April 24, 2006 Introduction to Compact Groups

Our website is "http://www.mathematik.tu-darmstadt.de/ lehrmaterial/SS2006/CompGroups/"

If A and B are abelian groups, then $\operatorname{Hom}(A, B) \subseteq B^A$, the subset of all homomorphisms, is a subgroup of B^A . If B is a topological Hausdorff group, then $\operatorname{Hom}(A, B)$ is closed. If B is compact, then $\operatorname{Hom}(A, B)$ is a compact abelian group.

If A is an abelian group, then the compact abelian group $\hat{A} = \operatorname{Hom}(A, \mathbb{T})$ is called the character group of A, and its elements $\chi: A \to \mathbb{T}$ are called characters.

Recall $\mathbb{Z}(n) = \mathbb{Z}/n\mathbb{Z}$. We observed $\widehat{\mathbb{Z}} \cong \mathbb{T}$ and $\mathbb{Z}(n) \widehat{\cong} \mathbb{Z}(n)$.

Program for today.

Character groups of direct sums of abelian groups. Does any abelian group have characters? If so—how many?