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Chapter 1
Topological spaces

Topological spaces generalize metric spaces. One uses metric spaces in analysis
to work with continuous functions on what appears to be the “right” level of
generality. But even in this context one notices that many important concepts,
such as the continuity of functions between metric spaces itself, can be expressed
in the language of open sets alone. This observation has caused mathematicians,
first Felix Hausdorff, next Paul Alexandroff and Heinz Hopf, to use the
idea of open sets as the basis for a general theory of continuity in an axiomatic
approach. In fact Hausdorff’s definition was based on the concept of systems of
neighborhoods for each point.

We shall begin by defining topological spaces and continuous functions in both
ways and by showing that they are equivalent.

The objects of our study are the “spaces”; the transformations between them are
the “continuous functions”. One should always treat them in a parallel approach.
This is what has become known as “category theoretical” procedure, but we shall
not be very formal in this regard.

1. Topological spaces and continuous functions

Some basic set theoretical notation

Consider a set X and a subset A ⊆ X. We define

(1) χA(x) =
{

1 if x ∈ A,
0 if x ∈ X \A

and call the function χA the characteristic function of the subset A of X. We let
P(X) denote the set {A : A ⊆ X} of all subsets of X an call it the power set of
X. The name derives from a natural bijection

A 7→ χA : P(X) → {0, 1}X .

The two element set {0, 1} is often abbreviated by 2 and thus 2X = {0, 1}X .
A power set is never empty, because ∅ ∈ P(X) and X ∈ P(X) for any set X.

The set theoretical operations of arbitrary unions and intersections are well
defined on P(X). If A =

(
Aj : j ∈ J

)
, Aj ⊆ X is a family of subsets of X, then
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⋃
A =

⋃
j∈J

Aj
def= {x ∈ X : (∃j ∈ J)x ∈ Aj}, (2)

⋂
A =

⋂
j∈J

Aj
def= {x ∈ X : (∀j ∈ J)x ∈ Aj}. (3)

Exercise E1.1. (i) Verify that the function A 7→ χA defined in (1) above is a
bijection by exhibiting its inverse function 2X → P(X).

(ii) Let A denote the empty set of subsets of a set X. Compute
⋃
A and

⋂
A,

using (2) and (3).
[Hint. Regarding (i), in very explicit terms, we have for instance

⋂
A = {x ∈ X :

(∀A) (A ∈ A) ⇒ (x ∈ A)}. So what?]
(iii) Verify the following distributive law for a subset A and a family {Aj : j ∈

J} of subsets Aj of a set X:

(4) A ∩
⋃
j∈J

Aj =
⋃
j∈J

(A ∩Aj).

ut

In order to understand all concepts accurately, we should recall what the dif-
ference is between a subset S of a set M and a family (sj : j ∈ J) of elements
of M . A subset S ⊆ M is a set (we assume familiarity with that concept) such
that s ∈ S implies s ∈ M . A family (sj : j ∈ J) of elements of M is a function
j 7→ sj : J → M . If I have a family (sj : j ∈ J) then I have a set, namely
{sj : j ∈ J}, the image of the function. In fact for many purposes of set theory
a family is even denoted by {sj : j ∈ J} which, strictly speaking, is not exact.
Conversely, if I have a subset S of M then I can form a family (s : s ∈ S) of
elements of M , namely the inclusion function s 7→ s : S →M . Notice that we can
have an empty family (sj : j ∈ ∅), namely the empty function ∅: ∅ → M , whose
graph is the empty set, a subset of ∅×M = ∅. (What we cannot have is a function
X → ∅ for for X 6= ∅! Check the definition of a function!)

A function f : X → Y is a triple f = (G, X, Y ) of sets such that G ⊆ X × Y satisfying the

following conditions:
(i) (∀x) x ∈ X⇒(∃y)(y ∈ Y and (x, y) ∈ G).

(ii) (∀x, y, y′)
(
(x, y) ∈ G and (x, y′) ∈ G

)
⇒y = y′.

Instead of (x, y) ∈ G we write y = f(x). The set G is called the graph of the function f .
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Topological spaces

Definition of topology and topological space

Definition 1.1. A topology O on a set X is a subset of P(X) which is closed
under the formation of arbitrary unions and finite intersections.

A topological space is a pair (X,O) consisting of a set X and a topology O on
it. If no confusion is likely to arise one also calls X a topological space. ut

Let’s be a bit more explicit:
A subset O ⊆ P(X) is a topology iff

(i) For any family of sets Uj ∈ O, j ∈ J , we have
⋃

j∈J Uj ∈ O.
(ii) For any finite family of sets Uj ∈ O, j ∈ J , (J finite), we have

⋂
j∈J Uj ∈

O.
(iii) ∅ ∈ O and X ∈ O. ut

By Exercise E1.1(ii) these statements are not independent: Proposition (iii) is
a consequence of Propositions (i) and (ii).

The following set of axioms is equivalent to (i), (ii), (iii):
A subset O of P(X) is a topology iff

(I) For each subset U of O one has
⋃
U ∈ O.

(II) For each U1, U2 ∈ O we have U1 ∩ U2 ∈ O,
(III) X ∈ O.

Notation 1.1.1. If (X,O) is a topological space, then the sets U ∈ O are
called open. A subset A of X is called closed, if X \A is open. ut

The subsets ∅ and X are both open and closed.

Examples 1.2. (i) For any set X, the power set P(X) is a topology, called the
discrete topology. A space equipped with its discrete topology is called a discrete
space.

(ii) For any set X, the set {∅, X} is a topology called the indiscrete topology.
A space equipped with its discrete topology is called an indiscrete space.

(iii) For any set X, the set {∅} ∪ {Y ⊆ X : card(X \ Y ) < ∞} is a topology,
called cofinite topology. ut

Definition 1.3. A binary relation ≤ on a set X is called a quasiorder if it is
transitive and reflexive, and it is a partial order if in addition it is antisymmetric.
A partially ordered set or in short poset is a set (X,≤) endowed with a partial
order.

For a subset Y in a quasiordered set (X,≤) we write
↑Y def= {x ∈ X : (∃y ∈ Y ) y ≤ x};

a set satisfying ↑Y = Y is called an upper set. We also write ↑x instead of ↑{x}.
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A quasiordered set D is directed if it is not empty and for each x, y ∈ D there
is a z ∈ D such that x ≤ z and y ≤ z. A poset (X,≤) is called a directed complete
poset or dcpo if every directed subset has a least upper bound. ut

Example 1.4. (i) For each quasiordered set (X,≤) the set {Y ⊆ X : ↑ Y = Y }
of all upper sets is a topology, called the Alexandroff discrete topology of the
quasiordered set.

(ii) In a dcpo the set σ(X) =

{U ⊆ X :↑U = U and
(∀D ⊆ X) (D is directed and supD ∈ U) ⇒ D ∩ U 6= ∅}

is a topology, called the Scott topology of the poset. ut

(iii) On the set R of real numbers, the set

O(R) = {U ⊆ R : (∀u ∈ U)(∃a, b ∈ R) a < u < b and ]a, b[ ⊆ U}

is a topology on R, called the natural topology of R. ut

As an exercise, determine the Scott topology on (R,≤) for the natural order
on R.

We recall from basic analysis the concept of a metric and a metric space.

Definition 1.5. A metric of on a set X is a function d:X × X → R satisfying
the following conditions:
(i) (∀x, y ∈ X) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y.
(ii) (∀x, y ∈ X) d(x, y) = d(y, x).
(iii) (∀x, y, z ∈ X) d(x, z) ≤ d(x, y) + d(y, z).

Property (i) is called positive definiteness, Property (ii) symmetry, and property
(iii) the triangle inequality.

If a set X is equipped with a metric d, then (X, d) is a metric space.
If r > 0 and x ∈ X, then Ur(x)

def= {u ∈ X : d(x, u) < r} is called the open ball
of radius r with center x. ut

Proposition 1.6. For a metric space (X, d), the set

O(X) = {U ⊆ X : (∀u ∈ U)(∃ε > 0)Uε(u) ⊆ U}

is a topology. Every open ball Ur(x) belongs to O(X). ut

Definition 1.7. The topology O(X) of 1.6 on a metric space is called the metric
topology for d or the topology induced by d. ut

Thus any metric space is automatically a topological space. The natural topol-
ogy of R is the metric topology for the metric on R given by d(x, y) = |y−x|. Given
an arbitrary set, the function d:X × X → R such that d(x, y) = 1 if x 6= y and
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d(x, x) = 0 is a metric whose metric topology is the discrete topology. Therefore
it is called the discrete metric.

Proposition 1.8. Assume that (X,O) is a topological space, and that Y ⊆ X.
Then

O|Y def= {Y ∩ U : U ∈ O}

is a topology of Y . ut

Definition 1.9. The topology O|Y is called the induced topology. The topological
space (Y,O|Y ) is called the subspace Y of X.

With the concepts introduced so far we have an immense supply of interesting
topological spaces. The absolute value of complex numbers makes the complex
plane C into a metric space via d(u, v) = |v − u| and thus into a toplogical space.
The space S1 def= {z ∈ C : |z| = 1} is called the unit circle, or the one-sphere. More
generally, if one considers on Rn the norm ‖(x1, . . . , xn)‖ def=

√
x2

1 + . . .+ x2
n, then

the metric space determined by the metric d(x, y) = ‖y − x‖ is called euclidean
space. The space Bn def= {x ∈ Rn : ‖x‖ ≤ 1} is called the closed n-cell or unit ball
in n dimensions. The subspace Sn = {x ∈ Bn+1 : ‖x‖ = 1} is called the n-sphere.

Continuous functions

Definition of continuous function

Definition 1.10. (i) A function f :X → Y between topological spaces is called
continuous, if f−1(V ) is open in X for every open V ⊆ Y . The set of all continuous
functions f :X → Y is often denoted by C(X,Y ).

(ii) The function f is called open if f(U) is open in Y for every open U ⊆ X.
ut

Exercise E1.2. (i) Every function from a discrete space into a topological space
is continuous.

(ii) Every function from a topological space into an indiscrete space is contin-
uous.

Before we move on to the first simple proposition on continuous functions we
review some purely set theoretical aspects of functions between sets. If g:X → Y
and f :Y → Z are functions, then the composition f ◦ g:X → Z is the function
with domain X and range Z which is well-defined by the prescription (f ◦ g)(x) =
f
(
g(x)

)
for all x ∈ X. The identity function idX :X → X of a set X is defined by

the rule idX(x) = x.
If f :X → Y is a function and A ⊆ X a subset of the domain, then the

restriction f |A:A→ Y of f to A is defined by (f |A)(a) = f(a) for all a ∈ A.
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If A ⊆ X then the inclusion function inclA:A → X of A into X is defined by
inclA(a) = a for all a ∈ A. If f :X → A is a function, then f |A = f ◦ inclA; thus a
restriction is a special case of a composition.

A function f :X → Y is called constant if (∃b ∈ Y )(∀x ∈ X) f(x) = b iff
(∀x, x′ ∈ X) f(x) = f(x′) iff card f(X) = 1 iff there is a decomposition f = cb ◦ n
where n:X → {0} is the unique null function given by n(x) = 0 for all x ∈ X and
cb(0) = b. If X and Y are sets and b ∈ Y then the constant function with value b
is denoted constb:X → Y , constb = cb ◦ n.

Proposition 1.11. (i) The identity function of any topological space is continu-
ous, and if g:X → Y and f :Y → Z are continuous functions, then f ◦ g:X → Z
is continuous,

(ii) If A ⊆ X is a subspace of a topological space, then the inclusion function
inclA:A→ X is continuous.

(iii) If f :X → Y is a continuous function between topological spaces and A ⊆ X
is a subspace, then f |A:A→ Y is continuous.

(iv) Every constant function is continuous. ut

In short: Compositions of continuous functions are continuous. Restrictions of
continuous functions are continuous.

In the proofs of (iii) and (iv) one should utilize 1.11(i) and E1.2 by writing
f |A = f ◦ inclA, respectively, constn = cb ◦ n. Frontal attack proofs are likewise
easy.

A function f : (X,≤) → (Y,≤) between two posets is called monotone or order
preserving if (∀x, x′ ∈ X) x ≤ x′⇒f(x) ≤ f(x′).

Exercise E1.3. Let f : (X,≤) → (Y,≤) be a function between two posets.
(i) Assume that Y is a topological space such that every open subset is an upper

set, that X has the Alexandroff discrete topology, and that f is monotone. Then
f is continuous.

(ii) Assume that both X and Y are dcpos. Then the following statements are
equivalent:

(a) f is Scott continuous, that is, is continuous with respect to the Scott topolo-
gies on X and Y .

(b) f preserves directed sups, i.e. sup f(D) = f(supD) for all directed subsets
D of X. ut

We shall characterize continuity between metric spaces shortly.
One might have expected that we distinguish functions f :X → Y between

topological spaces for which f(U) ∈ O(Y ) for all U ∈ O(X). We called such
function open; they do play a role but not one that is equally important to the
role played by continuous functions. If Rd is the space of real numbers with the
discrete topology and R the space of real numbers with the natural topology, then
the identity function f : Rd → R, f(x) = x, is continuous, but not open, and the
inverse function f−1: R → Rd is open but not continuous.
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Neighborhoods

Definition 1.12. If (X,O) is a topological space and x ∈ X, then a set U ∈ P(X)
is called a neighborhood of x iff

(5) (∃V )V ∈ O and x ∈ V ⊆ U.

