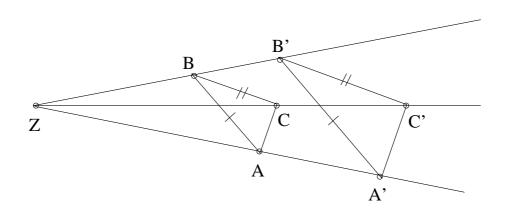
PROJEKTIVE GEOMETRIE

(Kurzskript)



Erich Hartmann

Technische Universität Darmstadt SS 2006

Inhaltsverzeichnis

1	Die affine Ebene	1
	1.1 Grundlegende Inzidenzeigenschaften	. 1
	1.2 Affine Koordinatenebene über \mathbb{R} bzw. Schiefkörper K	. 1
	1.3 Kollineationen von $\mathbf{A}(K)$. 2
	1.4 Der Satz von DESARGUES, der Satz von PAPPUS	
	1.5 Bemerkungen über endliche affine Ebenen	
2	Die projektive Ebene über einem Körper K	5
	2.1 Definition einer projektiven Ebene	. 5
	2.2 Projektive Ebene über einem Körper K	. 5
	2.3 Kollineationen von $\mathfrak{P}_1(K)$ und $\mathfrak{P}_2(K)$	
	2.4 Zentralkollineationen	
	2.5 Das Dualitätsprinzip	
	2.6 Die Sätze von DESARGUES und PAPPUS in einer projektiven Ebene	
	2.7 Transitivitätseigenschaften	
	2.8 Perspektive und projektive Abbildungen von Geraden	9
	2.9 Das Doppelverhältnis in $\mathfrak{P}_i(K)$	
	2.10 Die projektive Gerade über einem Körper	10
	2.11 Harmonische Punkte in $\mathfrak{P}_i(K)$, Char $K \neq 2$. 11
3	Kegelschnitte in pappusschen projektiven Ebenen	12
	3.1 Definition eines nicht ausgearteten Kegelschnitts	. 12
	3.2 Ovale	. 12
	3.3 Der Satz von PASCAL und seine Ausartungen	13
	3.4 Satz von SEGRE, Satz von STEINER	16
4	Projektive Räume	17
	4.1 Projektiver Raum über einem Körper	. 17
	4.2 Definition eines projektiven Raumes	17
5	Quadriken in projektiven Räumen	18
	5.1 Definition einer Quadrik	. 18
	5.2 f -Radikal und singuläres Radikal einer Quadrik	
	5.3 Index einer Quadrik	. 18
	5.4 Symmetrien einer Quadrik	. 18
	5.5 Quadratische Mengen	. 19
6	Schlussbemerkung: Beweise	19
7	Literatur	19

1 Die affine Ebene

Definition 1.1 Es sei $\mathbf{P} \neq \emptyset$, die Menge der Punkte, $\mathbf{B} \neq \emptyset$, die Menge der Blöcke, \mathbf{I} sei Teilmenge von $\mathbf{P} \times \mathbf{B}$, die Inzidenzrelation. Dann heißt $(\mathbf{P}, \mathbf{B}, \mathbf{I})$ Inzidenzstruktur.

Definition 1.2 $\mathbf{P} = Punkte\ der\ Anschauungsebene,$ $\mathbf{G} = Geraden\ der\ Anschauungsebene\ und\ \mathbf{I} = \in.$ $(\mathbf{P}, \mathbf{G}, \in)\ hei\beta t$ reelle affine Ebene.

1.1 Grundlegende Inzidenzeigenschaften

- **A1:** Zu $P \neq Q \in \mathbf{P}$ gibt es genau eine Gerade g mit $P, Q \in g$.
- **A2:** (Paralellen-Axiom) Zu $P \in \mathbf{P}, g \in \mathbf{G}$ gibt es genau ein $h \in \mathbf{G}$ mit $P \in h, g \cap h = \emptyset$ oder g = h.
- A3: Es gibt wenigstens 3 nicht auf einer Gerade liegende Punkte.

Definition 1.3 1. Gerade g heißt paralellel zu Gerade h $(h \parallel h)$ genau dann, wenn $g \cap h = oder \ g = h \ gilt.$

- 2. Für Gerade g sei $\parallel_q = \{h \in \mathbf{G} \mid h \parallel g\}$.
- 3. Für zwei Punkte $A \neq B$ sei $A \vee B$ die Gerade durch A, B.
- 4. Für zwei nicht parallele Geraden $g \neq h$ sei $g \wedge h$ der Schnittpunkt von g, h.

Definition 1.4 Eine Inzidenzstruktur $(\mathbf{P}, \mathbf{G}, \in)$ mit den Eigenschaften $\mathbf{A1}$ – $\mathbf{A3}$ heißt affine Ebene.

Lemma 1.1 Ist $\mathbf{A} = (\mathbf{P}, \mathbf{G}, \in)$ eine affine Ebene, so gilt: a) Die \parallel -Relation ist eine Äquivalenzrelation. b) $|\mathbf{P}| \geq 4$.

1.2 Affine Koordinatenebene über \mathbb{R} bzw. Schiefkörper K

$$\begin{split} & \textbf{Definition 1.5} \ \ F\ddot{u}r \\ & \textbf{P} = \mathbb{R}^2, \\ & \textbf{G} = \{ \{(x,y) \in \mathbb{R}^2 \mid ax + by + c = 0\} \mid (0,0) \neq (a,b) \in \mathbb{R}^2 \} \\ & = \{ \{(x,y) \in \mathbb{R}^2 \mid y = mx + d\} \mid m,d \in \mathbb{R} \} \cup \{ \{(x,y) \in \mathbb{R} \mid x = c\} \mid c \in \mathbb{R} \} \\ & \textit{heißt } \textbf{A}(\mathbb{R}) := (\textbf{P},\textbf{G},\in) \text{ reelle affine Koordinatenebene.} \end{split}$$

Verallgemeinerung:

Definition 1.6 Ersetzt man \mathbb{R} durch einen beliebien Körper oder Schiefkörper K, so ist die Inzidenzstruktur $\mathbf{A}(K)$ immer noch eine affine Ebene. $\mathbf{A}(K)$ heißt affine Koordinatenebene über K.

1.3 Kollineationen von A(K)

Definition 1.7 Es sei $\mathbf{A} = (\mathbf{P}, \mathbf{G}, \in)$ eine affine Ebene. Eine Permutation κ von P, die eine Permutation von \mathbf{G} induziert heißt Kollineation von \mathbf{A} . Koll $\mathbf{A} := M$ enge der Kollineationen von \mathbf{A} .

Bemerkung: Bei einer Kollineation bleibt || erhalten.

Resultat 1.2 Ist κ eine Kollineation von $\mathbf{A}(K)$, dann gibt es $a, b, c, d, s, t \in K$ und einen Automorphismus α von K so, $da\beta$

$$\kappa: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} a\alpha(x) + b\alpha(y) + s \\ c\alpha(x) + d\alpha(y) + t \end{pmatrix}$$

Satz 1.3 $(\mathbb{R}, +, \cdot)$ besitzt nur die Identität als Automorphismus.

Definition 1.8 Eine Kollineation κ von $\mathbf{A}(K)$ heißt Affinität, wenn $\alpha = id$ ist. $Aff(\mathbf{A}(K)) := Menge \ der \ Affinitäten \ von \ \mathbf{A}(K)$.

Satz 1.4 a) $Aff(\mathbf{A}(K))$ ist eine Gruppe.

b) $Aff(\mathbf{A}(K))$ operiert auf den Tripeln nicht kollinearer Punkte scharf transitiv (d.h. zu $P_1, P_2, P_3, Q_1, Q_2, Q_3$ gibt es genau ein $\varphi \in Aff(\mathbf{A}(K))$ mit $\varphi(P_i) = Q_i, i = 1, 2, 3$).

Definition 1.9 Es sei κ eine Kollineation einer affinen Ebene A.

