$

In Bsp. 4: Breitenkreise, Meridiane.

Ihre Tangentialvektoren

$$g_u(u_0, v_0), \quad g_v(u_0, v_0)$$

in u_0 bzw. v_0 sind linear unabhängig. Also

$$T = \{x_0 + \lambda \cdot g_u(u_0, v_0) + \mu \cdot g_v(u_0, v_0) : \lambda, \mu \in \mathbb{R}\}\$$

Tangentenebene an S im Punkt x_0 .

Idee: in kleiner Umgebung von x_0

- $\bullet\,$ statt Flächenstück S und "Flächeninhalt" in \mathbb{R}^3
- \bullet Tangentenebene T und darin "Volumen" in \mathbb{R}^2 gem. $\S \mathbf{2}.$

Spezialfall: Graph als Flächenstück gem. Bsp. 5.

Die Punkte $(u,v,w)^{\top} \in T$ sind gegeben als

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} u_0 \\ v_0 \\ h(u_0, v_0) \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ \frac{\partial h}{\partial u}(u_0, v_0) \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ \frac{\partial h}{\partial v}(u_0, v_0) \end{pmatrix}$$
$$= \begin{pmatrix} u_0 + \lambda \\ v_0 + \mu \\ h(u_0, v_0) + \lambda \cdot \frac{\partial h}{\partial u}(u, v) + \mu \cdot \frac{\partial h}{\partial v}(u, v) \end{pmatrix}$$

mit $\lambda, \mu \in \mathbb{R}$. Also Gleichung von T

$$w = h(u_0, v_0) + (u - u_0) \frac{\partial h}{\partial u}(u_0, v_0) + (v - v_0) \frac{\partial h}{\partial v}(u_0, v_0),$$

vgl. Bsp. VII.4.4

7. BEM/DEF Linear unabhängige Vektoren $a,b\in\mathbb{R}^3$ und Vektor $c\in\mathbb{R}^3$ definieren **Parallelogramm**

$$S = \{c + \lambda \cdot a + \mu \cdot b : \lambda, \mu \in [0, 1]\}.$$

Die Flächeninhalt von S ist

$$\mathfrak{O}(S) = ||a|| \cdot ||b|| \cdot \sin \langle (a,b)|$$

$$= ||a|| \cdot ||b|| \cdot \left(1 - \cos^2 \left(\arccos \frac{\langle a,b \rangle}{||a|| \cdot ||b||}\right)\right)^{1/2}$$

$$= \sqrt{||a||^2 \cdot ||b||^2 - \langle a,b \rangle^2}$$

$$= ||a \times b||.$$

8. BEM Zerlegung von Q gem. Def. $\S 1.1$.

Für Teilquader Q_j mit unterer linker Ecke $\left(u_0^{(j)},v_0^{(j)}\right)$ und Kantenlängen $\Delta u^{(j)}$, $\Delta v^{(j)}$ seien

$$c^{(j)} = g(u_0^{(j)}, v_0^{(j)}),$$

$$a^{(j)} = \Delta u^{(j)} \cdot g_u(u_0^{(j)}, v_0^{(j)}),$$

$$b^{(j)} = \Delta v^{(j)} \cdot g_v(u_0^{(j)}, v_0^{(j)}).$$

Für $\left(u_0^{(j)},v_0^{(j)}\right)\in \mathring{Q}$ ergibt sich Parallelogramm

$$S^{(j)} = \left\{ c^{(j)} + \lambda \cdot a^{(j)} + \mu \cdot b^{(j)} : \lambda, \mu \in [0, 1] \right\}$$

innerhalb der Tangentenebene an S im Punkt $g\big(u_0^{(j)},v_0^{(j)}\big).$ Dessen Flächeninhalt

$$\mathfrak{O}(S^{(j)}) = \Delta u^{(j)} \cdot \Delta v^{(j)} \cdot ||g_u^{(j)} \times g_v^{(j)}||$$
$$= \text{vol}(Q^{(j)}) \cdot ||g_u^{(j)} \times g_v^{(j)}||.$$

Summation über alle(!) Teilquader

$$\sum_{j=1}^{m} \operatorname{vol}(Q^{(j)}) \cdot ||g_u^{(j)} \times g_v^{(j)}||.$$

Folge von Zerlegungen von Q, deren Feinheiten gegen Null konvergieren. Dann Konvergenz der Summen gegen

$$\int_{Q} \|g_u(u,v) \times g_v(u,v)\| d(u,v),$$

da $(u,v) \mapsto \|g_u(u,v) \times g_v(u,v)\|$ stetig auf Q.