We write

(6) U(x) = {U ∈ P(X) : U is a neighborhood of x}. ut

As a first thought let us observe, that for a subset U of a topological space
(X,O), the following statements are equivalent:

(a) U is open, that is U ∈ O.
(b) U is a neighborhood of each of its points, that is (∀u ∈ U)U ∈ U(u). Indeed,

(a)⇒(b) is obvious from Definition 1.12. Conversely, assume (b). Then by
1.12, for each u ∈ U there is a Uu ∈ O containing u and being contained in U .
One verifies at once that U =

⋃
u∈U Uu, and thus U is open by 1.1.(i).

Thus openness and being a neighborhood of a point are intimately linked con-
ceptually. We shall pursue this further.

Observation. The set U(x) satisfies the following conditions
(i)

(
∀U ∈ U(x)

)
U 6= ∅

(ii)
(
∀U, V ∈ U(x)

)
U ∩ V ∈ U(x).

(iii)
(
∀U, V

) (
U ∈ U(x) and U ⊆ V

)
⇒ V ∈ U(x). ut

This observation calls for the introduction of a new concept.

Definition 1.13. Assume that X is a set. A set F ⊆ P(X) of subsets of X is
called a filter, if it is nonempty and satisfies the following conditions
(i)

(
∀A ∈ F

)
A 6= ∅.

(ii)
(
∀A, B ∈ F

)
A ∩B ∈ F.

(iii) (∀A, B) (A ∈ F and A ⊆ B) ⇒ B ∈ F.
A set B ⊆ P(X) of subsets of X is called a filter basis, if it is nonempty and
satisfies the following conditions
(i)

(
∀A ∈ B

)
A 6= ∅.

(ii) (∀A, B ∈ B)(∃C ∈ B)C ⊆ A ∩B. ut

Proposition 1.14. A subset B of P(X) is a filter basis iff the set

F
def= {A ∈ P(X) : (∃B ∈ B)B ⊆ A}

is a filter. ut

We shall say that F is the filter generated by B, and that B is a basis of F.
The set of all neighborhoods of a point is a filter, the set of open neighborhoods
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is a filter basis. In a metric space the set of all open balls Ur(x), r > 0 is a filter
basis, and indeed the set of all open balls U1/n(x), n = 1, 2, . . . is a filter basis as
well, generating U(x).

If (X,O) is a topological space, then

x 7→ U(x) : X → P
(
P(X)

)
is a function satisfying the following conditions:
(i) Each U(x) is a filter.
(ii) (∀x ∈ X, U ∈ U(x))x ∈ U .

Now we want proceed in the reverse direction, start from such a function, and
create a topology:

Hausdorff characterisation of a topological space

Theorem 1.15. Let X be a set and

x 7→ U(x) : X → P
(
P(X)

)
a function satisfying the following conditions:
(i) Each U(x) is a filter.
(ii) (∀x ∈ X, U ∈ U(x))x ∈ U .

Define O to be a set of subsets U of X defined by

(∗) U ∈ O⇔(∀u ∈ U)U ∈ U(u).

Then O is a topology such that for each x, the filter UO(x) of O-neighborhoods of
x is contained in U(x), and that the following statements are equivalent:

(A) O is the unique topology for which each UO(x) = U(x) for each x ∈ X.

(B)
(
(∀x ∈ X, U ∈ U(x)

)
(∃V ⊆ U, x ∈ V )(∀v ∈ V )V ∈ U(v).

(C)
(
∀x ∈ X,U ∈ U(x)

)
(∃V ∈ U(x)

)
(∀v ∈ V )U ∈ U(v).

Proof . The set O is readily seen to be closed under arbitrary unions and finite
intersections thus is a topology. In order to show UO(x) ⊆ U(x), let U be an
O–neighborhood of x. Then x ∈ V ⊆ U for some V ∈ O by Definition 1.12.
According to Definition (∗) of O, we have V ∈ U(x), and since U(x) is a filter,
U ∈ U(x) follows.

(A)⇒(B): Let U ∈ U(x). By (A), U ∈ UO(x). By Definition 1.12, there is a
V ∈ O such that x ∈ V ⊆ U . Since V ∈ O we have (∀v ∈ V ) V ∈ U(v).

(B)⇒(A): Let U ∈ U(x) and determine V according to (B). Then V ∈ O
by definition of O. Hence U is an O-neighborhood by Definition 1.12, that is,
U(x) ⊆ UO(x). Thus (A) and (B) are equivalent.

(B)⇒(C): Let U ∈ U(x) and determine V according to (B). Then V ∈ O by
Definition of O and thus V is an O-neighborhood of x, and so, by (A), V ∈ U(x).
If v ∈ V , then v ∈ V ⊆ U , and since U(v) is a filter, U ∈ U(v) follows.
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(C)⇒(A): Take U ∈ U(x). We must show that U is an O-neighborhood of x.
We set

(∗∗) V0 = {y ∈ X : U ∈ U(y)} ⊆ U.

Since U ∈ U(x) we have x ∈ V0. Now let v ∈ V0; then U ∈ U(v) by (∗∗). Now
by (C),

(
∃V ∈ U(v)

)
(∀w ∈ V )U ∈ U(w). Thus V ⊆ V0 by (∗∗) and V ∈ U(v)

by (∗∗), and this implies V0 ∈ U(v) since U(v) is a filter. Now we know that
(∀v ∈ V0) V0 ∈ U(v), and thus we have V0 ∈ O by (∗). Hence U is an O-
neighborhood of x by 1.12, that is, U ∈ UO(x). ut

Theorem 1.16. (Characterization of continuity of functions) A function f :X →
Y between topological spaces is continuous if and only if for each x ∈ X and each
V ∈ U

(
f(x)

)
there is a U ∈ U(x) such that f(U) ⊆ V . ut

Corollary 1.17. A function f :X → Y between two metric spaces is continuous
iff for each x ∈ X and each ε > 0 there is a δ > 0 such that f(Uδ(x)) ⊆ Uε

(
f(x)

)
.ut

Expressed more explicitly, f is continuous if for each x and each positive num-
ber ε there is a positive number δ such that the relation dX(x, y) < δ implies
dY

(
f(x), f(y)

)
< ε.

This is the famous ε-δ definition of continuity between metric spaces. The
topological descriptions of continuity are less technical.

On the other hand, the neighborhood concept allows us to define continuity at
a point of a topological spaces:
Definition. Let X and Y be topological spaces and x ∈ X. Then a function
f :X → Y is said to be continuous at x, if for every neighborhood V ∈ U

(
f(x)

)
there is a neighborhood U ∈ U(x) such that f(U) ⊆ V . ut

Clearly f is continuous if and only if it is continuous at each point x ∈ X.

Example 1.18. The two element space 2 is a topological space with respect to the
discrete topology, but also with respect to the Scott topology σ(2) = {∅, {1},2}.
Let us denote with 2σ the two element space with respect to this topology. This
space is sometimes called the Sierpinski space.

If (X,O) is a topological space and A a subset of X, then the characteristic
function χA:X → 2 (with the discrete topology on 2) is continuous iff A is open
and closed, i.e. A,X \A ∈ O.

The characteristic function χA:X → 2σ is continuous iff A is open, i.e. A ∈ O.
The function

A 7→ χA : O → C(X,2σ)

is a bijection. ut

Exercise E1.4. Verify the assertions made in the discussion of Example 1.18.
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The interior and the closure of a set

Definition 1.19. Consider a topological space (X,O) and Y ⊆ X. Define Y ◦ or
intY to be the union of all open subsets U ⊆ Y , that is, Y ◦ =

⋃
{U ∈ O : U ⊆ Y }.

This set is the largest open subset contained in Y and is called the interior of Y .

The intersection of all closed supersets A ⊇ Y is the smallest closed set con-
taining Y . It is called the closure of Y , written Y or clY . Then complement
Y \ Y ◦ is called the boundary of Y , sometimes written ∂Y or bdry Y . ut

Proposition 1.20. In a topological space (X,O) we have the following conclu-
sions:

(i) Y ◦◦ = Y ◦ and Y ⊆ Z ⊆ X implies Y ◦ ⊆ Z◦.
(ii) Y = Y and Y ⊆ Z ⊆ X implies Y ⊆ Z.
(iii) Y ◦ = X \X \ Y and Y = X \ (X \ Y )◦. ut

Proposition 1.21. Let (X,O) denote a topological space and Y a subset. Let
x ∈ X. Then the following assertions are equivalent:

(i) x ∈ Y ◦.
(ii) (∃U ∈ O)x ∈ U ⊆ Y .
(iii) (∃N ∈ U(x))N ⊆ Y .
(iv) Y ∈ U(x).

Also, the following statements are equivalent:
(i) x ∈ Y .
(ii) (∀U ∈ O)x ∈ U⇒U ∩ Y 6= ∅.
(iii) Every neighborhood of x meets Y .
(iv) X \ Y is not a neighborhood of x.

One says that a subspace D of a topological space X is dense if D = X. The
set Q of rational numbers is dense in the space R or real numbers in its natural
topology.

Basis and subbasis of a topology

Often we shall define a topology by starting from a certain set of open sets which
generate all open sets in a suitable sense.

Definition 1.22. A set B ⊆ P(X) is called a basis of a topology if X =
⋃

B and

(7) (∀A,B ∈ B)(∀x ∈ A ∩B)(∃C ∈ B)x ∈ C ⊆ A ∩B. ut

Proposition 1.23. For a subset B ⊆ P(X), the following conditions are equiva-
lent:



1. Topological spaces and continuous functions 11

(i) B is a basis of a topology.
(ii) O

def= {U : (∀u ∈ U)(∃B ∈ B)u ∈ B ⊆ U} is a topology.
(iii) The set of all unions of sets of members of B is a topology. ut

In the circumstances of 1.23 we say that B is a basis of O. The discrete
topology P(X) of a set has a unique smallest basis, namely,

{
{x} : x ∈ X

}
.

Example 1.24. (i) Let (X, d) be a metric space. The set B of all open balls
U1/n(x), n ∈ N, x ∈ X is a basis for the metric topology O(X).

(ii) The natural topology of R has a countable basis

(8)
{]
q − 1

n
, q +

1
n

[
: q ∈ Q, n ∈ N

}
.

Definition 1.25. One says that a topological space (X,O) satisfies the First
Axiom of Countability, if every neighborhoodfilter U(x) has a countable basis. It
satisfies the Second Axiom of Countability if O has a countable basis. A space
(X,O) is said to be separable if it contains a countable dense subset.

Exercise E1.5. Every space satisfying the Second Axiom of Countability satisfies
the first axiom of countability. The discrete topology of a set satisfies the first
axiom of countability; but if it fails to be countable, it does not satisfy the Second
Axiom of Countability. A a separable metric space satisfies the Second Axiom of
Countability.

Every set of cardinals has a smallest element. Given this piece of information we can attach
to a topological space (X, O) a cardinal, called its weight :

(9) w(X) = min{card B : B is a basis of O}.

The weight of a topological space is countable iff it satisfies the Second Axiom of Countability.

Definition 1.26. A set B of subsets of a topological space is said to be a basis
for the closed sets if every closed subset is an intersection of subsets taken from
B. ut

The set of complements of the sets of a basis of a topology is a basis for the
closed sets of this topology and vice versa.

Proposition 1.27. Let T ⊆ P
(
P(X)

)
be a set of topologies. Then

⋂
T ⊆ P(X)

is a topology. ut

By Proposition 1.27, every set M of subsets of a set X is contained in a unique
smallest topology O, called the topology generated by M. Under these circum-
stances, M is called a subbasis of O.

Proposition 1.28. The topology generated by a set M of a set X consists of all
unions of finite intersections of sets taken from M. ut



12 1. Topological spaces

Definition 1.29. Let (X,≤) be a totally ordered set, i.e. a poset for which every
two elements are comparable w.r.t. ≤. Then the set of all subsets X, ↑a, a ∈ X,
and ↓a, a ∈ X is a subbasis for the closed sets of a topology, called the order
topology of (X,≤). ut

[It should be understood that by ↓a in a poset we mean the set of all x ∈ X
with x ≤ a.]

Example 1.30. In R the set of all ]q,∞[, q ∈ Q and ] − ∞, q[, q ∈ Q form a
subbasis of the natural topology. ut

Exercise E1.6. Show that the order topology on R is the natural topology of R.

The Lower Separation Axioms

Lemma 1.31. The relation � in a topological space defined by

(10) x � y if and ony if (∀U ∈ O)x ∈ U⇒y ∈ U.

is reflexive and transitive. ut

We have x � y if every neighborhood of x is a neighborhood of y. If (X,≤) is a
quasiordered set and O is the Alexandroff discrete topology, then x � y iff x ≤ y.

Definition 1.32. The quasiorder � on a topological space is called the specialisat-
ion quasiorder. ut

While this is not relevant here, let us mention that the name arises from alge-
braic geometry.