- a) κ heißt Dilatation, wenn jede Gerade g zu ihrem Bild parallel ist: $g \parallel \kappa(g)$. $\Delta := Menge \ der \ Dilatationen$.
- b) ... Translation , wenn κ fixpunktfreie Dilatation ist. T:= Menge der Translationen.
- c) ... Streckung am Punkt P, wenn κ Dilatation mit Fixpunkt P ist. $\Delta_P := Menge \dots$
- d) ... Streckung an der Gerade g in Richtung der Gerade $h \not \mid g$, wenn κ die Gerade g punktweise festläss t und $\kappa(h) = h$ ist. $\Sigma_{gh} := Menge$...
- e) ... Scherung an der Gerade g, wenn κ die Gerade g punktweise und jede Paralelle zu g als Ganzes festläss t. $\Sigma_{gg} := Menge \ldots$

Lemma 1.5 Für die Dilatationen Δ einer affinen Ebene A gilt:

- a) Δ ist eine Gruppe.
- b) $\delta \in \Delta$, $P \in \mathbf{P}$, $P \neq \delta(P) \Rightarrow P \vee \delta(P)$ ist fix.
- c) Eine Dilatation mit zwei Fixpunkten ist die Identität.
- d) Eine Dilatation ist durch die Bilder zweier Punkte eindeutig bestimmt.

Lemma 1.6 Es sei A eine affine Ebene, T die Menge der Translationen.

- a) $\tau \in T$, $\tau \neq id$, $Q \neq P \in \mathbf{P} \Rightarrow P \vee \tau(P) \parallel Q \vee \tau(Q)$. (τ ist durch $P \rightarrow \tau(P)$ eindeutig bestimmt.)
- b) T ist Normalteiler von Δ .

Beispiele in A(K):

- 1. $(x,y)^{\top} \to (x+s,y+s)^{\top}, \ s,t \in K$ Translationen
- 2. $(x,y)^{\top} \to (x,dy)^{\top}, \ 0 \neq d \in K$ Streckungen an x-Achse
- 3. $(x,y)^{\top} \to (ax,y)^{\top}, \ 0 \neq a \in K$ Streckungen an y-Achse
- 4. $(x,y)^{\top} \to (xa,ya)^{\top}, \ 0 \neq a \in K$ Streckungen am Punkt (0,0)
- 5. $(x,y)^{\top} \to (x+by,y)^{\top}, b \in K$ Scherungen an x-Achse
- 6. $(x,y)^{\top} \to (x,cx+y)^{\top}, c \in K$ Scherungen an y-Achse

Lemma 1.7 $F\ddot{u}r \mathbf{A}(K)$ gilt:

- a) Δ_P , Σ_{gh} und Σ_{gg} sind Untergruppen von KollA.
- b) T ist transitiv auf \mathbf{P} . T ist kommutativ.
- c) Δ_P ist transitiv auf $g \setminus \{P\}$, g Gerade durch P.
- d) Σ_{gh} ist transitiv auf $k \setminus g$, wobei k Gerade und $k \parallel h$ ist.
- $e) \ \Delta = T \cup \bigcup_{P \in \mathbf{P}} \Delta_P = T \Delta_{(0,0)}.$

Lemma 1.8 $F\ddot{u}r$ A(K), K $K\ddot{o}rper$ gilt:

- a) Δ_P , $P \in \mathbf{P}$ ist kommutativ.
- b) Σ_{gh} , $g, h \in \mathbf{G}$, ist kommutativ.

Definition 1.10 Es sei $\mathbf{A} = \mathbf{A}(K)$. Für 3 kollineare Punkte A, B, P mit $\overrightarrow{AP} = t\overrightarrow{PB}$ heißt die Zahl t das Teilverhältnis [AP : PB].

Lemma 1.9 Eine Affinität von A(K) lässt das Teilverhältnis invariant.

1.4 Der Satz von DESARGUES, der Satz von PAPPUS

Satz 1.10 (DESARGUES) Es sei $\mathbf{A} = \mathbf{A}(K)$, (K Schiefkörper).

Sind Z, A, A', Z, B, B', Z, C, C' drei Tripel kollinearer Punkte auf drei verschiedenen Geraden durch Z und ist

 $A \vee B \parallel A' \vee B', \quad B \vee C \parallel B' \vee C', \quad so auch \quad A \vee C \parallel A' \vee C'.$

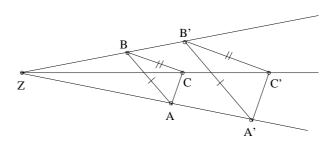


Abbildung 1: Der Satz von DESARGUES

Bemerkung:

Eine affine Ebene A, in der der Satz von DESARGUES für alle Konfigurationen gilt, lässt sich als A(K) über einem Schiefkörper K beschreiben. Solch eine Ebene heißt deshalb desarguessch.

Satz 1.11 (PAPPUS) Es sei A=A(K), K Körper (!!).

Liegen die Ecken eines Sechsecks $P_1, Q_2, P_3, Q_1, P_2, Q_3$ abwechselnd auf zwei Geraden g, h, jedoch keine auf beiden, und sind zwei Seitenpaare parallel, so ist auch das dritte Seitenpaar parallel.

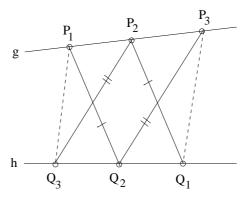


Abbildung 2: Der Satz von PAPPUS

Bemerkung:

Eine affine Ebene A, in der der Satz von PAPPUS für alle Konfigurationen gilt, lässt sich als A(K) über einem Körper K beschreiben. Solch eine Ebene heißt deshalb pappussch.

1.5 Bemerkungen über endliche affine Ebenen

Definition 1.11 Eine affine Ebene $\mathbf{A} = (\mathbf{P}, \mathbf{G}, \in)$ heißt endlich, wenn $|\mathbf{P}| < \infty$ ist.

Lemma 1.12 Ist $\mathbf{A} = (\mathbf{P}, \mathbf{G}, \in)$ eine endliche affine Ebene, $g \in \mathbf{G}$ und n := |g|, so gilt: a) Jede Gerade enthält genau n Punkte. Jeder Punkt liegt auf genau n + 1 Geraden.

b)
$$|\mathbf{P}| = n^2$$
, $|\mathbf{G}| = n^2 + n$.

2 Die projektive Ebene über einem Körper K

2.1 Definition einer projektiven Ebene

Definition 2.1 *Es sei* $A = (P, G, \in)$ *eine affine Ebene.*

$$\overline{\mathbf{P}} := \mathbf{P} \cup \{ \|_g \mid g \in \mathbf{G} \}, \quad \overline{\mathbf{G}} := \{ g \cup \|_g \mid g \in \mathbf{G} \} \cup \{ \|_g \mid g \in \mathbf{G} \}, \quad g_{\infty} := \{ \|_g \mid g \in \mathbf{G} \}$$

$$\overline{P} I \overline{g} := \begin{cases} P \in g & falls \ P \in \mathbf{P}, g \in \mathbf{G} \\ g \in \|_g & falls \ \overline{P} = \|_g \\ \in, & falls \ \overline{P} \in g_{\infty}, \overline{g} = g_{\infty} \end{cases}$$

 $\overline{\mathbf{A}} := (\overline{\mathbf{P}}, \overline{\mathbf{G}}, I) \text{ heißt} \text{ projektive Erweiterung } von \mathbf{A}.$

Grundlegende Inzidenzeigenschaften von $\overline{\mathbf{A}}$:

P1: Zu $\overline{P} \neq \overline{Q} \in \overline{P}$ gibt es genau eine Gerade \overline{g} mit $\overline{P}, \overline{Q}$ I \overline{g} .

P2: Zu $\overline{g} \neq \overline{h} \in \overline{\mathbf{G}}$ gibt es genau einen Punkt \overline{P} mit \overline{P} I \overline{g} , \overline{h} .

P3: Es gibt wenigstens 4 Punkte, von denen keine drei auf einer Gerade liegen.

Definition 2.2 Eine Inzidenzstruktur $\mathfrak{P} := (\mathbf{P}, \mathbf{G}, \in)$ mit den Eigenschaften $\mathbf{P1}$ - $\mathbf{P3}$ heißt projektive Ebene.