Dies motiviert die folgende Definition.

9. DEF Flächeninhalt $\mathfrak{O}(S)$ des Flächenstücks S=g(Q) mit Parameterdarstellung $g|_Q$

$$\mathfrak{O}(S) = \int_{Q} \|g_u(u, v) \times g_v(u, v)\| d(u, v).$$

Oberflächenintegral der stetigen Funktion $f:S \to \mathbb{R}$ über S

$$\int_{S} f(x) dx = \int_{Q} f \circ g(u, v) \cdot ||g_u(u, v) \times g_v(u, v)|| d(u, v).$$

10. BSP Flächeninhalt der Sphäre mit Radius r>0, siehe Bsp. 4. Für $(u,v)\in Q$ sind $g_u(u,v)$ und $g_v(u,v)$ orthogonal. Weiter

$$||g_u(u,v)|| = r \sin v, \qquad ||g_v(u,v)|| = r.$$

Also

$$||g_u(u,v) \times g_v(u,v)|| = r^2 \cdot \sin v$$

und

$$\mathfrak{O}(S) = \int_Q r^2 \cdot \sin v \, d(u, v)$$
$$= r^2 \cdot \int_0^{2\pi} \int_0^{\pi} \sin v \, dv \, du = 4\pi \cdot r^2.$$

11. BSP Rotationsflächen

Gegeben

$$r:[u_1,u_2] \to [0,\infty[$$
 stetig diff'bar

mit

$$\forall u \in]u_1, u_2[: r(u) > 0.$$

Setze

$$Q = [u_1, u_2] \times [0, 2\pi], \qquad g(u, v) = \begin{pmatrix} u \\ r(u) \cos v \\ r(u) \sin v \end{pmatrix}.$$

Klar: $g|\mathring{Q}$ injektiv. Weiter

$$g_u(u,v) = \begin{pmatrix} 1 \\ r'(u) \cdot \cos v \\ r'(u) \cdot \sin v \end{pmatrix}, \quad g_v(u,v) = r(u) \cdot \begin{pmatrix} 0 \\ -\sin v \\ \cos v \end{pmatrix},$$

so daß $g_u(u,v)$ und $g_v(u,v)$ orthogonal und für $(u,v)\in \mathring{Q}$ linear unabhängig sind. Schließlich

$$||g_u(u,v) \times g_v(u,v)|| = r(u) \cdot \sqrt{1 + (r')^2(u)}.$$

Fazit: Flächeninhalt der Rotationsfläche S=g(Q) mit Parameterdarstellung $g|_{Q}$

$$\mathfrak{D}(S) = \int_{Q} r(u) \cdot \sqrt{1 + (r')^{2}(u)} \, d(u, v)$$

$$= \int_{0}^{2\pi} \int_{u_{1}}^{u_{2}} r(u) \cdot \sqrt{1 + (r')^{2}(u)} \, du \, dv$$

$$= 2\pi \cdot \int_{u_{1}}^{u_{2}} r(u) \cdot \sqrt{1 + (r')^{2}(u)} \, du$$

Speziell: **Kegelstumpf**, gegeben durch $0 \le u_1 < u_2$ und

$$r(u) = \alpha \cdot u$$

mit $\alpha > 0$. Hier

$$\mathfrak{O}(S) = 2\pi \cdot \int_{u_1}^{u_2} \alpha \cdot u \cdot \sqrt{1 + \alpha^2} \, du$$
$$= \pi \cdot \alpha \sqrt{1 + \alpha^2} \cdot (u_2^2 - u_1^2).$$