Exercise E1.7. Set R∗ = R ∪ {∞} and show that on
(
R∗, σ(R∗)

)
with the Scott

topology, one has x � y iff x ≤ y. ut

Notice that the Alexandroff discrete topology α(R∗) has a basis {↑r : r ∈ R∗},
and thus σ(R∗) ⊆ α(R∗) but σ(R∗) 6= α(R∗). So two different topologies can
produce the same specialisation quasiorder.

The specialisation quasiorder with respect to the indiscrete topology is the
trivial quasiorder that holds always between two elements. The specialisation
order with respect to the discrete topology is equality.

Proposition 1.33. In a topological space, the point closure {a} is the lower set
↓a w.r.t. the specialisation order. ut

Definition 1.34. A topological space (X,O) is said to satisfy the Axiom (T0),
or is said to be a T0-space if and only if the specialisation quasiorder is a partial
order. Under these conditions, the topology O is called a T0-topology. ut
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Sometimes (following Alexandroff and Hopf), the Axiom (T0) is called Kolmogo-
roff’s Axiom.

The Axiom (T0) is equivalent to the following statement:
(T ′0) The function x 7→ U(x):X → P

(
P(X)

)
which assigns to an element its

neighborhood filter is injective.
In other words: “Different points have different neighborhood filters.”

Proof of (T0) ⇔ (T ′0): � is a partial order iff x � y and y � x implies x = y. Now
x � y ⇔ U(x) ⊆ U(y). Hence � is a partial order iff U(x) = U(y) implies x = y,
and this is exactly (T ′0).

Now U(x) = U(y) means that for all U ∈ O, the relation x ∈ U holds iff the
relation y ∈ U holds, that is (∀U ∈ O)x ∈ U⇔y ∈ U and so (T ′0) is equivalent to
saying that x 6= y⇒(∃U ∈ O)(x ∈ U and y /∈ U) or (y ∈ U and x /∈ U), and this
shows that (T0) is also equivalent to
(T ′′0 ) For two different elements x and y in X, there is an open set such that

either x ∈ U and y /∈ U or y ∈ U and x /∈ U .
In other words, for two different points there is an open set containing precisely
one of the two points.

Definition 1.35. The space X is said to satisfy the separation axiom (T1) (or
to be a T1-space), and its topology O is called a T1-topology, if the specialisation
quasiorder is discrete, i.e., is equality.

A topological space is a T1 space if and only if
• every singleton subset is closed.

That is {a} = {a} for all a ∈ X.
Another equivalent formulation of the Axiom (T1) is

• If x and y are two different points then there is an open set U containing x but
not y.

Example 1.36. The cofinite topology is always a T1-topology. ut

The Alexandroff-discrete topology of a nontrivial poset is a T0-topology but
not a T1-topology. For instance, the Sierpinski space 2σ is a T0-space which is not
a T1-space.

The terminology for the hierarchy (Tn) of separation axioms appears to have
entered the literature 1935 through the influential book by Alexandroff and Hopf
in a section of the book called ,,Trennungsaxiome“ (pp. 58 ff.). Alexandroff and
Hopf call the Axiom (T1) ,,das erste Frechetsche Trennungsaxiom“, p. 58, 59), and
they attach with the higher separation axioms the names of Hausdorff, Vietoris,
and Tietze. In due time we shall face these axioms.

In Bourbaki T0-spaces are called �espaces de Kolmogoroff� (s. §1, Ex. 2, p. 89).
Alexandroff and Hopf appear to have had access to an unpublished manuscript by
Kolmogoroff which appears to have dealt with quotient spaces (see Alexandroff
and Hopf p. 61 and p. 619) and which is likely to have been the origin of calling
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(T0) Kolomogoroff’s Axiom; Alexandroff continues to refer to it under this name
in later papers. Fréchet calls T1-spaces �espaces accessibles�.

Definition 1.37. The space X is said to satisfy the Hausdorff separation axiom
(T2) (or to be a T2-space), and its topology O is called a Hausdorff topology,
respectively, T2-topology, if the following condition is satisfied:

(T2) (∀x, y ∈ X)x 6= y ⇒
(
∃U ∈ U(x), V ∈ U(y)

)
U ∩ V = ∅.

In other words, two different points have disjoint neighborhoods.

Exercise E1.8. Let O1 and O2 be two topologies on a set such that O1 ⊆ O2.
If O1 is a Tn-topology for n = 0, 1, 2, then O2 is a Tn-topology.

Definition 1.38. The space X is said to be regular, and its topology O is called
a regular topology if the following condition is satisfied:

(∀x ∈ X)
(
∀U ∈ U(x)

)(
∃A ∈ U(x)

)
A = A and A ⊆ U.

It is said to satisfy the axiom (T3) (or to be a T3-space), if it is a regular
T0-space. In other words:
(T3) X is a T0-space and every neighborhood filter has a basis of closed sets. ut

For a T0-space X, the axiom (T3) is also equivalent to the following statement:
(∗) For any x ∈ X and any neighborhood U ∈ U(x), there are open sets V and W

such that x ∈ V , V ∩W = ∅, and U ∪W = X.

Exercise E1.9. (a) Show that (T3) is equivalent to (T0) and (∗).
(b) Prove the following propositions:
(i) Every metric space is regular. In particular, the natural topology of R is

regular.
(ii) Every metric space is a Hausdorff space.
(iii) On R let O∗ be the collection of all sets U \ C where U is open in the

natural topology O of R and C is a countable set. Then O∗ is a topology
which is properly finer than the natural topology of R, that is, the identity
function idR: (R,O∗) → (R,O) is continuous, but its inverse function is
not continuous. The topology O∗ is not regular. A function f : R → R is
continuous as a function (R,Oc) → (R,O) if and only if it is continuous as
a function (R,O) → (R,O).

(iv) (T3)⇒(T2)⇒(T1)⇒(T0) and (T0) 6⇒(T1) 6⇒(T2) 6⇒(T3).
Comments on Exercise E1.9.(iii)

For a proof of the assertions in Exercise E1.9.(iii) we have to show, in the first
place, that O∗ is a topology. This seems less than obvious. We prove a few lemmas
first.

Lemma 1. (i) Let O1 and O2 be topologies on a set X. Then there is a unique
smallest topology O1 ∨O2 containing both O1 and O2.
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(ii) If B1 and B2 are bases of O1 and O2, respectively, then

B
def= {U ∩ V : U ∈ B1 and V ∈ B2}

is a basis of O1 ∨O2.

Proof . (i) The set O1 ∪O2 is a subbasis for the topology O1 ∨O2 according to
Proposition 1.28.

(ii) Let Uj ∈ B1 and Vj ∈ B2, j = 1, 2 and x ∈ (U1 ∩ V1) ∩ (U2 ∩ V2). Find
U3 ∈ B1 and V3 ∈ B2 such that x ∈ U3 ⊆ U1 ∩ U2 and x ∈ V3 ⊆ V1 ∩ V2. Then
x ∈ U3 ∩ V3 ⊆ (U1 ∩ U2) ∩ (V1 ∩ V2) = (U1 ∩ V1) ∩ (U2 ∩ V2). It follows from
Proposition 1.23 that B is a basis of a topology which contains O1 and O2, and
since U ∩ V , for U ∈ O1 and V ∈ O2, is contained in O1 ∨O2 we know that B is
a basis of O1 ∨O2. ut

Lemma 2. If O1 has a countable basis {U1, U2, . . .}, then for every W ∈ O1 ∨O2

there is a sequence of sets (Vn)n∈N, Vn ∈ O2 such that W =
⋃

n∈N Un ∩ Vn.

Proof . By Lemma 1 there is a family (Unj
∩ Vj : j ∈ J}, Vj ∈ O2, such that

W =
⋃

j∈J(Unj
∩Vj). For each natural number n let Jn = {j ∈ J : nj = n}. Then

W =
⋃

n∈N
⋃

j∈Jn
(Un ∩ Vj). We have⋃

j∈Jn

(Un ∩ Vj) = Un ∩
⋃

j∈Jn

Vj .

Set Vn =
⋃

j∈Jn
Vj . Then Vn ∈ O2 and W =

⋃
n∈N Un ∩ Vn. ut

In general, many of the Vn will be empty. Set

U
def=

⋃
{Un : Vn 6= ∅}

Lemma 3. In the circumstances of Lemma 2,

(∗) U ∩
⋂

n∈N

Vn ⊆W ⊆ U

Proof . The left containment follows from Un∩
⋂

m∈N Vm ⊆ Un∩Vn, and the right
containment from Un ∩ Vn ⊆ Un, n = 1, 2, . . .. ut

Lemma 4. Let X be a set. Then the set of subsets of X consisting of the empty
set and all complements of countable subsets of X is a topology that is closed under
countable intersections.
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Proof . The collection of countable subsets, plus the whole set X, is closed under
arbitrary intersections and countable unions. The complements therefore yield the
desired topology. ut

The topology of Lemma 4 is called the cocountable topology. If X is countable,
it agrees with the discrete topology. More generally, on each countable subset of
a set X, the cocountable topology induces the discrete topology.

Proposition 5. Let (X,O) be a topological space satisfying the Second Axiom of
Countability, and let Occ be the cocountable topology on X. Then O∨Occ consists
of all sets of the form U \ C where U ∈ O and C is countable.

Proof . The sets Vn in Lemma 3 are either empty or are complements of countable
sets. Then

⋂
n∈N Vn is either empty or is a complement of a countable set. Thus

for each W ∈ O ∨ Occ there is a countable set D in X and there is an open set
U ∈ O such that

(∗∗) U \D ⊆W ⊆ U

Then C def= W \(U\D) ⊆ U\(U\D) = D. ThereforeW = (U\D)∪C = U\(D\C).
Since D \ C is countable, this is what we had to show. ut

We apply this to X = R, and the natural topology O on R. We see that the set
of all U \C with open subsets U of R and countable subsets C of R is a topology
O∗ of R. If U \ C ∈ O∗, then the O∗-closure U∗ of U \ C agrees with U , the
O-closure of U and the interior ¬¬U of U is also the O∗-interior of U∗. These
facts imply further properties (X,O∗) for example, that the topology is Hausdorff
but not regular.

Quotient Spaces

An equivalence relation R on a set X is a reflexive, symmetric, and transitive
relation. Recall that a binary relation is a subset of X ×X; in place of (x, y) ∈ R
one frequently writes xR y.

Every equivalence relation R on a set X gives rise to a new set X/R, the set of
all equivalence classes R(x) = {x′ ∈ X : (x, x′) ∈ R}. Note x ∈ R(x). If A and B
are R-equivalence classes, then either A ∩ B = ∅ or A = B. Thus X is a disjoint
union of all R equivalence classes. One calls a set P ⊆ P(X) of subsets a partition
of X if two different members of P are disjoint and

⋃
P = X. We have seen that

every equivalence relation on a setX provides us with a partition ofX. Conversely,
if P is a partition of X, then R

def= {(x, x′) ∈ X ×X : (∃A ∈ P)x, x′ ∈ A} is an
equivalence relation whose partition is the given one. There is a bijection between
equivalence relations and partitions.

The new set X/R is called the quotient set modulo R. The function pR:X →
X/R, pR(x) = R(x) is called the quotient map.
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One of the primary occurrences of equivalence relations is the kernel relation
of a function, as follows. Let f :X → Y be a function. Define Rf = {(x, x′) :
f(x) = f(x′)}. Then there is a bijective function f ′:X/Rf → f(X) which is
unabiguously defined by f ′

(
Rf (x)

)
= f(x). If inc: f(X) → Y is the inclusion

map y 7→ y: f(X) → Y then we have the so-called canonical decomposition f =
inc ◦ f ′ ◦ pRf

of the given function:

X
f−−−−−−−−−→ Y

pRf

y xinc

X/Rf −−−−−−−−−→
f ′

f(X).

In this decomposition of f the quotient map pRf
is surjective, the induced function

f ′ is bijective, the inclusion map is injective.
The objective of this subsection is to endow the quotient space X/R of a topo-

logical space X with a topology in a natural way so that the quotient map is
continuous and that, if R is the kernel relation of a continuous function, the in-
duced bijective function f ′:X/Rf → f(X) is continuous.

If R is an equivalence relation on a set X we shall call a subset Y ⊆ X saturated
(with respect to R) iff for each y ∈ Y the entire equivalence class R(y) of y is
contained in Y . Thus saturated subsets of X are exactly the subsets Y ⊆ X which
satisfy Y =

⋃
y∈Y R(y). If Y is a saturated subset, we let Y/R denote the partition

{R(y) : y ∈ Y } of Y induced by R.

Now let R be an equivalence relation on a topological space (X,O). We let OR

denote the set of all saturated open subsets of X, that is OR = {U ∈ O : U =⋃
u∈U R(u)}. and we set O(X/R) = {U/R : U ∈ OR} ⊆ P(X/R). Obviously the

function U 7→ U/R : OR → O(X/R) is a bijection preserving arebitrary sups and
infs. Since OR is closed under the formation of arbitrary unions and intersections,
and since X, ∅ ∈ OR and X/R, ∅ ∈ O(X/R) we see that O(X/R) is a topology
on X/R.

Definition 1.39. The topological space
(
X/R,O(X/R)

)
is called the quotient

space of X modulo R.

Proposition 1.40. The quotient map pRf
:X → X/R is continuous.