Definition 2.3 Es sei $\mathfrak{P} = (\mathbf{P}, \mathbf{G}, \in)$ eine projektive Ebene. Eine Permutation κ von \mathbf{P} , die eine Permutation von \mathbf{G} induziert heißt Kollineation von \mathfrak{P} . Koll $\mathfrak{P} := M$ enge der Kollineationen von \mathfrak{P} .

Lemma 2.1 Ist $\mathfrak{P} = (\mathbf{P}, \mathbf{G}, \in)$ eine projektive Ebene und $g \in \mathbf{G}$, so ist $\mathfrak{P}_g = (\mathbf{P}_g, \mathbf{G}_g, \in)$ mit $\mathbf{P}_g := \mathbf{P} \setminus g$, $\mathbf{G}_g := \{h \setminus g \mid g \neq h \in \mathbf{G}\}$, eine affine Ebene. g hei β t Ferngerade von \mathfrak{P}_g .

2.2 Projektive Ebene über einem Körper K

Definition 2.4 Es sei K ein Körper und

$$\mathbf{P}_{1} := K^{2} \cup K \cup \{\infty\}, \ \infty \notin K,
\mathbf{G}_{1} := \{\{(x,y) \in K^{2} \mid y = mx + d\} \cup \{(m)\} \mid m, d \in K\}
\quad \cup \{\{(x,y) \in K^{2} \mid x = c\} \cup \{\infty\} \mid c \in K\} \cup \{(m) \mid m \in K\} \cup \{\infty\} \}
g_{\infty} := \{(m) \mid m \in K\} \cup \{\infty\}$$

 $\mathfrak{P}_1(K) := (\mathbf{P}_1, \mathbf{G}_1, \in)$ heißt inhomogenes Modell der projektiven Ebene über dem Körper K.

Definition 2.5 Es sei K ein $K\"{o}rper$, V der Vektorraum K^3 and $\vec{0} := (0,0,0)^T$, $\mathbf{P}_2 := \{1\text{-}dim. \ Unterr\"{a}ume \ von \ V\} = \{<\vec{x}> \mid \vec{0} \neq \vec{x} \in V\},$ wobei $<\vec{x}>$ der $von \ \vec{x}$ aufgespannte $Unterraum \ ist.$ $\mathbf{G}_2 := \{2\text{-}dim. \ Unterr\"{a}ume \ von \ V\}$ $= \{\{<(x_1, x_2, x_3)^T> \in \mathbf{P}_2 \mid ax_1 + bx_2 + cx_3 = 0\} \mid \vec{0} \neq (a, b, c)^T \in K^3\}.$ $\mathfrak{P}_2(K) := (\mathbf{P}_2, \mathbf{G}_2, \in) \ hei \beta t \ homogenes \ Modell \ der \ projektiven \ Ebene \ "ber K".$

Satz 2.2 $\mathfrak{P}_1(K)$ und $\mathfrak{P}_2(K)$ sind isomorphe projektive Ebenen.

Bemerkung:

 $\mathfrak{P}_1(K)$ und $\mathfrak{P}_2(K)$ sind auch für einen Schiefkörper K isomorphe projektive Ebenen.

2.3 Kollineationen von $\mathfrak{P}_1(K)$ und $\mathfrak{P}_2(K)$

Satz 2.3 Jede Kollineation einer affinen Ebene **A** lässt sich eindeutig zu einer Kollineation der projektiven Erweiterung $\overline{\mathbf{A}}$ von **A** fortsetzen.

Lemma 2.4 Jede Kollineation κ von $\mathbf{A}(K)$ lässt sich zu einer Kollineation $\overline{\kappa}$ von $\mathfrak{P}_1(K)$ unf damit auch von $\mathfrak{P}_2(K)$ fortsetzen. $\overline{\kappa}$ wird in $\mathfrak{P}_2(K)$ (homogenes Modell) von einer semilinearen Abbildung induziert. Ist κ eine Affinität, d.h. $\alpha = id$, so wird $\overline{\kappa}$ in $\mathfrak{P}_2(K)$ von einer linearen Abbildung induziert.

Lemma 2.5 Jede bijektive lineare Abbildung φ von K^3 induziert eine Kollineation Φ von $\mathfrak{P}_2(K)$ (und damit auch von $\mathfrak{P}_1(K)$).

Definition 2.6

$$GL(3,K) = \{M \mid Mist \ 3 \times 3 - Matrix \ "uber \ K, \det M \neq 0\}$$

 $PGL(3,K) = \{\varphi_M \mid \varphi_M : von \ M \ induzierte \ Koll. \ in \ \mathfrak{P}_2(K), M \in GL(3,K)\}$

Die Elemente von PGL(3,K) heißen projektive Kollineationen oder Projektivitäten.

Lemma 2.6 Es gilt:
$$PGL(3, K) \cong GL(3, K)/Z$$
, wobei $Z := \{ \lambda E \mid 0 \neq \lambda \in K, E : 3 \times 3 - Einheitsmatrix \}$ (Z ist das Zentrum der Gruppe $GL(3, K)$.)

Definition 2.7 Vier Punkte einer projektiven Ebene heißen in allgemeiner Lage, wenn keine 3 kollinear sind.

Lemma 2.7 Sind A, B, C, D vier Punkte (aus $\mathfrak{P}_2(K)$) in allgemeiner Lage, so lässt sich immer eine Koordinatentransformation so durchführen, dass

$$A = <(1,0,0)^{\top}>, \quad B = <(0,1,0)^{\top}>, \quad C = <(0,0,1)^{\top}>, \quad D = <(1,1,1)^{\top}>.$$

Folgerungen:

Lemma 2.8 a)Sind P_1, P_2, P_3, P_4 und Q_1, Q_2, Q_3, Q_4 jeweils Punkte von $\mathfrak{P}_2(K)$ in allgemeiner Lage, so gibt es genau eine Projektivität $\pi \in PGL(3, K)$ mit $\pi(P_i) = Q_i$ für i = 1, ..., 4, d.h. PGL(3, K) operiert scharf transitiv auf den geordneten Quadrupeln von Punkten in allgemeiner Lage.

b) Eine Projektivität π , die vier Punkte in allgemeiner Lage festlässt, ist die Identität.

Lemma 2.9 Wählt man in $\mathfrak{P}_2(K)$ (oder $\mathfrak{P}_1(K)$) eine beliebige Gerade g, so ist die affine Ebene $\mathfrak{P}_{i,g}$ (s.o.) mit g als Ferngerade zur affinen Ebene $\mathbf{A}(K)$ isomorph.

Definition 2.8 a) $SL(3,K) = \{M \in GL(3,K) \mid \det M = 1\}$ heißt spezielle lineare Gruppe.

b) $PSL(3,K) = \{\varphi_M \mid M \in SL(3,K)\}$ heißt spezielle projektive Gruppe.

Definition 2.9 Es sei $\Gamma L(3,K) = \{ \gamma \mid \gamma \text{ bijektive seminlineare Abbildung von } K^3 \}.$ $(\gamma(\lambda \vec{x}) = \alpha(\lambda)\gamma(\vec{x}) \text{ für } \lambda \in K, \vec{x} \in K^3, \alpha \text{: Automorphismus von } K.)$

Resultat 2.10 Jede Kollineation κ von $\mathfrak{P}_2(K)$ wird von einer semilinearen Abbildung $\gamma \in \Gamma L(3,K)$ induziert.

 $P\Gamma L(3,K) := \{von \ \gamma \ induzierte \ Koll. \mid \gamma \in \Gamma L(3,K)\}.$

Satz 2.11 Für $K = \mathbb{R}$ qilt: $PSL(3, \mathbb{R}) = PGL(3, \mathbb{R}) = P\Gamma L(3, \mathbb{R})$.

2.4 Zentralkollineationen

Definition 2.10 Eine Kollineation π einer projektiven Ebene \mathfrak{P} , die das Geradenbüschel eines Punktes Z elementweise festlässt, heißt Zentralkollineation oder Perspektivität und Z das Zentrum von π .

Lemma 2.12 a) Es sei $\pi \neq id$ eine Zentralkollineation der projektiven Ebene \mathfrak{P} mit dem Zentrum Z. Dann gibt es eine Gerade a, die π punktweise festlässt und $a \cup \{Z\}$ ist die Fixpunktmenge von π . a heißt Achse von π und π eine (Z,a)-Perspektivität. Ist $z \notin a$, so heißt π Homologie, ist $z \in a$, so heißt π Elation.

b) Eine Zentralkollineation ist durch ihr Zentrum Z, Achse a und ein Paar Punkt-Bildpunkt eindeutig bestimmt.

