May 5, 2006 Introduction to Compact Groups

We introduced the bidual $\widehat{\hat{A}}$ (resp. $\widehat{\hat{G}}$) of an abelian (resp. compact abelian) group and the evaluation morphisms

$$\eta_A: A \to \widehat{\widehat{A}} \qquad \eta_G: G \to \widehat{\widehat{G}}.$$

The goal is to show that these are isomorphisms. We proved that η_A is injective and that η_G is injective once one accepts the fundamental theorem that every compact group has enough finite dimensional continuous representations to separate the points.

We verified the bijectivity of η_A for finite A, for \mathbb{Z} and had an unfinished proof of the bijectivity of $\eta_{\mathbb{T}}$ which we finish now:

The character group $\widehat{\mathbb{T}}$ consists of the multiples $n \cdot \epsilon$ for the identity character $\epsilon : \mathbb{T} \to \mathbb{T}$ which form an infinite cyclic group, freely generated by ϵ . Thus the character group $\widehat{\langle \epsilon \rangle} = \operatorname{Hom}(\langle \epsilon \rangle, \mathbb{T})$ is isomorphic to \mathbb{T} by the map $\Omega \mapsto \Omega(\epsilon)$.

Let $t \in \mathbb{T}$, and $\chi = n \cdot \epsilon$ a character of \mathbb{T} . Then by the definition of η_T , we have $\eta_{\mathbb{T}}(t)(\chi) = \eta_{\mathbb{T}}(t)(n \cdot \epsilon) =$ $(n \cdot \epsilon)(t) = n \cdot (\epsilon(t)) = n \cdot t$. Now $t \in \ker \eta_{\mathbb{T}}$ if $n \cdot t = 0$ for all n, notably for n = 1 and so $\eta_{\mathbb{T}}$ is injective. If $\Omega: \langle \epsilon \rangle \to \mathbb{T}$ is given we set $t = \Omega(\epsilon)$ and have $\eta_T(t)(\chi) = n \cdot t = n \cdot \Omega(\epsilon) = \Omega(n \cdot \epsilon) = \Omega(\chi)$ and thus $\Omega = \eta_{\mathbb{T}}(t)$. This shows that η_T is surjective.

Alternative proof using extra info: By the Fundamental Theorem (info!), $\eta_{\mathbb{T}}$ is injective and thus $\eta_T(\mathbb{T})$ is a nonsingleton compact connected subgroup of $\widehat{\widehat{T}} \cong \widehat{\mathbb{Z}} \cong \mathbb{T}$. But the only compact connected subgroups of \mathbb{T} are $\{0\}$ and \mathbb{T} (info!) and so $\eta_{\mathbb{T}}(\mathbb{T}) = \widehat{\widehat{\mathbb{T}}}$. [Dahmen]

Program for today.

Projective Limits. Character groups of abelian groups as projective limits.