The quotient space X/R is a T1 space if and only if all R-equivalence classes
are closed.

The quotient space X/R is a Hausdorff space if and only if for two disjoint
R-classes A and B there are disjoint saturated open sets U and V containing A
and B, respectively. ut

The following is a recall from 1.10:

Definition 1.41. A function f :X → Y between topological spaces is called open
if f(U) is open for each open set U , that is, if open sets have open images.
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Exercise E1.10. Show that the function x 7→ x2 : R → R fails to be open. ut

Proposition 1.42. For an equivalence relation R on a topological space X, the
following statements are equivalent:

(i) The quotient map pR:X → X/R is open.
(ii) For each open subset U of X the saturation

⋃
u∈U R(u) is open. ut

Group Actions

There is a prominent situation for which quotient maps are open.

Definition 1.43. A continuous function f :X → Y between topological spaces
is called a homeomorphism, if it is bijective and its inverse function f−1:Y → X
is continuous. Two spaces X and Y are called homeomorphic if there exists a
homeomorphism between them. ut

A function f : (X,OX) → (Y,OY ) between topological spaces is a homeomor-
phism if and only if the function f implements a bijection U 7→ f(U) : OX → OY .

Exercise E1.11. (i) For any topological space X, the set H of homeomorphisms
f :X → X is a group.

(ii) Let G be a subgroup of H. Let us write g·x = g(x) for g ∈ G and x ∈ X.
Then the set X/G def= {G·x|x ∈ X} is a partition of X. The corresponding
equivalence relation is given by x ∼ y iff (∃g ∈ G) y = g·x.

(iii) We let p:X → X/G denote the quotient map defined by p(x) = G·x and
endow X/G with the quotient topology. Then p is an open map. ut

The set G·x is called the orbit of x under the action of G, or simply the G-orbit
of x. The quotient space X/G is called the orbit space.

Exercise E1.12. (i) Let X be the space R of real numbers with its natural
topology. Every r ∈ R defines a function Tr:X → X, via Tr(x) = r + x, the
translation by r. Every such translation is a homeomorphism of R.

(ii) Let G be the group of all homeomorphisms Tr with r ∈ Z, where Z is the
set of integers.

Describe the orbits G·x of the action of G on X.
Describe the orbit space X/G. Show that it is homeomorphic to the one-sphere

S1.
(iii) Now let X be as before, but take G = {Tr : r ∈ Q} where Q is the set of

rational numbers. Discuss orbits and orbit space.
(iv) Test these orbit spaces for the validity of separation axioms. ut
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A Universal Construction

Let us consider another useful application of quotient spaces.
On any topological space X with topology OX , the binary relation defined by

x ≡ y iff x ≤ y and y ≤ x (with respect to the specialisation quasiorder ≤) is an
equivalence relation. The quotient space X/≡ endowed with its quotient topology
OX/≡ will be denoted by T0(X).

Proposition 1.44. For any topological space X, the space T0(X) is a T0-space,
and if qX :X → T0(X) = X/≡ denotes the quotient map which assigns to each
point its equivalence class, then the function U 7→ q−1

X (U):OT0(X) → OX is a
bijection. Moreover, if f :X → Y is any continuous function into a T0-space, then
there is a unique continuous function f ′:X/≡ → Y such that f = f ′ ◦ qX . ut

As a consequence of these remarks, for most purposes it is no restriction of
generality to assume that a topological space under consideration satisfies at least
the separation axiom (T0).

The Canonical Decomposition

It is satisfying to know that the quotient topology provides the quotient space
modulo a kernel relation with that topology which allows the canonical decompo-
sition of a continuous function between topological spaces to work correctly.

Theorem 1.45. (The Canonical Decomposition of Continuous Functions) Let
f :X → Y be a continuous function between topological spaces and let

X
f−−−−−−−−−→ Y

pRf

y xinc

X/Rf −−−−−−−−−→
f ′

f(X).

be its canonical decomposition, where Rf denotes the kernel relation of f . Then
f ′:X/Rf → f(X) is a continuous bijection, the quotiend map pRf

is a continuous
surjection, the inclusion map is an embedding, i.e., a homeomorphism onto its
image. ut

If the space Y is a Hausdorff space, then so is the subspace f(X); then the
continuous bijection f ′ in the canonical decomposition theorem tells us at once that
the quotients space X/Rf is a Hausdorff space—whether X itself is a Hausdorf
space or not.

Corollary 1.46. If f :X → Y is a continuous function into a Hausdorff space,
then the quotient space X/Rf is a Hausdorff space. ut

Naturally one wishes to understand when f ′ is a homeomorphism.
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Proposition 1.47. Let f :X → Y be a continuous function between topological
spaces. Then the following conditions are equivalent:
(i) The corestriction x 7→ f(x):X → f(X) is open.
(ii) The quotient morphism pf :X → X/Rf is open and f ′:X/Rf → f(X) is a

homeomorphism. ut

Products

Definition 1.48. Let (Xj : j ∈ J) be a family of sets. The cartesian pro-
duct or simply product of this family, written

∏
j∈J Xj , is the set of all functions

f : J →
⋃

j∈J Xj such that (∀j ∈ J) f(j) ∈ Xj . These functions are also written
(xj)j∈J with xj = f(j) and are called J-tuples. The function prk:

∏
j∈J Xj → Xk,

prk

(
(xj)j∈J

)
= xk is called the projection of the product onto the factor Xk. ut

The following statement looks innocent, but it is an axiom:
Axiom 1.49. (Axiom of Choice) For each set J and each family of nonempty
sets (Xj : j ∈ J) the product

∏
j∈J Xj is not empty. ut

Proposition 1.50. If the product P def=
∏

j∈J Xj is not empty, then for each k ∈
J , the projection prk:P → Xk is surjective, and there is an injection sk:Xk → P
such that prk ◦sk = idXk

. ut

Now we wish to consider families of topological spaces and to endow their
products with suitable topologies. For this purpose let us consider a family (Xj :
j ∈ J) of topological spaces. Let us call a family (Uj : j ∈ J) of open subsets Uj

of Xj a basic family of open subsets, if there is a finite subset F of J such that
Uj = Xj for all j ∈ J \ F . Thus for a basic family of open subsets only a finite
number of them consists of proper subsets.

Lemma 1.51. The set B of all products

U
def=

∏
j∈J

Uj ,

where (Uj : j ∈ J) ranges through the set of all basic open subfamilies of (Uj : j ∈
J) is a basis for a topology on

P
def=

∏
j∈J

Xj ,

and B is closed under finite intersections. The set of all unions of members of B
is a topology O on P . ut
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Definition 1.52. The topology O on P is called the product topology or the
Tychonoff topology. The topological space (P,O) is called the product space of the
family (Xj : j ∈ J) of topological spaces. ut

Proposition 1.53. Let (Xj : j ∈ J) be a family of topological spaces and let

P
def=

∏
j∈J Xj the product.

(i) Each projection prk:P → Xk is continuous and open.
(ii) A function f :X → P from a topological space into the product P is continuous

if and only if for all k ∈ J the functions prk ◦f :X → Xk are continuous.
(iii) The product topology of P is the smallest topolog such that all projections

prk:P → Xk are continuous. ut

Proposition 1.54. The product
∏

j∈J Xj is a Hausdorff space if all factors Xj

are Hausdorff. If (bj)j∈J ∈
∏

j∈J Xj and the product is Hausdorff, then all factors
are Hausdorff.

Proof . Assume all factors are T2 and consider (xj)j∈J 6= (yj)j∈J . There is at least
one k ∈ J such that xk 6= yk. Use that Xk is Hausdorff and complete the proof
that

∏
j∈J is Hausdorff. Now assume that the product is Hausdorff and contains

(bj)j∈J . Let k ∈ J and x 6= y in Xk. Define

xj

{
x if j = k,
bj if j 6= k, and yj

{
y if j = k,
bj if j 6= k.

Then (xj)j∈J and (yj)j∈J are different and thus have disjoint neighborhoods which

we may just as well assume to be two basic neighborhoods U def=
∏

j∈J Uj and

V
def=

∏
j∈J Vj . For j 6= k we have bj ∈ Uj ∩ Vj . For U and V to be disjoint it is

therefore necessary that Uk and Vk are disjoint. Finish the proof! ut
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Chapter 2
Compactness

We proceed to special properties of topological spaces. From basic analysis we
know that compactness is one of these.

Definition 2.1. Let (X,O) be a topological space. An open cover is a subset
C ⊆ O such that X =

⋃
C or a family (Uj : j ∈ J) of open sets Uj ∈ O such that

X =
⋃

j∈J Uj . The cover is said to be finite if C, respectively, J is finite. A subset
C′ ⊆ C which is itself a cover is called a subcover. A subcover of an open cover
(Uj : j ∈ J) is a subfamily (Uj : j ∈ K), K ⊆ J which is itself a cover.

Definition 2.2. A topological space (X,O) is said to be compact if every open
cover has a finite subcover. ut

Proposition 2.3. For a topological space (X,O) the following statements are
equivalent:
(i) X is compact.
(ii) Every filterbasis of closed subsets has a nonempty intersection. ut

Exercise E2.1. Prove the following assertions:
(i) A closed subspace of a compact space is compact.
(ii) If X is a compact subspace of a Hausdorff space Y , then X is closed in Y .
(iii) Every finite space is compact.
(iv) In the Sierpinski space 2s the subset {1} is compact but not closed.
(v) Every set is compact in the cofinite topology.
(vi) Every compact and discrete space is finite. ut

Definition 2.4. An element x of a topological space is said to be an accumulation
point or a cluster point of a sequence (xn)n∈N of X if for each U ∈ U(x) the set
{n ∈ N : xn ∈ U} is infinite. ut

A point x in a topological space is an accumulation point of the sequence
(xn)n∈N iff for each natural number n and each U ∈ U(x) there is an m ≥ n such
that xm ∈ U .

Lemma 2.5. Assume that (xn)n∈N is a sequence in a topological space X. Let F
be the set of all sets

Fn
def= {xm : n ≤ m} = {xn, xn+1, xn+2, . . .}.

Then the following conclusions hold:
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(i) A point x ∈ X is an accumulation point of the sequence iff

x ∈ {xn, xn+1, xn+2, . . .} for all n ∈ N.

(ii) F is a filter basis, and
⋂
F is the set of all accumulation points of (xn)n∈N.ut

Proposition 2.6. Let X be a compact topological space. Then every sequence
(xn)n∈N in X has at least one accumulation point.

Proof . For a given sequence (xn)n∈N let F be the filterbasis of compact sets whose
members are Fn

def= {xm : n ≤ m}. By (i) and Proposition 2.3 we know
⋂
F 6= ∅.

In view of Lemma 2.5(ii), this proves the claim. ut

The reverse implication is not true in general, however we shall see that it is
true for metric spaces. These matters are more involved. We first establish two
lemmas which are of independent interest. A topological space in which every
sequence has an accumulation point is called sequentially compact

Lemma 2.7. (Lebesgue’s Lemma) Let (X, d) be a sequentially compact metric
space and let U be an arbitrary open cover of X. Then there is a number r > 0
such that for each x ∈ X there is a U ∈ U such that the open ball Ur(x) of radius
r around x is contained in U .

Proof . Suppose that the Lemma is false; then there is an open cover U such
that for each m ∈ N there is an xm ∈ X such that U1/m(xm) is contained in no
U ∈ U . Since X is sequentially compact, the sequence (xm)m∈N has at least one
accumulation point x. Since X =

⋃
U there is a U ∈ U with x ∈ U . Since U is

open, there is an s > 0 such that Us(x) ⊆ U . Now let n ∈ N be such that 2/n < s.
Then U1/n(x) contains at least one xm with m ≥ n. Then U1/m(xm) ⊆ U2/n(x) ⊆
U , and that is a contradiction to the choice of xm. ut

A number r > 0 as in the conclusion of Lemma 2.7 is called a Lebesgue number
of the cover U .

Lemma 2.8. Let (X, d) be a sequentially compact metric space and let r > 0.
Then there is a finite subset F ⊆ X such that for each x ∈ X there is an element
y ∈ F with d(x, y) < r. That is, {Ur(y) : y ∈ X} is a cover of X.

Proof . Suppose that the Lemma is false. Then there is a number r > 0 such that
for each finite subset F ⊆ X one finds an x ∈ X such that d(x, y) ≥ r for all y ∈ F .
Pick an arbitrary x1 ∈ X and assume that we have found elements x1, . . . , xm in
such a fashion that d(xj , xk) ≥ r for all j 6= k in {1, . . . ,m}. By hypothesis we find
an xm+1 ∈ X such that d(xj , xm+1) ≥ r for all j = 1, . . . ,m. Recursively we thus
find a sequence x1, x2, . . . , in X. Since X is sequentially compact, this sequence
has an accumulation point x ∈ X. By the definition of accumulation point the set
{n ∈ N : xn ∈ Ur/2(x)} is infinite. Thus we find two different indices h 6= k in N
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such that xj , xk ∈ Ur/2(x), whence d(xj , xk) ≤ d(xj , x)+d(x, xk) < r/2+r/2 = r.
This is a contradiction to the construction of (xn)n∈N. ut

Definition 2.9. A metric space (X, d) is said to be precompact or totally bounded if
for each number r > 0 there is a finite subset F ⊆ X such that X ⊆

⋃
x∈F Ur(x).ut

We have observed in Lemma 2.8 that every compact metric space is precompact.
The space Q ∩ [0, 1] is precompact with its natural metric but not compact.