Lemma 2.13 Es sei \mathfrak{P} eine projektive Ebene, π eine (Z,a)-Perspektivität und κ eine beliebige Kollineation. Dann ist $\kappa\pi\kappa^{-1}$ eine $(\kappa(Z),\kappa(a))$ -Perspektivität.

Lemma 2.14 Ist π eine (Z, a)-Perspektivität \neq id und κ eine Kollineation mit $\pi \kappa = \kappa \pi$, dann gilt: $\kappa(Z) = Z$ und $\kappa(A) = A$ für $A \in a$.

2.5 Das Dualitätsprinzip

Definition 2.11 Es sei $\mathfrak{S} := (\mathbf{P}, \mathbf{G}, I)$ eine Inzidenzstruktur, $\mathbf{P}^* := \mathbf{G}$, $\mathbf{G}^* := \mathbf{P}$ und $I^* \subset \mathbf{G} \times \mathbf{P}$ mit:

 $F\ddot{u}r \ g \in \mathbf{G}, \ P \in \mathbf{P} \ gilt: gI^*P \Leftrightarrow PIg.$

 $\mathfrak{S} = (\mathbf{P}^*, \mathbf{G}^*, I^*)$ heißt die zu \mathfrak{S} duale Inzidenzstruktur.

Lemma 2.15 Die zu einer projektiven Ebene \mathfrak{P} duale Inzidenzstruktur \mathfrak{P}^* ist eine projektive Ebene. \mathfrak{P}^* heißt die zu \mathfrak{P} duale projektive Ebene.

Definition 2.12 Es sei \mathfrak{P} eine projektive Ebene. Eine Kollineation von \mathfrak{P} auf \mathfrak{P}^* heißt Dualität.

Eine Dualität π von \mathfrak{P} auf \mathfrak{P}^* heißt Polarität, wenn aus $X \in \pi(Y)$ folgt $Y \in \pi(X)$.

Bemerkung: a) Nicht jede projektive Ebene ist isomorph zu ihrer dualen Ebene.

b) Allerdings: Jede projektive Ebene $\mathfrak{P}_i(K)$ ist isomorph zu ihrer dualen Ebene.

Satz 2.16 Es sei \underline{S} eine Aussage über eine projektive Ebene \mathfrak{P} , die mit den Axiomen $\underline{P1}, \underline{P2}, \underline{P3}$ bewiesen werden kann. Dann ist die duale Aussage \underline{D} , die aus \underline{S} durch Vertauschen der Worte

 $Punkt \leftrightarrow Gerade$, $liegt\ auf \leftrightarrow geht\ durch$, $kollinear \leftrightarrow kopunktal$,

 $schneiden \leftrightarrow verbinden, \dots$

entsteht eine wahre Aussage von \mathfrak{P} .

2.6 Die Sätze von DESARGUES und PAPPUS in einer projektiven Ebene

Satz 2.17 (DESARGUES) In $\mathfrak{P}_i(K)$ qilt:

Sind Z, A, A', Z, B, B', Z, C, C' drei Tripel kollinearer Punkte auf drei verschiedenen Geraden durch Z und ist

 $U := (A \vee B) \wedge (A' \vee B'), \ V := (B \vee C) \wedge (B' \vee C'), \ W := (A \vee C) \wedge (A' \vee C'),$ so gilt U, V, W sind kollinear.

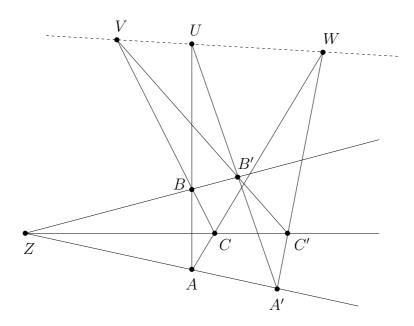


Abbildung 3: projektiver Satz von Desargues

Satz 2.18 (dualer DESARGUES) In $\mathfrak{P}_i(K)$ gilt:

Sind z, a, a', z, b, b', z, c, c' drei Tripel kopunktaler Geraden und $u := (a \lor b) \land (a' \lor b'), \ v := (b \lor c) \land (b' \lor c'), \ w := (a \lor c) \land (a' \lor c'),$ so gilt u, v, w sind kopunktal.

Satz 2.19 (PAPPUS) In $\mathfrak{P}_i(K)$ gilt:

Liegen die Ecken eines Sechsecks $P_1, Q_2, P_3, Q_1, P_2, Q_3$ abwechselnd auf zwei Geraden g, h, jedoch keine auf beiden, und ist

 $U := (P_1 \vee Q_2) \wedge (P_2 \vee Q_1), \ V := (P_2 \vee Q_3) \wedge (P_3 \vee Q_2), \ W := (P_3 \vee Q_1) \wedge (P_1 \vee Q_3),$ so gilt: U, V, W sind kollinear.

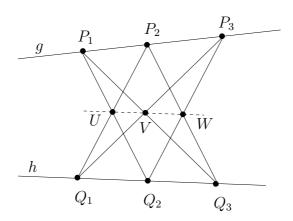


Abbildung 4: projektiver Satz von Pappus

Satz 2.20 (dualer PAPPUS = THOMSEN) In $\mathfrak{P}_i(K)$ gilt:

Gehen die Geraden eines Sechsseits $p_1, q_2, p_3, q_1, p_2, q_3$ abwechselnd durch zwei Punkte G, H, jedoch keine durch beide, und ist

 $u := (p_1 \lor q_2) \land (p_2 \lor q_1), \ v := (p_2 \lor q_3) \land (p_3 \lor q_2), \ w := (p_3 \lor q_1) \land (p_1 \lor q_3),$ so gilt: u, v, w sind kopunktal.

2.7 Transitivitätseigenschaften

Lemma 2.21 In einer projektiven Ebene \mathfrak{P} gilt:

- a) Die (Z,a)-Homologien (-Elationen) mit festem Zentrum Z und fester Achse a bilden eine Gruppe H(Z,a) (bzw. E(Z,a)).
- b) Die Elationen mit fester Achse a (bzw. Zentrum Z) bilden eine Gruppe E(a) (bzw. E(Z)).

Definition 2.13 Es sei $\mathfrak{P} = (\mathbf{P}, \mathbf{G}, \in)$ eine projektive Ebene, $Z \in \mathbf{P}, a \in \mathbf{G}$. Die Gruppe der (Z, a)-Perspektivitäten heißt linear transitiv, wenn es zu jedem Punkt $P \notin \{Z\} \cup a$ und $Q \in P \vee Z \setminus (\{Z\} \cup a)$ eine (Z, a)-Perspektivität π gibt mit $\pi(P) = Q$.

Lemma 2.22 In $\mathfrak{P}_i(K)$ gilt:

- a) Die (Z,a)-Homologien (-Elationen) mit festem Zentrum Z und fester Achse a sind linear transitiv.
- b) Die Elationen mit fester Achse a operieren transitiv auf $P \setminus a$.

Lemma 2.23 In $\mathfrak{P}_i(K)$ gilt:

- a) Die von den Elationen erzeugte Kollineationsgruppe $Koll_E$ ist "dreieckstransitiv".
- b) Die von den Homologien erzeugte Kollineationsgruppe Koll_H ist gleich der Gruppe Π der Projektivitäten, falls $|K| \geq 3$.

2.8 Perspektive und projektive Abbildungen von Geraden

Definition 2.14 Es sei \mathfrak{P} eine projektive Ebene, $g \neq h$ zwei Geraden und $Z \notin g \cup h$ ein Punkt. Dann heißt die Abbildung

$$\pi: \begin{cases} g \to h \\ X \to (Z \vee X) \wedge h \end{cases} \quad eine \text{ perspektive Abbildung von } g \text{ auf } h \text{ mit Zentrum } Z.$$

Eine Abbildung einer Gerade g auf eine Gerade l heißt projektiv, wenn sie Produkt von endlich vielen perspektiven Geradenabbildungen ist.

