May 4, 2006 Introduction to Compact Groups

A character on a compact (or, more generally, on a topological) group G is a continuous morphism $\chi: G \to \mathbb{T}$. The set $\operatorname{Hom}(G, \mathbb{T})$ of all characters is an abelian group \hat{G} , the character group of the dual of G, denoted \hat{G} . We calculated $\widehat{\mathbb{T}} \cong \mathbb{Z}$ by attaching to each endomorphism $\chi: \mathbb{T} \to \mathbb{T}$ a "winding number n which we identified with the endomorphism $r \mapsto n \cdot r : \mathbb{R} \to \mathbb{R}$ in such a fashion that $\chi(r + \mathbb{Z}) = n \cdot r + \mathbb{Z}$ which amounts to the commuting of the diagram

$$\begin{array}{cccc} \mathbb{R} & \xrightarrow{} & \mathbb{R} \\ \operatorname{quot} & \stackrel{}{\underset{\mathbb{T}}{\longrightarrow}} & \stackrel{}{\underset{\xrightarrow{}}{\longrightarrow}} & \stackrel{}{\underset{\mathbb{T}}{\longrightarrow}} & \stackrel{}{\underset{\xrightarrow{}}{\longrightarrow}} & \stackrel{}{\underset{\mathbb{T}}{\longrightarrow}} \\ \end{array}$$

This required the proof of the following

Extension Lemma. Let U be a nondegenerate interval on R containing O and $f: U \to G$ a function into a group such that $r, s, r + s \in U$ implies f(r+s) = f(r)f(s). Then there is a unique morphism $F: \mathbb{R} \to G$ such that F|U = f.

A continuous morphism $F: \mathbb{R} \to G$ into a topological group is called a *one parameter subgroup of* G. This is an example where a morphism is called a "subgroup".

We discussed the fact that passing to the dual is an operation that also acts on morphisms, reversing arrows: If $f: A \to B$ is a morphism of abelian groups, then $\widehat{f}: \widehat{B} \to \widehat{A}$, and $\widehat{fg} = \widehat{g} \circ \widehat{f}$. In other words, \widehat{f} is a *contravariant functor*, mapping the category AB of abelian groups into the category CAB of compact abelian groups—and vice versa.

Program for today.

Biduals. Projective Limits. Character groups of abelian groups as projective limits.