Lemma 2.10. Assume that X is a precompact metric space, and (xn)n∈N a
sequence in X. Then there is an increasing sequence (mn)n∈N of natural numbers
such that the equations yn

def= xmn
define a Cauchy sequence (yn)n∈N in X.

Proof . Assume that we had found a descending sequence V1 ⊇ V2 ⊇ · · · of
subsets of X such that the diameters δn of Vn exist and converge to 0, and that
moreover {m ∈ N : xm ∈ Vn} is infinite for all n ∈ N. Then we let m1 ∈ N be
such that xm1 ∈ V1 and assume that m1 < m2 < · · · < mn have been selected
so that xmk

∈ Vk for k = 1, . . . , n. Since {m ∈ N : xm ∈ Vn+1} is infinite we
find an mn+1 > mn such that xmn+1 ∈ Vn+1. We set yn = xmn

, notice that
yn ∈ Vn and show that (yn)n∈N is a Cauchy sequence. Since Vn+k ⊆ Vn we have
d(yn, yn+k) ≤ δn. Thus for any ε > 0 we find an N ∈ N such that n > N implies
δn < ε and thus d(yn, yn+k) < ε for all k ∈ N. So (yn)n∈N is a Cauchy sequence.

It therefore remains to construct the sets Vn. For each natural number k there
is a finite number Fk ⊆ X such that

(∗) X =
⋃

x∈Fk

U1/k(x).

We shall use a simple fact in the proof:
(∗∗) If (pn)n∈N is a sequence in a set M such that for finitely many subsets Mk ⊆

M , the set {m ∈ N : pm ∈ M1 ∪ · · · ∪Mn} is infinite, then there is at least
one index k such that {m ∈ N : pm ∈Mk} is infinite.

From (∗) with k = 1 and (∗∗) we find z1 ∈ F1 such that {m ∈ N : xm ∈ U1(z1)} is
infinite. Set V1 = U1(z1). Assume that V1 ⊇ V2 ⊇ · · · ⊇ Vn have been found such
that {m ∈ N : xm ∈ Vn} is infinite and the diameter δk of Vk is ≤ 2/k. Now Vn ⊆
X =

⋃
z∈Fn+1

U1/n+1(z) by (∗). Apply (∗∗) to Vn =
⋃

z∈Fn+1

(
Vn ∩ U1/n+1(z)

)
and find a zn+1 ∈ Fn+1 such that {m ∈ N : xm ∈ Vn ∩ U1/n+1(zn+1)} is infinite.
Set Vn+1 = Vn ∩ U1/n+1(zn+1). This completes the recursive construction of Vn

with δn ≤ 2/n and thereby completes the proof of the lemma ut

Recall that a metric space is said to be complete, if every Cauchy-sequence
converges.

Theorem 2.11. For a metric space (X, d) with the metric topology O, the fol-
lowing statements are equivalent:

(i) (X,O) is compact.
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(ii) (X,O) is sequentially compact.
(iii) (X, d) is precompact and complete.

Proof . (i)⇒(ii): This was shown in Proposition 2.6.
(ii)⇒(iii): A sequentially compact metric space is precompact by Lemma 2.8.

We verify completeness: Let (xn)n∈N be a Cauchy sequence. Since X is se-
quentially compact by (ii), this sequence has a cluster point x. We claim that
x = limn→∞ xn. Indeed let ε > 0. Since (xn)n∈N is a Cauchy sequence, there is an
N ∈ N such that m,n > N implies d(xm, xn) < ε/2. Since x is an accumulation
point, there is an m > N such that d(x, xm) < ε/2. Thus for all n > N we have
d(x, xn) < d(x, xm) + d(xm, xn) < ε/2 + ε/2 = ε. This proves the assertion.

(iii)⇒(ii): Let (xn)n∈N be a sequence in X. By Lemma 2.10 there are natural
numbers m1 < m2 < · · · such that (xmn)n∈N is a Cauchy sequence. Since (X, d) is
complete, this sequence has a limit x. If ε > 0 then there is an N such that n > N
implies xmn

∈ Uε(x). Since mn < mn+1 we conclude that {m ∈ N : xm ∈ Uε(x)}
is infinite. Hence x is an accumulation point of (xn)n∈N.

We have shown that (ii) and (iii) are equivalent.
(ii)⇒(i): Let U be an open cover. Let r > 0 be a Lebesgue number for this

cover according to Lemma 2.7. Since X is precompact by what we know we find
a finite set F ⊆ X such that X =

⋃
x∈F Ur(x). For each x ∈ F we find an Ux ∈ U

such that Ur(x) ⊆ Ux by Lemma 2.7. Then X =
⋃

x∈F Ur(x) ⊆
⋃

x∈F Ux ⊆ X
and thus {Ux : x ∈ X} is a finite subcover of U . ut

Theorem 2.11 is remarkable in so far as the three statements (i), (ii), and (iii)
have very little to do with each other on the surface.

Theorem 2.11 links our general concept of compactness with elementary anal-
ysis where compactness is defined as sequential compactness.

Exercise E2.2. (i) Show that a compact subspace X of a metric space is always
bounded, i.e. that there is a number R such that d(x, y) ≤ R for all x, y ∈ X

(ii) Give an example of an unbounded metric on R which is compatible with
the natural topology.

(iii) Show that a closed subset X of R which is bounded in the sense that it is
contained in an interval [a, b] is compact.

(iv) Prove the following result from First Year Analysis. (Theorem of Bolzano-
Weierstrass).

A subset of Rn is compact if an only if it is closed and bounded with respect to
the norm given by ‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}.

(v) Show that the Theorem of Bolzano-Weierstrass holds for any norm on Rn.ut

Exercise E2.3. Use Theorem 2.11 for proving that a subset of Rn is compact if
and only if it is closed and norm bounded. ut

In this spirit, Theorem 2.11 is the “right” generalisation of the Bolzano-Weier-
strass Theorem.
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There are some central results concerning compact spaces which involve the
Axiom of Choice. Therefore we must have an Interlude on the Axiom of Choice.

Chapter AC
An Interlude on the Axiom of Choice.

We need some concepts from order theory.

Definition AC.1. A poset (X,≤) as well as the partial order ≤ are said to be
inductive, if each totally ordered subset (that is, a chain or a tower) T ⊆ X has
an upper bound b in X (i.e. t ≤ b for all b ∈ T ).

Example AC.2. Let V be a vector space over any field K and let X ⊆ P(X)
be the set of all linearly independent subsets. On X we consider the partial order
⊆. If T is a totally ordered set of linearly independent subsets of V then b def=

⋃
T

is a linearly independent set due to the fact, that linear independence of a set F
of vectors is a property involving only finite subsets of F . Also, b contains all
members of T . Hence (X,⊆) is inductive. ut

Definition AC.3. A binary relation ≤ is called a well-order, and (X,≤) is called
a well-ordered set if ≤ is a total order (i.e. a partial order for which every pair of
elements is comparable) such that every nonempty subset has a smallest element.ut

Example AC.4. Every finite totally ordered set is well-ordered. The set N of
natural numbrs with its natural order is well-ordered. The set N∪{n− 1

m : n,m ∈
N} is well ordered with the natural order. ut

We begin by formulating a couple of statement concerning sets, posets, topo-
logical spaces.

AC: The Axiom of Choice. For every family of nonempty sets (Xj : j ∈ J)
the product

∏
j∈J Xj is not empty. ut

ZL: Zorn’s Lemma. Every inductive set has maximal elements. ut

WOP: The Well-Ordering Principle. Every set can be well-ordered. ut

TPT: The Tychonov Product Theorem. Each product of compact spaces is
compact. ut



AC. An Interlude on the Axiom of Choice. 27

The point of this interlude is to prove that these four statements are equivalent.
Let us begin with a couple of simple implications

TPT⇒AC: Let (Xj : j ∈ J), Xj 6= ∅ for all j ∈ J for some set J . Then Yj =
Xj ∪ {Xj} is a set and Xj /∈ Xj . The product

∏
j∈J Yj is not empty because it

contains the element (Xj)j∈J . Let Fin(J) denote the set of finite subsets of J . For
each finite subset F ∈ Fin(J) we set SF =

∏
j∈J Zj where

Zj =
{
Xj if j ∈ F ,
Yj if j ∈ J \ F .

Since Xj 6= ∅ for all j ∈ J we have
∏

j∈F Xj 6= ∅ since we accept the “finite”
Axiom of Choice. Now we topologize Yj by declaring Oj = {∅, {Xi}, Xj} to
be its topology. Then Xj is a closed subset of Yj , and Yj is compact. Now
S = {SF : F ∈ Fin(J)} is a filter basis of closed subsets of P =

∏
j∈J Yj and P is

compact by TPT. Thus
∏

j∈J Xj =
⋂

F∈Fin(J) SF 6= ∅ by 2.3. ut

ZL⇒WOP: Let X be a set, pick x0 ∈ X and consider the set (X ,�) be the set
of all well ordered subsets (A,≤A) with x0 as minimal element, where
(A,≤A) � (B,≤B) if

(1) A ⊆ B,
(2) ≤B |(A×A) =≤A, and
(3) A is an initial segment of B.

We claim that the poset (X ,�) is inductive: Let T be a totally ordered subset.
Then we form the subset T =

⋃
T and define a binary relation ≤ on T as follows:

Let x, y ∈ T . Then there is an S ∈ X containing x and y. Since S is totally
ordered we have x ≤S y or y ≤S x, and we set x ≤T y in the first case and y ≤T y
in the second. It is readily seen that this definition is independent of the choice of
S. It is seen that S ∈ T implies that S is an initial segment of T . If ∅ 6= A ⊆ T ,
then there is an a ∈ A and then a ∈

⋃
T ; thus a ∈ S for some S ∈ T . Since S is

well-ordered, m = min(A∩S) exists. Since S is an initial segment of T we conclude
m = minA. Thus (X ,�) is inductive. By Zorn’s Lemma ZL we find a maximal
element (M,≤M ). We claim M = X. Suppose not. Then there is an x ∈ X \M .
We extend ≤M to M ′ = M∪{x} by making x bigger than all elements of M . Then
(M ′,≤M ′) is a well-ordered set with M as an initial segment. This contradicts the
maximality of (M,≤M ). Thus X = M and (X,≤X) is well-ordered. ut

WOP⇒AC: Let (Xj : j ∈ J) be a family of nonempty sets; set X def=
⋃

j∈J Xj .
Let ≤ be a well-order of X. Then (minXj)j∈J ∈

∏
j∈J Xj . ut

We still have to show AC⇒ZL and ZL⇒TPT. First we shall show that AC
implies ZL; then we shall conclude the interlude and prove ZL⇒TPT in the course
of our discussion of compact spaces.

For a proof of AC⇒ZL we prove a Lemma of independent interest in oder
theory.
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Theorem AC.5. (Tarski’s Fixed Point Theorem) Let (X,≤) be a poset such that
every totally ordered subset has a least upper bound. Assume that the function
f :X → X satisfies (∀x ∈ X)x ≤ f(x). Then f has a fixed point, that is, there is
an x0 ∈ X such that f(x0) = x0.

Let us note the parallel to Banach’s Fixed Point Theorem: Let (X, d) be a
metric space such that every Cauchy sequence converges. Assume that the function
f :X → X satisfies (∃λ)·0 ≤ λ < 1 and (∀x, y ∈ X)d

(
f(x), f(y)

)
≤ λd(x, y). Then

f has a fixed point.
That is, X satisfies some completeness hypothesis and f satisfies some contrac-

tion hypothesis. But the proofs proceed quite differently.
Yet before we prove Tarski’s Fixed Point Theorem we shall show how with

its aid one can use AC to prove ZL. Thus let (X,≤) be a inductive poset. Let
X denote the set of all totally ordered subsets of X; then (X ,⊆) is a poset in
which every totally ordered subset T has a least upper bound, namely, T def=

⋃
T .

We claim that X has maximal elements. If not, then for any Y ∈ X the set
MY = {Z ∈ X : Y ⊂ Z, Y 6= Z} is not empty. By the Axiom of Choice there
is an element f ∈

∏
Y ∈X MY , that is f is a selfmap of X such that Y ⊂ f(Y ),

Y 6= f(Y ), and this contradicts the Tarski Fixed Point Theorem AC.5. Thus we
find a maximal chain M . Since X is inductive, M has an upper bound b. But
now b is a maximal element of X because otherwise there would have to be an
element c ∈ X such that b < c, yielding a chain M ∪{c} properly containing M in
contradiction with the maximality of M . Therefore X has maximal elements and
this is what Zorn’s Lemma asserts.

Let us also notice that with the aid of ZL a proof of the Tarski Fixed Point
Theorem is trivial: If X is an inductive set, then by ZL it contains a maximal
element c. If now f is a self map of X with x ≤ f(x), then c ≤ f(c) implies
c = f(c) by the maximality of c, and thus c is a fixed point of f .

The entire point now is to prove the Tarski Fixed Point Theorem without AC
or ZL.