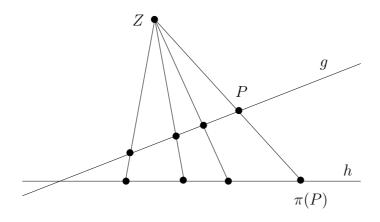


Abbildung 5: perspektive Abbildung einer Gerade g auf eine Gerade h

Lemma 2.24 Es sei \mathfrak{P} eine projektive Ebene, g, h zwei Geraden und Π_{gh} die Menge der projektiven Abbildungen von g auf h, Dann gilt:

- a) Π_{ah} operiert 3-fach transitiv.
- b) Π_{qq} ist eine Gruppe.

2.9 Das Doppelverhältnis in $\mathfrak{P}_i(K)$

Definition 2.15 Für vier Punkte $A_i: \vec{a}_i = \vec{x_0} + a_i \vec{r}, i = 1, 2, 3, 4, von \mathbf{A}(K)$ heißt

$$(A_1, A_2 | A_3, A_4)_a := \frac{a_3 - a_1}{a_3 - a_2} : \frac{a_4 - a_1}{a_4 - a_2}$$

das affine Doppelverhältnis $von A_1, A_2, A_3, A_4$.

Definition 2.16 Für vier Punkte $A_i = \langle a_i \vec{a} + b_i \vec{b} \rangle, i = 1, 2, 3, 4, der projektiven Gerade <math>g = \{\langle a\vec{a} + b\vec{b} \rangle \mid (a,b) \neq (0,0)\}$ heißt

$$(A_1, A_2|A_3, A_4) := \frac{a_3b_1 - a_1b_3}{a_3b_2 - a_2b_3} : \frac{a_4b_1 - a_1b_4}{a_4b_2 - a_2b_4}$$

das Doppelverhältnis von A_1, A_2, A_3, A_4 . (Für $b_i = 1$ erhält man das affine DV.)

Lemma 2.25 $(A_1, A_2|A_3, A_4)$ hängt nur von den Punkten $A_1, ... A_4$ ab, d.h. bei einer Koordinatentransformation oder beim Übergang zu einer inhomogenen Beschreibung bleibt das DV invariant. Speziell gilt:

Für
$$A_1 = \langle \vec{a} \rangle, A_2 = \langle \vec{b} \rangle, A_3 = \langle \vec{a} + \vec{b} \rangle, A_4 = \langle x\vec{a} + \vec{b} \rangle$$
 ist $(A_1, A_2 | A_3, A_4) = x$.

Lemma 2.26 a) Das Doppelverhältnis (in $\mathfrak{P}_i(K)$) ist bei projektiven Kollineationen invariant. b) Das Doppelverhältnis (in $\mathfrak{P}_i(K)$) ist bei projektiven Geradenabbildungen invariant.

Satz 2.27 (Fundamentalsatz) In der projektiven Ebene $\mathfrak{P}_i(K)$ (K: Körper!) ist die Menge Π_{gh} von projektiven Abbildungen einer projektiven Gerade g auf eine Gerade h scharf 3-fach transitiv.

Lemma 2.28 Ist in einer projektiven Ebene \mathfrak{P} die Menge der projektiven Abbildungen Π_{gh} einer Gerade g auf eine Gerad h scharf 3-fach transitiv, so ist eine Abbildung $\pi \in \Pi_{gh}$ mit $g \wedge h$ als Fixpunkt perspektiv.

Satz 2.29 Eine projektive Ebene \mathfrak{P} ist genau dann pappussch, d.h. isomorph zu einer projektiven Ebene $\mathfrak{P}_i(K)$ mit K: Körper, wenn für je zwei Geraden g,h die Menge Π_{gh} scharf 3-fach transitiv operiert.

Definition 2.17 Für 4 Geraden g_1, g_2, g_3, g_4 durch einen Punkt Z und Geraden g, h nicht durch Z seien $A_i = g \wedge g_i, B_i = h \wedge g_i$. Dann gilt $(A_1, A_2 | A_3, A_4) = (B_1, B_2 | B_3, B_4)$ und $(g_1, g_2 | g_3, g_4) := (A_1, A_2 | A_3, A_4)$ heißt das Doppelverhältnis der Geraden g_1, g_2, g_3, g_4 .

2.10 Die projektive Gerade über einem Körper

Definition 2.18 Es sei K ein Körper. Dann heißt

a) $\mathfrak{G}_2 := \{ \langle \vec{x} \rangle \mid \vec{x} \in K^2, \vec{x} \neq \vec{0} \}$ homogene Darstellung der projektiven Gerade über K.

b) $\mathfrak{G}_1 := \{x \mid x \in K\} \cup \{\infty\}$ inhomogene Darstellung der projektiven Gerade über K.

Definition 2.19 $GL(2,K) := Gruppe \ der \ regulären \ 2 \times 2 \ Matrizen \ "" iber K.$ $PGL(2,K) := von \ GL(2,K) \ induzierte \ Permutationsgruppe \ von \ \mathfrak{G}_2.$ **Definition 2.20** Die Wirkung von $\alpha \in PGL(2, K)$ mit $M_{\alpha} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ auf \mathfrak{G}_1 ist:

$$x \to \begin{cases} \frac{ax+b}{cx+d}, & falls \ cx+d \neq 0 \\ \infty, & falls \ cx+d = 0, \end{cases} \quad und \quad \infty \to \begin{cases} \frac{a}{c}, & falls \ c \neq 0 \\ \infty, & falls \ c = 0. \end{cases}$$

und heißt gebrochen lineare Abbildung

Lemma 2.30 Die Gruppe PGL(2, K) operiert scharf 3-fach transitiv auf \mathfrak{G}_2 bzw. \mathfrak{G}_1 .

Lemma 2.31 In $\mathfrak{P}_i(K)$ ist jede Gruppe Π_{gg} von projektiven Abbildungen einer Geraden g auf sich isomorph zu PGL(2,K).

Lemma 2.32 Ein Element $\alpha \in PGL(2,K)$ mit $M_{\alpha} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ist genau dann eine Involution, d.h. $\alpha^2 = id$, $\alpha \neq id$, wenn a + d = 0 ist.

Lemma 2.33 Vertauscht $\pi \in PGL(2, K)$ zwei Punkte, so ist π eine Involution.

2.11 Harmonische Punkte in $\mathfrak{P}_i(K)$, Char $K \neq 2$

Definition 2.21 Vier Punkte A, B, C, D einer Gerade g in $\mathfrak{P}_i(K)$, Char $K \neq 2$, heißen harmonisch, wenn (A, B|C, D) = -1 ist. Bezeichng.: H(A, B; C, D)

Lemma 2.34 Aus H(A, B; C, D) folgt H(A, B; D, C), H(C, D; A, B).

Lemma 2.35 Es gilt H(A, B; C, D) genau dann, wenn es zu jeder Gerade $a \neq A \vee B$ durch C eine involutorische Zentralkollineation σ mit Achse a durch C und Zentrum D gibt, die A und B vertauscht.

Lemma 2.36 Aus H(A, B; C, D) folgt: Es gibt genau eine Involution π in Π_{gg} , $g = A \lor B$, $mit \ \pi(A) = B, \pi(B) = A, \pi(C) = C, \pi(D) = D$.

Lemma 2.37 In $\mathfrak{P}_i(K)$ sind vier Punkte A, B, C, D einer Gerade g genau dann in harmonischer Lage, wenn es ein Viereck P_1, P_2, P_3, P_4 gibt, so dass $A = (P_1 \vee P_2) \wedge (P_3 \vee P_4), B = (P_2 \vee P_3) \wedge (P_4 \vee P_1), C = (P_1 \vee P_3) \wedge g, D = (P_2 \vee P_4) \wedge g.$

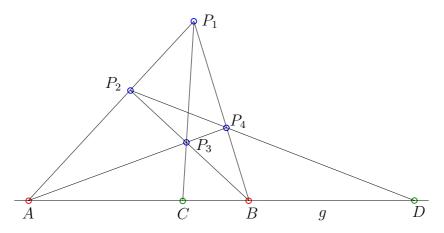


Abbildung 6: Harmonische Punkte

3 Kegelschnitte in pappusschen projektiven Ebenen

3.1 Definition eines nicht ausgearteten Kegelschnitts

Definition 3.1 Es sei K ein $K\ddot{o}rper$. In $\mathfrak{P}_2(K)$ sei

$$k_1 := \{ \langle (x_1, x_2, x_3)^\top \rangle \mid x_1 x_2 = x_3^2 \}.$$

$$(\operatorname{In} \mathfrak{P}_1(K) \text{ ist } k_1 \colon \{\binom{x}{y} \mid y = \frac{1}{x}, x \neq 0\} \cup \{(0), (\infty)\}.)$$

Jedes Bild von k_1 unter einer Kollineation von $\mathfrak{P}_2(K)$ heißt nicht ausgearteter Kegelschnitt.

