April 27, 2006 Introduction to Compact Groups

Reminder: Our website is
"http://www.mathematik.tu-darmstadt.de/
lehrmaterial/SS2006/CompGroups/"

If $\left\{A_{j}: j \in J\right\}$ is an arbitrarly family of abelian groups and B is a compact abelian group, then the morphism

$$
\Phi: \prod_{j \in J} \operatorname{Hom}\left(A_{j}, B\right) \rightarrow \operatorname{Hom}\left(\bigoplus_{j \in J} A_{j}, B\right)
$$

given by $\Phi\left(\left(f_{j}\right)_{j \in J}\right)\left(\left(a_{j}\right)_{j \in J}\right)=\sum_{j \in J} f_{j}\left(a_{j}\right)$ is an isomorphism of compact abelian groups.
In particular, taking $B=\mathbb{T}$ we see that the character group of an arbitrary direct sum of abelian groups is the product of the character groups.
For instance $\left(\mathbb{Z}^{J}\right)^{\wedge}=\mathbb{T}^{J}$.

Program for today.

Prove that for any abelian group A and any nonzero $a \in A$ there is a character $\chi \in \widehat{A}$ such that $\chi(a) \neq 0$.