For a proof of Tarski’s Fixed Point Theorem let (X,≤) be a poset such that
supC exists for each chain C ⊆ X. Let us call a subset A ⊆ X closed if for each
chain C ⊆ A we have supC ∈ A and f(A) ⊆ A. The empty set is a chain and
thus the set X has a smallest element minX = sup ∅. Moreover, if A is closed,
then ∅ is a chain contained in A, and thus minX = sup ∅ ∈ A.

Let X ′ =
⋂
{A ⊆ X : A is a closed subset of X}. Then X ′ is the smallest

losed subset of X. It suffices to prove the Fixed Point Theorem for X ′ and f |X ′.
We shall therefore assume from now on that X has no proper closed nonempty
subsets. (Notice that ∅ is closed.)

Definition A. We say that x ∈ X decomposes X if, for any y ∈ X, either y ≤ x
or f(x) ≤ y, that is, X = ↓x ∪ ↑f(x).

Definition B. Let us call an element x ∈ X a roof if y < x always implies
f(y) ≤ x.



AC. An Interlude on the Axiom of Choice. 29

Lemma C. Any roof decomposes X.

Proof . Let x be a roof. Set

Z = {y ∈ X : y ≤ x or f(x) ≤ y} = ↓x ∪ ↑f(x).

We claim that Z is a closed set; once this claim is proved, we are done: Since X
has no proper closed subsets, this implies Z = X.

To prove the claim, let C be a chain in Z and write z = supC. We must show
that z ∈ Z. If C ⊆ ↓x, then z ∈ ↓x ⊆ Z; if C 6⊆ ↓x, then there is c ∈ C such that
f(x) ≤ c, and then f(x) ≤ supC = z. Hence z ∈ Z.

Next let z ∈ Z. We must also show that f(z) ∈ Z. If z < x, then f(z) ≤ x
since x is a roof. Thus f(z) ∈ ↓x ⊆ Z. If z = x, then f(z) = f(x) ∈ ↑f(x) ⊆ Z.
If, finally, f(x) ≤ z, then f(x) ≤ z ≤ f(z) and thus f(z) ∈ ↑f(x) ⊆ Z. This
completes the proof of Lemma C. ut

Lemma D. Every element in X is a roof.

Proof . Set
D = {y ∈ X : y is a roof}.

We claim that D is a closed subset. Again, since X has no proper closed subsets,
this will prove X = D.

For a proof that D is closed, let C ⊆ D be a chain and d = supC; we must
show that d is a roof. If d ∈ C then we are done, thus we assume that c < d for
all c ∈ C. Let x < d; we must show f(x) ≤ d. We assert that there is a c ∈ C
such that x < c. Suppose this is not the case. Then x 6< c for all c ∈ C; since c is
a roof, x 6< c means f(c) ≤ x by Lemma C. But then c ≤ f(c) ≤ x for all c ∈ C,
and so d ≤ x < d, a contradiction. Thus x < c for some c ∈ C as asserted. Since
c is a roof, f(x) ≤ c ≤ d and so f(x) ≤ d. This shows that d is a roof as asserted
and thus d ∈ D.

Next let d ∈ D, that is, d is a roof; we must show that f(d) is a roof as well.
So let x < f(d). Since the element d is a roof it separates X by Lemma C, that
is X = ↓d ∪ ↑f(d). Then x ≤ d. If x < d, then f(x) ≤ d since d is a roof, and so
f(x) < f(d). If x = d then f(x) = f(d) ≤ f(d). So f(d) is a roof as was asserted.

ut

At this point it follows that X is a chain. Let x0 = maxX. Then f(x0) ≤ x0.
By hypothesis on f we have x0 ≤ f(x0). Thus f(x0) = x0 and thus x0 is the desired
fixed point of f . This completes the proof of the Tarski Fixed Point Theorem. ut

Now we know that (AC), (ZL), and (WOP) are equivalent.
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More information on filters

Lemma AC.6. Let X be a set. The set Filt(X) of all filters on X, as a subset
of P

(
P(X)

)
is an inductive poset. ut

Definition AC.7. Any maximal element in Filt(X) is called an ultrafilter.

If X is a set and x ∈ X, then U = {F ⊆ X : x ∈ F} is an ultrafilter. Such an
ultrafilters is called a fixed ultrafilter.

Proposition AC.8. (AC) Every filter on a set is contained in an ultrafilter.
Every filter basis is contained in an ultrafilter.

Proof . Let F be a filter. The set of all filters containing F is inductive an thus
by Zorn’s Lemma contains maximal elements. If B is a filter basis, then the set F
of all supersets of members of B is a filter which is contained in an ultrafilter by
the preceding. ut

The preceding proposition is also called the Ultrafilter Theorem (UT). We saw
that (AC)⇒(UT). The reverse implication is not true; however, for the working
mathematician this is a subtlety which we do not dwell on here.

Exercise EAC.3. Prove directly the following proposition:
Let X be a set and U an ultrafilter in X. If f :X → Y is a surjective function,

then {f(U) : U ∈ U} is an ultrafilter on Y . If A ∈ U , then {A ∩ U : U ∈ U} is an
ultrafilter on A. ut

Definition AC.9. A filter basis is called an ultrafilter basis if the filter of all of
of its supersets is an ultrafilter.

Proposition AC.10. The following statements are equivalent for a filter F on a
set X:

(i) F is an ultrafilter.
(ii) Whenever X = A ∪B and A ∩B = ∅, then A ∈ F or B ∈ F .
(ii′) If X is the disjoint union of finitely many subsets A1, . . . , An, then Aj ∈ F

for some j ∈ {1, . . . , n}.
(ii′′) Whenever X = A1 ∪A2 ∪ · · · ∪An, then Aj ∈ F for some j ∈ {1, . . . , n}.
(iii) Whenever X = A ∪B, then A ∈ F or B ∈ F .

The following statements are equivalent for a filter basis B on a set X:

(I) B is an ultrafilter basis.
(II) Whenever X = A ∪ B and A ∩ B = ∅, then there is a C ∈ B such that

C ⊆ A or C ⊆ B.
(III) Whenever X = A ∪B, then there is a C ∈ B such that C ⊆ A or C ⊆ B.
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Proof . (i)⇒(ii): Assume (i) and X = A∪B and A∩B = ∅. If the assertion fails,
then FA = {S ⊆ X : (∃F ∈ F)A∩F ⊆ S} and FB = {S ⊆ X : (∃F ∈ F)B∩F ⊆
S} are two filters such that F ⊆ FA∩FB . Since F is an ultrafilter, FA = F = FB ;,
but then A ∈ F and B ∈ F whence ∅ = A ∩B ∈ F , a contradiction.

(ii)⇒(i). Assume (ii) and consider F ⊆ G for some filter G on X. Suppose that
G is properly larger than F ; then there is a set A ∈ G \ F . Set B = X \ A. From
(ii) we conclude B ∈ F . But then B ∈ G and thus ∅ = A∩B ∈ G, a contradiction.

(ii)⇒(ii′). Using (i), by induction we see that if X is a disjoint finite union of
n ≥ 2 subsets, then, given an ultrafilter on X, one of these subsets belongs to the
ultrafilter.

(ii′)⇒(ii′′) Assume thatX = A1∪A2∪· · ·∪An. The set of all finite intersections
and all unions of these is a finite set of subsets of X closed under the formation
of intersection and union: It is a finite topology. The set of minimal elements of
this topology is a partition of X. (see Proposition 1.44). Then by (ii’), for each
ultrafilter XF there is (exactly) one J ∈ J such that XJ ∈ F . Then for all j ∈ J
we have Aj ∈ F , since F is a filter.

(ii′′)⇒(iii)⇒(ii) is trivial.

(I)⇔(II)⇔(III). Apply the preceding to F = 〈B〉, the filter generated by B. ut

Definition AC.11. Let f :X → Y be a function and F and G be filter bases on
X and Y , respectively. Set

f(F) = {f(F ) : F ∈ F} and f−1(G) = {f−1(G) : G ∈ G}. ut

Proposition AC.12. (i) f(F) is a filterbasis, and if F is a filter and f is
surjective, then f(F) is a filter as well.

(ii) f−1(G) is a filter basis, and if G is a filter and f is injective, then f−1(G)
is a filter.

Proof . (i) Let F1, F2 ∈ F ; then F contains an F such that F ⊆ F1 ∩ F2 since F
is a filter basis. Then f(F ) ⊆ f(F1 ∩ F2) ⊆ f(F1) ∩ f(F2). Thus f(F) is a filter
basis.

Now assume that f is surjective and that F is a filter. Let F ∈ F and f(F ) ⊆ B.
Then F ⊆ f−1(B), and since F is a filter, f−1(B) ∈ F . Since f is surjective,
B = f

(
f−1(B)

)
∈ f(F).

(ii) Let G1, G2 ∈ G. Then there is a G ∈ G with G ⊆ G1 ∩ G2. Then
f−1(G) ⊆ f−1(G1 ∩G2) = f−1(G1) ∩ f−1(G2). Thus f−1(G) is a filter basis.

Now assume that f is injective and that G is a filter. Let G ∈ G and f−1(G) ⊆
A. Then G ⊆ f(A) ∪

(
Y \ f(X)

)
since f is injective and f(A) ∪

(
Y \ f(X)

)
∈ G

since G is a filter. Now A = f−1
[
f(A) ∪

(
Y \ f(X)

)]
is in f−1(G). ut

Proposition AC.13. Let U be an ultrafilter basis in X and f :X → Y any
function. Then f(U) is an ultrafilter basis.
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In particular, if f is surjective and U is an ultrafilter, then f(U) is an ultrafilter
as well.

Proof . We prove this by using the equivalence of (I) and (II) in Proposition AC.10.
So let Y = A∪B, A∩B = ∅. ThenX = f−1(A)∪f−1(B) and f−1(A)∩f−1(B) = ∅.
Now, since U is an ultrafilter basis, by (I)⇒(II) in Proposition AC.8, there is a
U ∈ U such that either U ⊆ f−1(A) or U ⊆ f−1(B). In the first case, f(U) ⊆ A,
in the second case, f(U) ⊆ B. Thus by (II)⇒(I) in Proposition AC.8 we see that
f(U) is an ultrafilter basis.

Finally, AC.10(i) proves the remainder. ut

Chapter 2
Compactness Continued

Now we shall show that Zorn’s Lemma implies Tychonov’s Product Theorem. We
need the concept of convergence for filters.

Definition 2.12. We say that a filter F on X converges to x ∈ X if U(x) ⊆ F .
A filter basis B converges to x if the filter generated by B converges to x.

A point to which a filter, respectively, filter basis F converges is also called a
limit point of F ut

It is immediate that a filter basis B converges to x iff for each neighborhood U
of x there is a member B ∈ B such that B ⊆ U .

A sequence (xn)n∈N is said to converge to x if for every neighborhood U of x
there is an N ∈ N such that xn ∈ U for all n > N . Once we are given these
definitions it is an easy exercise to show that a sequence (xn)n∈N converges to x
iff the filter basis B =

{
{xn, xn+1, . . .} : n ∈ N

}
converges to x.

For an ultratilter U on a topological space X, a point x ∈ X is a limit point iff
for all U ∈ U(x) and each F ∈ U we have U ∩ F 6= ∅ iff x ∈

⋂
F∈U F .

Theorem 2.13. (UT) For a topological space (X,O) the following statements are
equivalent:
(i) X is compact.
(ii) Every ultrafilter converges.

Proof . (i)⇒(ii): Let U be an ultrafilter. By (i) there is an x such that x ∈ V for
all V ∈ U (see 2.3). This means that U ∩ V 6= ∅ for all U ∈ U(x) and all V ∈ U .
Then F def= {F : U ∩ V ⊆ F, U ∈ U(x), V ∈ U} is a filter containing U . Since
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U is maximal among all filters, we have F = U and thus U = F ⊇ U(x), i.e., U
converges to x.

(ii)⇒(i). (UT) Let B be a filter basis of closed sets; we must show that
⋂
B 6= ∅.

By the Ultrafilter Theorem (UT), the filter basis B is contained in an ultrafilter U
which by (ii) converges to some element x. Let U be a neighborhood of x. Then
U ∈ U . Now let B ∈ B; since B ⊆ U we have B ∈ U , and thus B ∩ U ∈ U ; in
particular, B ∩ U 6= ∅. Therefore x ∈ B = B for all B ∈ B. ut

The proof of the preceding characterisation theorem for compactness required
actually the Ultrafilter Theorem (UT). This axiom allows the proof of other char-
acterisation theorems for compactness as is exemplified in the following exercise.

Exercise E2.4. Recall that a subbasis for a topology O is any subset S, such
that O is the smallest topology containing S. This means that for each open set
U ∈ O and each x ∈ U , there are finitely many subbasic open sets S1, . . . , Sn such
that x ∈ S1 ∩ · · · ∩ Sn ⊆ U .

A set A of closed sets is called a subbasis for the closed sets if {X\A : A ∈ A} is a
subbasis for the topology, that is iff for each closed setA and a point x /∈ A there are
finitely many subbasic closed sets S1, . . . , Sn such that A ⊆ S1∪· · ·∪Sn ⊆ X \{x}.