Definition 3.2
$$k_2 := \{ \langle (x_1, x_2, x_3)^\top \rangle \mid x_2 x_3 = x_1^2 \}.$$

In $\mathfrak{P}_1(K)$ ist $k_2 : \{ \begin{pmatrix} x \\ y \end{pmatrix} \mid y = x^2 \} \cup \{ (0) \}.$

Lemma 3.1 Die n.a. Kegelschnitte in $\mathfrak{P}_i(K)$ sind **projektiv** äquivalent zu k_1 (oder k_2). (D.h., sie sind durch eine projektive Kollineation ineinander überführbar.)

Lemma 3.2 Die projektiven Kollineationen in $\mathfrak{P}_1(K)$ mit

a)
$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} ax + b \\ a^2y + 2abx + b^2 \end{pmatrix}, a \neq 0$$
 b) $\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} x/y \\ 1/y \end{pmatrix}$ bilden $k_2 = \{\begin{pmatrix} x \\ y \end{pmatrix} \mid y = x^2\} \cup \{(\infty)\}$ auf sich ab.

Lemma 3.3 Es sei k ein n.a. Kegelschnitt (in $\mathfrak{P}_i(K)$).

- a) Die Gruppe Π_k der projektiven Kollineationen, die k invariant lassen, operiert auf der Punktmenge k 3-fach transitiv.
- b) Eine Gerade g hat mit k entweder keinen Punkt oder einen Punkt oder zwei Punkte gemeinsam. Im ersten Fall heißt g Passante im zweiten Fall Tangente und im dritten Fall Sekante.

In jedem Punkt von k gibt es genau eine Tangente.

Lemma 3.4 a) Ein n.a. Kegelschnitt k in $\mathfrak{P}_1(K)$ mit $(0), (\infty), (1,1) \in k$ und (0,0) ist der Schnittpunkt der Tangenten in (0) und (∞) , ist der Kegelschnitt k_1 .

- b) Ein n.a. Kegelschnitt k in $\mathfrak{P}_1(K)$ mit $(\infty), (0,0), (1,1) \in k$ und (0) Schnittpunkt der Tangenten in (0,0) bzw. (∞) ist k_2 .
- c) Ein n.a. Kegelschnitt ist durch 3 Punkte und die Tangenten in 2 Punkten davon eindeutig bestimmt.
- d) Π_k operiert scharf 3-fach transitiv.

3.2 Ovale

Definition 3.3 Eine Punktmenge o in einer projektiven Ebene Punktmenge o in einer projektiven Ebene beneißt Oval, wenn

- (1) eine beliebige Gerade mit o höchstens 2 Punkte gemeinsam hat,
- (2) in jedem Punkt $P \in \mathfrak{o}$ genau eine Tangente (Gerade g mit $g \cap \mathfrak{o} = 1$) existiert.

Lemma 3.5 Ein n.a. Kegelschnitt ist ein Oval.

Lemma 3.6 Für ein Oval \mathfrak{o} in einer endlichen projektiven Ebene \mathfrak{P} der Ordnung n (d.h.: jede Gerade hat n+1 Punkte) gilt:

- a) $|\mathfrak{o}| = n + 1$.
- b) Falls n ungerade ist, gehen durch jeden Punkt keine oder 2 Tangenten.
- c) Falls n gerade ist, gehen alle Tangenten durch einen Punkt N, den Knoten von o.

Lemma 3.7 Im Fall CharK = 2 hat ein n.a. Kegelschnitt einen Knoten, d.h. alle Tangenten gehen durch einen Punkt.

Lemma 3.8 Ein Oval \mathfrak{o} in einer projektiven Ebene \mathfrak{P} ist genau dann ein n.a. Kegelschnitt, wenn es zu jedem Punkt $P \notin \mathfrak{o}$ einer Sekante s eine involutorische Zentralkollineation σ_P gibt, die \mathfrak{o} invariant lässt und P als Zentrum hat.

Lemma 3.9 (Hyperbelviereck)

Es sei K ein Körper und $P_i = (x_i, y_i)$, i=1,...4, vier Punkte der affinen Ebene $\mathbf{A}(K)$ mit $x_i \neq x_k, y_i \neq y_k$ für $i \neq k$. Dann gilt:

 P_1, P_2, P_3, P_4 liegen genau dann auf einer Hyperbel $y = \frac{a}{x-b} + c$, wenn keine 3 kollinar liegen und

$$\frac{(y_4 - y_1)(x_4 - x_2)}{(x_4 - x_1)(y_4 - y_2)} = \frac{(y_3 - y_1)(x_3 - x_2)}{(x_3 - x_1)(y_3 - y_2)}$$

ist.

3.3 Der Satz von PASCAL und seine Ausartungen

Satz 3.10 (*PASCAL*)

Es sei \mathfrak{o} ein Oval in einer pappusschen projektiven Ebene \mathfrak{P} ($\mathfrak{P}_i(K)$). \mathfrak{o} ist genau dann ein n.a. Kegelschnitt, wenn gilt:

Ist $P_1, P_2, P_3, P_4, P_5, P_6$ ein beliebiges Sechseck auf \mathfrak{o} , so sind die Punkte $P_7 := (P_1 \vee P_5) \wedge (P_2 \vee P_4), \quad P_8 := (P_1 \vee P_6) \wedge (P_3 \vee P_4), \quad P_9 := (P_2 \vee P_5) \wedge (P_3 \vee P_5)$ kollinear.

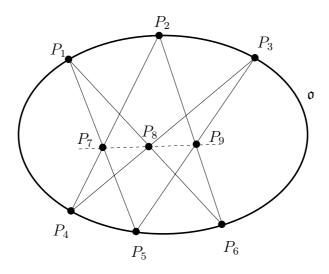


Abbildung 7: 6-Punkte-PASCAL-Satz

Lemma 3.11 (Parabelviereck)

Es sei K ein Körper und $P_i = (x_i, y_i)$, i=1,...4, vier Punkte der affinen Ebene $\mathbf{A}(K)$ mit $x_i \neq x_k$ für $i \neq k$. Dann gilt:

 P_1, P_2, P_3, P_4 liegen genau dann auf einer Parabel $y = ax^2 + bx + c$, wenn keine 3 kollinar liegen und

$$\frac{y_4 - y_1}{x_4 - x_1} - \frac{y_4 - y_2}{x_4 - x_2} = \frac{y_3 - y_1}{x_3 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}$$

ist.

