Fachbereich Mathematik

Martin Otto Achim Blumensath Tobias Löw

Hausübung 2 Formale Grundlagen der Informatik II

Abgabe: am 4. July in der Vorlesung Bitte geben Sie die Nummer ihrer Übungsgruppe an.

Aufgabe 1

Wir betrachten ein System (etwa einen Microcontroller) mit Zuständen Q. Das Verhalten dieses Systems kann als Menge $S \subseteq Q^*$ aller möglichen endlichen Zustandsfolgen beschrieben werden, welche das System durchlaufen kann. Mit $\leq S \times S$ bezeichnen wir die *Präfixordnung* auf S ($u \leq v$ gilt, wenn u ein Anfangsstück von v ist). (Offensichtlich ist die Menge S präfixabgeschlossen, d. h. aus $x \leq y \in S$ folgt $x \in S$.) Für jeden Zustand $q \in Q$ sei $P_q \subseteq S$ die Menge aller Folgen, deren letztes Element q ist. Wir betrachten die Struktur $S = (S, \leq, (P_q)_{q \in Q})$. Geben Sie Formeln an, welche ausdrücken, daß

- (a) y der direkte Nachfolger von x ist, d. h. y = xq für einen Zustand $q \in Q$;
- (b) das System keine Deadlocks enthält, d. h. jede Zustandsfolge fortgesetzt werden kann;
- (c) jede Zustandsfolge eine Fortsetzung hat, welche ihrerseits keine Fortsetzung besitzt, deren letztes Element *q* ist.

Aufgabe 2

Sei R ein zweistelliges Relationssymbol, P ein einstelliges Relationssymbol, f ein einstelliges Funktionssymbol und c eine Konstante. Geben Sie zu den folgenden Formeln jeweils erfüllbarkeitsäquivalente Formeln in Skolemnormalform an.

- (a) $\forall x (\forall y Rxy \rightarrow \exists y (Rxy \land Py))$
- (b) $\forall x (Rcx \rightarrow \exists y (Rcy \land \forall z (Rzy \rightarrow Rfzx)))$
- (c) $\forall x \forall y (Rxy \rightarrow \exists z \exists u (Rxz \land Rzu \land Ruy))$
- (d) $\forall x \exists y \forall z \exists u (Rxy \land (Pz \rightarrow (Ryz \land Ruz)))$

Aufgabe 3

- (a) Geben Sie eine Formelmenge Φ an, so daß genau dann $\mathcal{G} \models \Phi$ gilt, wenn $\mathcal{G} = (V, E)$ ein ungerichteter Graph (d. h. die Kantenrelation E ist symmetrisch) ist, welcher keinen Kreis enthält.
- (b) Beweisen Sie mit Hilfe des Kompaktheitssatzes, daß es keine Formelmenge Φ gibt, so daß $\mathcal{G} \models \Phi$ genau dann gilt, wenn \mathcal{G} ein ungerichteter Graph ist, welcher mindestens einen Kreis enthält.

Aufgabe 4

Betrachten Sie die Formeln

$$\varphi_{1} \coloneqq \forall x \forall y ((Px \land Py) \to Rxy)$$

$$\varphi_{2} \coloneqq \forall x \forall y \exists z (Rxz \land Rzy)$$

$$\varphi_{3} \coloneqq \forall x \forall y (Rxy \to (Px \lor Py))$$

$$\psi \coloneqq \forall x \exists y \exists z (Rxy \land Ryz \land Rzx)$$

Gilt $\{\varphi_1, \varphi_2, \varphi_3\} \models \psi$? Führen Sie entweder einen Beweis mit Hilfe der Grundinstanzenresolution, oder geben Sie ein Gegenbeispiel an.

Aufgabe 5

Sei Φ die Menge der folgenden Formeln:

$$\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$$

$$\forall x \neg (x < x)$$

$$\forall x \forall y (Exy \rightarrow x < y)$$

$$\forall x \exists y Exy$$

- (a) Zeigen Sie, daß
 - (i) in jedem Modell (A, E, <) von Φ die Relation E keinen Kreis enthält;
 - (ii) Φ kein endliches Modell hat.
- (b) Konstruieren Sie ein Herbrandmodell von Φ .
- (c) Sei

$$\psi \coloneqq \forall x \, \forall y \big(\neg \exists z (x < z \land z < y) \to Exy \big) \, .$$

Gilt ψ in dem Modell aus (b)?

Beweisen Sie, daß $\Phi \models \psi$, oder geben Sie ein Gegenbeispiel an.

Aufgabe 6

Leiten Sie die folgenden Sequenzen ab:

- (a) $\vdash \exists x (\neg Rx \lor \forall xRx)$
- (b) $\forall x \forall y \forall z (x = y \lor x = z \lor y = z) \vdash \forall x (fx = fffx)$
- (c) $\exists x \varphi \land \exists x \psi \vdash \exists x (\varphi \land \psi)$, für beliebige FO-Formeln φ, ψ mit $x \notin \text{frei}(\varphi)$.