Prove the following theorem: Alexander Subbasis Theorem. Let S be a
subbasis of the topology of a topological space X. Then X is compact if and only
if any open cover taken from S has a finite subcover.

[Hint. By definition of compactness if X is a compact space then any open cover
has a finite subcover. We have to assume that every open cover of subbasic open
sets has a finite subcover and then conclude that any open cover has a finite
subcover.

We might just as well assume that for a suitable subbasis S of closed sets every
filterbasis generated by subbasic closed sets has a nonempty intersection, and prove
that each ultrafilter converges (Theorem 2.13.) So let U be an ultrafilter. We must
show that

⋂
F∈U F 6= ∅ because this intersection is the set of all limit points of U .

Let F ∈ U and x ∈ X \F . Since S is a subbasis for the set of closed sets, there
are finitely many S1, . . . , Sn ∈ S such that F ⊆ F ⊆ S1 ∪ · · · ∪Sn ⊆ X \ {x} Since
U is an ultrafilter, one of the Sj , denoted S ∈ S, is contained in U . (See Notes,
Proposition AC.10). Therefore

S ∩ U 6= ∅, and(1)
(∀F ∈ U , x /∈ F )(∃S ∈ S)F ∩ S ∈ U and x /∈ S.(2)

Thus F0
def= S ∩ U is not empty by (1). A finite collection of elements of F0 is

contained in the filter U and therefore has a nonempty intersection; the set of all
finite intersections of elements of F0 is a filter basis B of closed subbasic sets. It
therefore satisfies

⋂
F0 =

⋂
B 6= ∅ by hypothesis. We claim

(3)
⋂

F∈F
F =

⋂
F0.
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The relation “⊆” is clear (why?). For a proof of the reverse containment, assume
x /∈

⋂
F∈U F and show that x /∈

⋂
F0. Under this assumption there is an F ∈ U

such that x /∈ F . Then by (2) there is an S ∈ F0 such that x /∈ S. Hence x /∈
⋂
F0.

This shows “⊇”. Thus (3) holds and the left side is nonempty. This is what we
had to show.]

Notice that the Alexander Subbasis Theorem requires the Ultrafilter Theorem
(UT) which is secured by the Axiom of choice (AC).

The next theorem is the crucial one. It will prove that AC⇒TPT.

Theorem 2.14. (AC) The product of any family of compact spaces is compact.

Proof . Let (Xj : j ∈ J) be a family of compact spaces. Let P def=
∏

j∈J Xj . If one
Xj is empty, then P = ∅ and thus P is compact. Assume now that Xj 6= ∅. We
prove compactness of P by considering an ultrafilter U on P and showing that it
converges.

For each j ∈ J the projection prj(U) is an ultrafilter. Let Lj ⊆ Xj be the set
of points to which it converges. Since Xj is compact, Lj 6= ∅. By the Axiom of

Choice L def=
∏

j∈J Lj 6= ∅. Let (xj)j∈J ∈ L.

Now let U be a neighborhood of x def= (xj)j∈J . We may assume that U is a
basic neighborhood of the form U =

∏
j∈J Uj , where Uj = Xj for all j ∈ J \F for

some finite subset of J . Then we find a member M ∈ U such that prj(M) ⊆ Uj for
j ∈ F . Thus M ⊆ pr−1

j (Uj) and so pr−1
j (Uj) ∈ U . Accordingly U =

∏
j∈J Uj =⋂

j∈F pr−1
j (Uj) ∈ U . ut

Notice that we have used the Axiom of Choice by applying the Ultrafilter
Theorem and by selecting (xj)j∈J .

Exercise E2.5. Prove:
In a Hausdorff space, a filter F converges to at most one point..
Thus in a Hausdorff space a converging filter converges to exactly one point x,
called the limit point and written x = limF .

Corollary 2.15. (UT) The product of a family of compact Hausdorff spaces is a
compact Hausdorff space. ut

The Ultrafilter Theorem (UT) indeed suffices for a proof of this theorem.

Example. (Cubes) Let I denote the unit interval [0, 1] and D the complex unit
disc. For each set J the products IJ and DJ are compact spaces. ut

We have made good use of the concept of a filter and its convergence. In
passing we mention the concept of a Cauchy-filter on a metric space. Let us first
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recall that in a metric space (X, d) a subset B ⊆ X is bounded if there is a number
C such that d(b, c) ≤ C for all b, c ∈ B. For a bounded subset B, the number
sup{d(b, c) : b, c ∈ B} exists and is called the diameter of B. When we speak of
the diameter of a subset, we imply that we assume that the subset is bounded.

Definition 2.16. A filter F on a metric space (X, d) is called a Cauchy-filter if for
each ε > 0 it contains a set of diameter less than ε. A filter basis is a Cauchy-filter
basis if it contains a set of diameter less than ε. ut

Clearly, a filter basis is a Cauchy-filter basis if and only if the filter of all super
sets of its members is a Cauchy-filter.

Exercise E2.6. Show that a sequence (xn)n∈N is a a Cauchy-sequence iff the
filter basis of all {xn, xn+1, . . .}, n ∈ N is a Cauchy filter basis.

Lemma 2.17. (i) Let F be a Cauchy-filter in metric space. Then there is a
countable Cauchy-filter basis C, C1 ⊇ C2 ⊇ · · · such that the diameter of Cn is less
than 1

n and C ⊆ F .
(ii) If F ⊆ G are two filters in a metric space such that F is a Cauchy-filter

and G converges to x then F converges to x. ut

If C converges, and thus the filter 〈C〉 of all supersets of the Cn converges, that
is, contains some neighborhood filter U(x), then the given filter F converges. If now
we select in each set Cn an element cn, then (cn)n∈N is a Cauchy-sequence. Then{
{cn, cn+1, . . .} : n ∈ N} is a Cauchy-filter basis B which converges iff (cn)n∈N

converges. Moreover, 〈C〉 ⊆ 〈B〉.

Proposition 2.18. A metric space (X, d) is complete if and only if every Cauchy-
filter converges. ut

For a given ε, a precompact metric space is covered by finite number of open
ε-balls. Thus any ultrafilter contains one of them. Hence every ultrafilter on
a precompact spaces is a Cauchy-filter. Thus on a complete precompact metric
space every ultrafilter converges. This is an alternative proof that a metric space
is compact iff it is complete and precompact. This approach has the potential of
being generalized beyond the metric situation.

Exercise E2.7. Fill in the details of this argument.

Compact spaces and continuous functions
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Proposition 2.19. Let f :X → Y be a continuous surjective function of topolog-
ical spaces and assume that X is compact. Then Y is compact. Let

X
f−−−−−−−−−→ Y

qf

y xidY

X/Rf −−−−−−−−−→
f ′

Y

be the canonial decomposition of f . If Y is a Hausdorff space, then f ′ is a home-
omorphism. ut

In short: Continuous images of compact spaces are compact, and as easy con-
sequence we know that a bijective continuous map between Hausdorff spaces is a
homeomorphism.

Corollary 2.20. If O ⊆ O′ are Hausdorff topologies on a set and O′ is compact,
then O = O′. ut

Among Hausdorff topologies, compact ones are minimal.
A totally ordered set is defined to be order complete iff every subset has a least

upper bound.
If A ⊆ X and (X,≤) is order complete, let L be the set of lower bounds of A.

Then supL = inf A.
If A ⊆ X is closed w.r.t. the order topology, then supA = maxA and inf A =

minA.

Exercise E2.8. Prove these claims.

Lemma 2.21. A totally ordered space (X,≤) is compact w.r.t. the order topology
if and only if X is order complete.

Proof . If X = ∅, then X is complete by default. Assume that X is compact and
A ⊆ X. Show that maxA = supA

Now assume that X is order complete. B be a filter basis of closed subsets. Let
M = {minB : B ∈ B}. Show that supM ∈

⋂
B. ut

Exercise E2.9. Fill in the details of the proof of Lemma 2.21.

Proposition 2.22. (Theorem of the Maximum) Let f :X → Y be a continuous
function from a compact space into a totally ordered space. Then f attains its
maximum and it s minimum, i.e. there are elements x, y ∈ X such that f(x) =
max f(X) and f(y) = min f(X). ut



Uniform Continuity, Uniform Convergence, Equicontinuity 37

Uniform Continuity, Uniform Convergence, Equicontinuity

Compactness has substantial applications in Analysis; we sample some of them

Definition 2.23. A function f :X → Y between metric spaces is called uniformly
continuous, if

(1) (∀ε > 0)(∃δ > 0)(∀x ∈ X) f(Uδ(x)) ⊆ Uε

(
f(x)

)
. ut

Recall that f if continuous if

(2) (∀ε > 0)(∀x ∈ X)(∃δ > 0) f(Uδ(x)) ⊆ Uε

(
f(x)

)
.

Proposition 2.24. A continuous function f :X → Y from a compact metric space
into a metric space is uniformly continuous. ut

[For each ε > 0 and each x ∈ X and pick d(x) > 0 so that f
(
Ud(x)

)
⊆ Uε/2

(
f(x)

)
and let δ be a Lebesgue number of the open cover {Ud(x)(x) : x ∈ X}.]

Definition 2.25. Let X be a set and Y a metric space. Define B(X,Y) to be the
set of all bounded functions, i.e. functions f :X → Y such that {d

(
f(x), f(x′)

)
:

x, x′ ∈ X} is a bounded subset of R.
IfX and Y are topological spaces, then C(X,Y) denotes the set of all continuous

functions from X to Y . ut

Proposition 2.26. (i) Let X be a set and Y a metric space. Then B(X,Y ) is a
metric space with respect to the metric d(f, g) = sup{d

(
f(x), g(x)

)
: x ∈ X}

(ii) If X is a compact topological space and Y is a metric space, then C(X,Y ) ⊆
B(X,Y ), and C(X,Y ) is a closed subset. ut

We say that B(X,Y ) carries the (metric) topology Ou of uniform convergence.
The topology induced on B(X,Y ) by the product topology of Y X is called the
topology of pointwise convergence, denoted Op. Clearly Op ⊆ Ou.

Let F ⊆ C(X,Y ) be a set of functions. Can we give conditions such that
F|Op = F|Ou?

Definition 2.27. A set F of functions X → Y from a topological space to a
metric space is called equicontinuous if

(3) (∀x ∈ X)(∀ε > 0)
(
∃Ux,ε ∈ U(x)

)
(∀f ∈ F) f(Ux,ε) ⊆ Uε

(
f(x)

)
. ut

By comparison, the statement that all functions in F are continuous reads as
follows:

(4) (∀f ∈ F)(∀x ∈ X)(∀ε > 0)
(
∃Uf,x,ε ∈ U(x)

)
f(Uf,x,ε) ⊆ Uε

(
f(x)

)
.
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If X is compact and F ⊆ Y X is equicontinuous, then F ⊆ C(X,Y ) ⊆ B(X,Y ).
Thus on F we can consider the topologies of pointwise and of uniform convergence.

Proposition 2.28. Let X be a compact space, Y a metric space and F an equicon-
tinuous set of functions X → Y . Then F|Op = F|Ou, that is the topologies of
pointwise and of uniform convergence agree on F.

Proof . Let f ∈ F, and ε > 0. We must find a δ > 0 and E ⊆ X finite such that

(5) (∀g ∈ F)
[
(∀e ∈ E) d

(
f(e), g(e)

)
< δ

]
⇒ (∀x ∈ X) d

(
f(x), g(x)

)
< ε.

For each x ∈ X we find an open neighborhood Vx of x in X such that (∀f ∈
F) f(Vx) ⊆ Uε/3

(
f(x)

)
Since X is compact, there is a finite set E ⊆ X such that

X =
⋃

e∈E Ve. Set δ = ε/3 and assume that g ∈ F satisfies d
(
f(e), g(e)

)
< ε/3

for e ∈ E. Now let x ∈ X arbitrary. Then there is an e ∈ E such that x ∈ Ve.
Accordingly, d

(
f(x), g(x)

)
≤ d

(
f(x), f(e)

)
+ d

(
f(e), g(e)

)
+ d

(
g(e), g(x)

)
< ε

3 +
ε
3 + ε

3 = ε. The required condition is now satisfied with δ = ε/3. ut

Lemma 2.29. If F is an equicontinuous subset of B(X,Y ) for a topological space
X and a metric space Y , then the closure F of F in Y X is equicontinuous. As a
consequence, if X is compact, then the closures of F in the topologies of uniform
convergence and that of pointwise convergence agree and are contained in C(X,Y ).

Proof . Let ε > 0 and x ∈ X. Find a U ∈ U(x) such that f(U) ∈ Uε/3

(
f(x)

)
for all

f . Now let g be in the closure of F with respect to the pointwise topology and let
u ∈ U . Then there is an f ∈ F such that d

(
f(u), g(u)

)
< ε/3 and d

(
f(x), g(x)

)
<

ε/3. Now d
(
g(u), g(x)

)
≤ d

(
g(u), f(u)

)
+ d

(
f(u), f(x)

)
+ d

(
f(x), g(x)

)
< 3· ε3 = ε.

This proves the first claim.
Now let G be the closure of F with respect to the uniform topology in B(X,Y ).

Then G ⊆ F. If X is compact, Proposition 2.28 applies and shows F|Ou = F|Op.
Therefore, G = F. By Proposition 2.26, G ⊆ C(X,Y ). ut

Definition 2.30. A subset R of a topological space Y is called relatively compact
in Y if its closure R is compact in Y .