Satz 3.12 (5-Punkte PASCAL)

Es sei \mathfrak{o} ein Oval in einer pappusschen projektiven Ebene \mathfrak{P} ($\mathfrak{P}_i(K)$). \mathfrak{o} ist genau dann ein n.a. Kegelschnitt, wenn gilt:

Ist P_1, P_2, P_3, P_4, P_5 ein beliebiges Fünfeck auf \mathfrak{o} und sei $P_1 \vee P_1$ die Tangente in P_1 , so sind die Punkte

 $P_6 := (P_1 \vee P_1) \wedge (P_2 \vee P_4), \quad P_7 := (P_1 \vee P_5) \wedge (P_3 \vee P_4), \quad P_8 := (P_2 \vee P_5) \wedge (P_3 \vee P_1) \\ kollinear.$

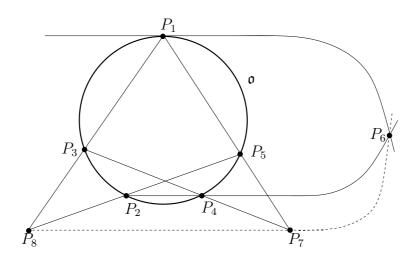


Abbildung 8: 5-Punkte-PASCAL

Satz 3.13 (4-Punkte PASCAL)

Es sei \mathfrak{o} ein Oval in einer pappusschen projektiven Ebene \mathfrak{P} . \mathfrak{o} ist genau dann ein n.a. Kegelschnitt, wenn gilt:

Ist $P_1, ..., P_4$ ein beliebiges Viereck auf \mathfrak{o} und ist $P_1 \vee P_1$ bzw. $P_2 \vee P_2$ die Tangente an \mathfrak{o} in P_1 bzw. P_2 , so sind die Punkte

 $P_5 := (P_1 \vee P_1) \wedge (P_2 \vee P_2), \quad P_6 := (P_1 \vee P_3) \wedge (P_2 \vee P_4), \quad P_7 := (P_1 \vee P_4) \wedge (P_2 \vee P_3)$ kollinear.

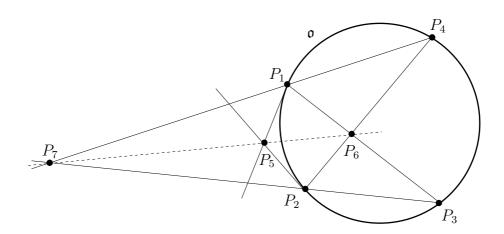


Abbildung 9: 4-Punkte-PASCAL

Bemerkung: Der 4-Punkte-PASCAL eignet sich hervorragend zur punktweisen Konstruktion einer Hyperbel bzw. Parabel.

Satz 3.14 (3-Punkte PASCAL)

Es sei \mathfrak{o} ein Oval in einer pappusschen projektiven Ebene \mathfrak{P} über einem Körper der Char \neq 2. \mathfrak{o} ist genau dann ein n.a. Kegelschnitt, wenn gilt:

Ist P_1, P_2, P_3 ein beliebiges Dreieck auf \mathfrak{o} und ist $P_i \vee P_i$ die Tangente an \mathfrak{o} in P_i , so sind die Punkte

 $P_4 := (P_1 \vee P_1) \wedge (P_2 \vee P_3), \quad P_5 := (P_2 \vee P_2) \wedge (P_1 \vee P_3), \quad P_6 := (P_3 \vee P_3) \wedge (P_1 \vee P_2)$

kollinear.

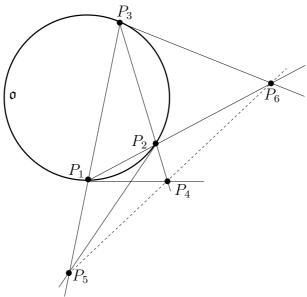


Abbildung 10: 3-Punkte-PASCAL

Satz 3.15 (Perspektive Dreiecke)

Es sei \mathfrak{o} ein Oval in einer pappusschen projektiven Ebene \mathfrak{P} über einem Körper der Char \neq 2. \mathfrak{o} ist genau dann ein n.a. Kegelschnitt, wenn gilt:

Ist P_1, P_2, P_3 ein beliebiges Dreieck auf $\mathfrak o$ und ist t_i die Tangente an $\mathfrak o$ in P_i , so sind die Punkte $Q_1 := t_2 \wedge t_3, \quad Q_2 := t_3 \wedge t_1, \quad Q_3 := t_1 \wedge t_2$

nicht kollinear und die Geraden $P_i \vee Q_i$, i = 1, 2, 3, kopunktal. (D.h. das Dreieck P_1 , P_2 , P_3 liegt zu dem Dreieck Q_1 , Q_2 , Q_3 perspektiv.)



Abbildung 11: perspektive Dreiecke

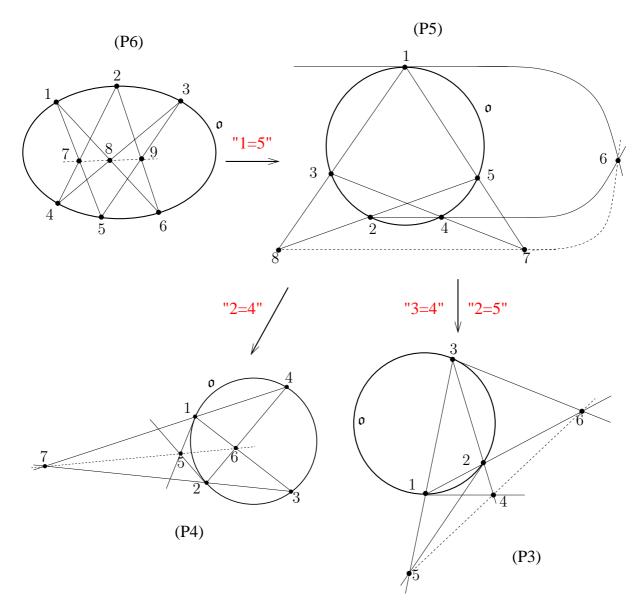


Abbildung 12: Beziehungen zwischen den PASCAL-Ausartungen

3.4 Satz von SEGRE, Satz von STEINER

Satz 3.16 (SEGRE)

Es sei \mathfrak{P} eine pappussche projektive Ebene ungerader Ordnung. Es gilt: Jedes Oval in \mathfrak{P} ist ein n.a. Kegelschnitt.

Satz 3.17 (STEINER)

Es sei \mathfrak{P} eine pappussche projektive Ebene, U,V zwei Punkte und B(U) bzw. B(V) das Geradenbüschel in U bzw. V, π sei eine Bijektion von B(U) auf B(V) mit $\pi(U \vee V) \neq U \vee V$.

 $\mathfrak{o} := \{g \cap \pi(g) \mid g \in B(U)\}\$ ist genau dann ein n.a. Kegelschnitt, wenn gilt: π ist eine projektive, aber nicht perspektive, Abbildung von B(U) auf B(V).

4 Projektive Räume

4.1 Projektiver Raum über einem Körper

Definition 4.1 Es sei K ein $K\"{o}rper$ und V(K) ein Vektorraum $\ddot{u}ber$ K. Ist $\vec{0} \neq \vec{p} \in V(K)$ so $hei\beta t < \vec{p}>:= \{\lambda \vec{p} \mid \lambda \in K\}$ (1-dim. Unterraum) **Punkt**.

Sind $P_i = \langle \vec{p_i} \rangle, i = 1, ..., m$ Punkte, so heißt

 $<\vec{p_{1}},...,\vec{p_{m}}>:=\{\sum_{i=1}^{m}\lambda_{i}\vec{p_{i}}\mid\lambda_{i}\in K\}$

der von $P_1, ... P_m$ aufgespannte **projektive Unterraum**. Sind $\vec{p_1}, ..., \vec{p_m}$ linear unabhängig, so heißt m-1 die Dimension von $\langle \vec{p_1}, ..., \vec{p_m} \rangle$.

Ist $U_i := Menge \ der \ i$ -dimensionalen projektiven Unterräume, so heißt die Struktur $\mathfrak{P} := (U_0, U_1, ..., \subset)$ projektiver Raum.

 \mathbf{U}_0 ist die Menge der Punkte, \mathbf{U}_1 die Menge der Geraden.

Ist $V = K^{n+1}$, so heißt n die Dimension von \mathfrak{P} .

Bez.: $\mathfrak{P}^n(K)$ proj. Raum über K.

Bemerkung: Es lassen sich auch projektive Räume über Schiefkörper definieren.

4.2 Definition eines projektiven Raumes

Grundlegende Inzidenzeigenschaften von $\mathfrak{P}^n(K)$:

PR1: Zu zwei Punkten P, Q gibt es genau eine Gerade g mit P, Q I g.

PR2: (VEBLEN-YOUNG-Axiom) Sind A, B, C, D vier Punkte so, dass die Geraden $A \vee B$, $C \vee D$ sich schneiden, so schneiden sich auch $A \vee C$, $B \vee D$.

PR3: Jede Gerade inzidiert mit wenigstens 3 Punkten. Es gibt wenigstens 2 verschiedene Geraden.



Abbildung 13: Veblen-Young-Axiom

Definition 4.2 Eine Inzidenzstruktur $\mathfrak{P} := (\mathbf{P}, \mathbf{G}, \in)$ mit den Eigenschaften $\mathbf{PR1}$ - $\mathbf{PR3}$ heißt projektiver Raum.

Zum Aufbau eines projektiven Raumes aus den obigen Axiomen: s. Beutelspacher/Rosenbaum

5 Quadriken in projektiven Räumen

5.1 Definition einer Quadrik

Definition 5.1 Es sei K ein Körper, V ein Vektorraum über K.

Eine Abbildung ρ von V in K mit

(Q1:) $\rho(\lambda \vec{x}) = \lambda^2 \rho(\vec{x})$ für $\lambda \in K$, $\vec{x} \in V$.

(Q2:) $f(\vec{x}, \vec{y}) := \rho(\vec{x} + \vec{y}) - \rho(\vec{x}) - \rho(\vec{y})$ ist eine Bilinearform.

 $hei\beta t$ quadratische Form.

Definition 5.2 a) Es sei ρ eine quadratische Form in K^{n+1} und f die zugehörige Bilinearform. $\mathfrak{Q}_{\rho} := \{ \langle \vec{x} \rangle \mid \vec{x} \neq \vec{0}, \rho(\vec{x}) = 0 \}$ heißt Quadrik in $\mathfrak{P}^{n}(K)$.

b) Ist $P = \langle \vec{p} \rangle$ ein Punkt in $\mathfrak{P}^n(K)$, so heißt

 $P^{\perp} := \{ \langle \vec{x} \rangle \in \mathbf{P} \mid f(\vec{p}, \vec{x}) = 0 \}$ Polarraum von P.

Lemma 5.1 In $\mathfrak{P}^n(K)$ sei g eine Gerade und \mathfrak{Q}_{ρ} eine Quadrik. Es gilt entweder

- a) $g \cap \mathfrak{Q}_{\rho} = \emptyset$ und g heißt Passante oder
- b) $g \subset \mathfrak{Q}_{\rho}$ und g heißt Tangente oder
- c) $|g \cap \mathfrak{Q}_{\rho}| = 1$ und g heißt Tangente oder
- d) $|g \cap \mathfrak{Q}_{\rho}| = 2$ und g heißt Sekante.

Lemma 5.2 Ist $P \in \mathfrak{Q}_{\rho}$ und g eine Gerade durch P, so gilt: g ist genau dann eine Tangente (an \mathfrak{Q}_{ρ}), wenn $g \subset P^{\perp}$.

5.2 f-Radikal und singuläres Radikal einer Quadrik

Lemma 5.3 a) $\mathfrak{R}_{\rho} := \{ P \in \mathbf{P} \mid P^{\perp} = \mathbf{P} \}$ ist ein (proj.) Unterraum.

 \mathfrak{R}_{ρ} heißt f-Radikal von \mathfrak{Q}_{ρ} .

b) $\mathfrak{S}_{\rho} := \mathfrak{R}_{\rho} \cap \mathfrak{Q}_{\rho}$ ist ein (proj.) Unterraum.

 \mathfrak{S}_{ρ} heißt singuläres Radikal.

c) Falls Char $K \neq 2$ ist, gilt $\mathfrak{R}_{\rho} = \mathfrak{S}_{\rho}$.

Definition 5.3 Eine Quadrik \mathfrak{Q}_{ρ} heißt nicht ausgeartet, wenn $\mathfrak{S}_{\rho} = \emptyset$.

5.3 Index einer Quadrik

Definition 5.4 Ein Unterraum \mathfrak{U} des projektiven Raumes $\mathfrak{P}^n(K)$ heißt ρ -Unterraum, wenn $\mathfrak{U} \subset \mathfrak{Q}_{\rho}$.

Resultat 5.4 Je zwei maximale ρ -Unterräume haben dieselbe Dimension.

Definition 5.5 Ist \mathfrak{Q}_{ρ} eine n.a. Quadrik und ist m die (proj.) Dimension der maximalen ρ -Unterräume von \mathfrak{Q}_{ρ} , so heißt i := m + 1 der Index von \mathfrak{Q}_{ρ} .

Resultat 5.5 Für den Index i einer n.a. Quadrik in $\mathfrak{P}^n(K)$ gilt: $i \leq \frac{n+1}{2}$.

5.4 Symmetrien einer Quadrik

Lemma 5.6 Zu jedem Punkt $P \in \mathbf{P} \setminus (\mathfrak{Q}_{\rho} \cap \mathfrak{R}_{\rho})$ gibt es eine involutorische Zentralkollineation σ_P mit dem Zentrum P und $\sigma(\mathfrak{Q}_{\rho}) = \mathfrak{Q}_{\rho}$.

5.5 Quadratische Mengen

Definition 5.6 Es sei \mathfrak{P} ein projektiver Raum. Eine Menge $\mathfrak{M} \neq \emptyset$ von \mathfrak{P} heißt quadratische Menge, wenn gilt

- QM1: Jede Gerade g von \mathfrak{P} trifft \mathfrak{M} in höchstens 2 Punkten oder ist in \mathfrak{M} enthalten. g heißt Passante bzw. Tangente bzw. Sekante , falls $|g \cap \mathfrak{M}| = 0$ bzw. $|g \cap \mathfrak{M}| = 1$ oder $g \subset \mathfrak{M}$ bzw. $|g \cap \mathfrak{M}| = 2$ ist.
- QM2: Für jeden Punkt $P \in \mathfrak{M}$ ist die Vereinigung \mathfrak{M}_P aller Tangenten durch P eine Hyperebene oder der ganze Raum.

Definition 5.7 Eine Quadratische Menge \mathfrak{M} heißt nicht ausgeartet, falls \mathfrak{M}_P für jeden Punkt P eine Hyperebene ist.

Resultat 5.7 (BUEKENHOUT,1969) Es sei \mathfrak{P}^n ein projektiver Raum der endlichen Dimension $n \geq 3$ und \mathfrak{M} eine nicht ausgeartete quadratische Menge, die Geraden enthält. Dann gilt: \mathfrak{P}^n ist pappussch und \mathfrak{M} ist eine Quadrik vom Index ≥ 2 .

Definition 5.8 Es sei \mathfrak{P} ein projektiver Raum der Dimension ≥ 2 . Eine nicht ausgeartete quadratische Menge \mathfrak{D} , die keine Geraden enthält, heißt **Ovoid** (oder Oval im ebenen Fall).

Resultat 5.8 a) Ist $|K| < \infty$ und \mathfrak{D} ein Ovoid in $\mathfrak{P}^n(K)$, so ist n = 2 oder n = 3. b) Ist $|K| < \infty$ und \mathfrak{D} ein Ovoid in $\mathfrak{P}^n(K)$ und Char $K \neq 2$, so ist \mathfrak{D} eine Quadrik.

Eine formale Ausdehnung der Definition von Quadriken auf Vektorräume über echten Schiefkörpern ist nicht sinnvoll, da es dann Sekanten mit mehr als 2 Quadrikenpunkten geben würde. Der Grund ist die folgende Aussage:

Resultat 5.9 Ein Schiefkörper K ist genau dann kommutativ, wenn jede Gleichung $x^2 + ax + b$, $a, b \in K$, höchstens zwei Lösungen besitzt.

6 Schlussbemerkung: Beweise

Die **Beweise** der meisten Aussagen über Kegelschnitte und Quadriken dieses Skriptes findet man im Skript über Kreisgeometrien (engl.):

http://www.mathematik.tu-darmstadt.de/~ehartmann/circlegeom.pdf

7 Literatur

- L. Kadison, M.T. Kromann: Projective Geometry and modern Algebra, Birkhäuser-Verlag, 1996
- M. Audin: Geometry, Springer-Verl., 2003
- A. Beutelspacher, U. Rosenbaum: Projektive Geometrie, Vieweg-Verlag, 2004
- H. Karzel, K. Sörensen, D. Windelberg: *Einführung in die Geometrie*, Vandenhoeck & Ruprecht, 1973
- H. Lenz: Vorlesungen über projektive Geometrie, Akad. Verlagsgesellschaft, 1965