Let X be a set and F ⊆ Y X a set of functions X → Y into a topological space.
Then F is called pointwise relatively compact if the set F(x) def= {f(x) : f ∈ F} is
relatively compact in Y for each x ∈ X. ut

Relative compactness is not a property or R as a sspace in its own right, but
depends on Y as well. Let Y = Q with the natural metric. Then R =]0, 1[∩Q
is precompact as a metric space but is not relatively compact in Q as its closure
[0, 1] ∩ Q in Q is not compact. If, however, Y = R in the natural topology, then
]0, 1[∩Q is relatively compact in Y . A relatively compact subspace of a metric
space is always precompact.
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Lemma 2.31. A pointwise relatively compact subset F ⊆ Y X for any set X and
a Hausdorff topological space Y is relatively compact in Y X in the topology Op of
pointwise convergence.

Proof . For x ∈ X let Kx
def= F(x). Then

∏
x∈X Kx ⊆ Y X is a compact subspace

of the product space Y X by the Tychonov Product Theorem (TPT) 2.14. Now
F(x) ⊆

∏
x∈X Kx and so F ⊆

∏
x∈X Kx

∏
x∈X Kx since Y X is Hausdorff by 1.54

and compact subsets of a Hausdorff space are closed by E2.1(ii). Hence F is
compact since closed subsets of a compact space are compact by 2E.1(i). Thus F
is relatively compact. ut

As a corollary of the previous proposition we get

Corollary 2.32. Let X be a compact space, Y a metric space and F an equicon-
tinuous pointwise relatively compact set of functions X → Y . Then (F,Ou), that
is, F with the (metric) topology of uniform convergence, is relatively compact.

Proof . Let G be the closure of F in Y X for the topology Op of pointwise con-
vergence. By Lemma 2.29, Ou|G = Op|G and G is the closure of F in C(X,Y )
in the topology of uniform convergence. By Lemma 2.31, G is compact in Y X for
Op and thus in C(X,Y ) with respect to the topology of uniform convergence. ut

In the circumstances of Corollary 2.32, F is, in particular, precompact.
If X and Y are sets then the function ev:Y X × X → Y , ev(f, x) = f(x) is

called the evaluation function. Re call that for a compact space X and a metric
space Y , on C(X,Y ) we consider the topology Ou of uniform convergence.

Lemma 2.33. If X is compact and Y is metric, then ev:C(X,Y ) × X → Y is
continuous.

Proof . Exercise. ut

We retain the hypotheses of 2.33.

Lemma 2.34. If F is a compact subset of C(X,Y ), then F is equicontinuous.

Proof . Exercise. ut

Exercise E2.10. Prove Lemmas 2.33 and 2.34. [Hint. 2.33: Let f ∈ C(X,Y ) and
x ∈ X and ε > 0 Let D be the sup metric of C(X,Y ) and pick an open neighbor-
hood U of x so that f(U) ⊆ Uε/2

(
f(x)

)
. Now let g ∈ C(X,Y ) satisfyD(g, f) < ε/2

and take u ∈ U . Then dY (f(x), g(u)) ≤ dY

(
f(x), f(u)

)
+ dY

(
f(u), g(u)

)
<

ε/2 + ε/2 = ε. Thus ev(Uε/2(f)× U) ⊆ Uε

(
f(x)

)
.

2.34: Let ε > 0 and x ∈ X be given. By 2.33, for each g ∈ F find a neigh-
borhood Wg of g in F and a neighborhood Ug of x in X such that ev(Wg ×
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Ug) ⊆ Uε/2

(
g(x)

)
. Use compactness of F to find a finite set E ⊆ F such that

F =
⋃

g∈E Wg. Set U =
⋂

g∈E Ug. Then U is a neighborhood of x in X. Show
that for every f ∈ F and every u ∈ U we get dY

(
f(u), f(x)

)
< ε.]

All these pieces of information, taken together lead to the following theorem
which plays an important role in analysis.

Theorem 2.35. (Ascoli Theorem) Let X be a compact space, Y a metric space,
and F ⊆ C(X,Y ) be a set of continuous functions X → Y . Endow F with the
metric topology of uniform convergence. Then the following statements are equiv-
alent:

(i) F is compact (as a subspace of C(X,Y )).
(ii) F is equicontinuous, pointwise relatively compact, and closed. ut

Under the circumstances of an equicontinuous set closedness of F means closed-
ness in either B(X,Y ) with respect to uniform convergence or in Y X with respect
to the product topology.

The Ascoli Theorem has variants which generalize what is said in 2.35, but
they are not different in principle. The Ascoli Theorem is the only way to verify
that a space of continuous functions is compact.

Example. Let (E, ‖·‖) be a Banach space. Let I be a compact real interval,
K ≥ 0 a nonnegative number, and let FK ⊆ C(I, E) be the set of of all differen-
tiable functions such that ‖f ′(t)‖ ≤ K for all f ∈ F. Then FK is equicontinuous.

Let a = min I, b = min I, and let x0 ∈ E. Define FK,x0 to be the set of all
f ∈ FK satisfying f(a) = x0. Then f(I) ⊆ BK(b−a)

(
f(t)

)
⊆ B2K(b−a)(x0).

If dimE <∞ then B2K(b−a)(x0) is compact, and thus by the Ascoli Theorem,
FK,x0 is compact.

This permits a very quick proof of a basic theorem in the theory of ordinary
differential equations stating the existence of local solutions of the initial value
problem u̇(t) = f

(
t, u(t)

)
, f(t0) = x0.
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Chapter 3
Connectivity

We proceed to further special properties of topological spaces. From basic
analysis we know that, next to compactness, connectivity is another important
property of topological spaces.

A subset S of a topological space X is called open-closed or clopen if it is at
the same time open and closed. The empty set and the whole space are clopen.
[The adjective “clopen” is artificial. It is convenient, but stylistically it is far from
being a brilliant creation.]

We shall say that S is a proper clopen subset if is is a clopen subset which is
neither ∅ nor X.

Definition 3.1. A topological space (X,O) is said to be disconnected, if it has a
proper clopen subset. Otherwise it is called connected. ut

That is, X is connected iff ∅ and X are the only clopen subsets of X.

Exercise E3.1. Let (X,≤) be a totally ordered set and consider the order topol-
ogy on it. Prove:
If X has a nonempty subset Y which has an upper bound but does not have a least
upper bound, then X is disconnected.
If X contains two elements a < b such that X = ↓a ∪ ↑b, then X is disconnected.
If S is a clopen subset of X then ↓S is clopen.

A subset {a, b} ⊆ X of a totally ordered set such that a < b and X = ↓a∪↑b is
called a gap. We say that a totally ordered set X satisfies the Least Upper Bound
Axiom (LUB for short) if ever nonempty subset which has an upper bound has a
least upper bound.

The set R or real numbers with its natural order satisfies LUB. The set Q of
rational numbers in its natural order does not satisfy LUB. Neither of these totally
ordered sets has gaps. The Cantor set has gaps and satisfies LUB (indeed it is
complete).

Theorem 3.2. For a totally ordered set X, the following two statements are
equivalent:

(1) X is connected.
(2) X satisfies the Least Upper Bound Axiom and has no gaps.

If X is connected and Y ⊆ X, then the following statements are equivalent:
(3) Y is connected in the induced topology.
(4) Y is an interval in D.

Finally, (4) implies
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(5) The order topology of X induces on Y the order topology of Y .

Proof . (1)⇒(2): Exercise E3.1.
(2)⇒(1): Assume that X satisfies the Least Upper Bound Axiom and has no9

gaps. We claim that X is connected and suppose, by way of cfontradiction, that
A be a proper clopen set. Let B = X \A. W.l.o.g. we find an a ∈ A and a b ∈ B
such that a < b. Since A is open, there is a largest interval I ⊆ A with a = minI.
Then s

def= sup I ≤ b. Since A is closed, s ∈ A. Since A is open, there is a t > s
such that [s, t[∈ A. Then [s, t] is a gap. Contradiction.

(4)⇒(5): If Y is a subset of a totally ordered set (X,≤) then the order topology
of Y (generated by the sets ↑y\{y} and ↓y\{y}, y ∈ Y is contained in the topology
induced on Y by the order topology of X (generated by the sets ↑x \ {x} and
↓x \ {x}, x ∈ X).

Now assume that Y is an interval. In view of the preceding paragraph, we
have to show that OX |Y ⊆ OY . It suffices to show that for any subbasic set
S = ↑x \ {x}, ↓x \ {x}, x ∈ X of OX we have S ∩ Y ∈ OY . So Let x ∈ X and
S = ↑x \ {x}. Then either x ∈ Y or x /∈ Y . If x ∈ Y , then, since X is an interval,
S ∩ Y = (↑Y x \ {z} ∈ OY . If x /∈ Y , then, again since Y is an interval, either
Y ⊆ S (if x is a lower bound of Y ), or S ∩ Y = ∅ (if x is an upper bound of Y ).
If S is a subbasic downset, the proof is analogous.

(4)⇒(3). Assume again that Y is an interval. We claim that Y satisfies the
Least Upper Bound Axiom and has no gaps. So let a ∈ A ⊆ Y and let b ∈ Y be
an upper bound of A. Then s supA exists in X since X satisfies the Least Upper
Bound Axiom. As a ≤ s ≤ b and Y is an interval, s ∈ Y , and so s is the least
upper bound of A in Y . Secondly, if y < y′ in Y then, since X has no gaps, there
is an x ∈ X such that y < x < y′; since Y is an interval, x ∈ Y and so {y, y′} is
not a gap in Y . Thus the claim is verified. Now by 3.2.A, Y is connected in its
order topology OY . Since (4) implies (5), OY = OX |Y , and so Y is connected in
the induced topology.

¬(4)⇒¬(3). Let Y ⊆ X and assume that Y fails to be an interval. Then there
are elements y < x < y′ such that y, y′ ∈ Y , x ∈ X \ Y . Then ↓x ∩ Y is a proper
clopen subset of Y . ut

Corollary 3.3. A set of real numbers is connected in the induced topology if and
only if it is an interval.

Proof . Since R satisfies the least upper bound axiom and has no gaps, this is
immediate from Theorem 3.3. ut

There is a subtle point concerning the induced and the order topology of a
subset. The subset X def= [0, 1] ∪ ]3, 4] is disconnected in the induced topology but
is connected in its own order topology. On the subset {0, 1} ⊆ R, the induced and
the order topology agree.

Recall our convention I = [0, 1].
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Definition 3.4. A topological space is called arcwise connected or path-connected
if for all (x, y) ∈ X×X there is a γ ∈ C(I, X) such that γ(0) = x and γ(1) = y. ut

Proposition 3.5. An arcwise connected space is connected. ut

Exercise E3.2. Set R+ = {r ∈ R : 0 ≤ r}. In R × C consider the following
subspace

S
def= {(x, z) :

(
(∃r ∈ R+)x = e−r, z = e2πir

)
or x = 0, |z| = 1}.

Draw a sketch of this set. Prove that it is connected but not arcwise connected.
Prove that R×C has a continuous commutative and associative multiplication

given by
(r, c)(r′, c′) = (rr′, cc′), (r, c), (r′, c′) ∈ R× C.

A topological space with a continuous associative multiplication is called a topologi-
cal semigroup. If it has an identity, one also calls it a topological monoid.

Show that S is a compact subset satisfying SS ⊆ S. Thus S is a compact
topological monoid.

Does it contain a subset which is a topological monoid and a group?

Theorem 3.6. Let f :X → Y be a continuous surjective function between topo-
logical spaces. If X is connected, then Y is connected. If X is arcwise connected,
then Y is arcwise connected. ut

One may express this result in the form: A continuous image of a connected
space is connected; a continuus image of an arcwise connected space is arcwise
connected.

Corollary 3.7. A continuous image of a compact connected space is compact and
connected. ut

Corollary 3.8. A continuous image of a real interval is arcwise connected. A
continuous image of a compact interval is compact and connected.

In the basic courses on Analysis one learns about the Peano-Hilbrt curve which
is a surjective continuous function f : [0, 1] → [0, 1]2.

Corollary 3.9. (The Intermediate Value Theorem of Real Calculus) Let f : [a, b] →
R be a continuous function and f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). Then there
is an x ∈ [a, b] such that y = f(x). ut

The Intermediate Value Theorem gives us a solution x of the equation y = f(x)
for given y.

Corollary 3.10. A continuous self-map of [0, 1] has a fixed point. ut
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Lemma 3.11. If Y is a connected subspace of a topological space X, then the
closure Y is connected as well. ut

Proposition 3.12. (a) Let X be a topological space. The relation R given by

R = {(x, y) ∈ X ×X : (∃Y )Y is a connected subspace of X and x, y ∈ Y }

is an equivalence relation. (b) All cosets R(x) are closed. (c) The quotient space
X/R is a T1-space. ut

For (b)⇒(c) see 1.40.

Definition 3.13. The equivalence relation R of Lemma 3.12 is called the connect-
ivity relation, and its equivalence classes are called the connected components or
components of the space X.

Exercise E3.3. Prove the following analog of Proposition 3.13:
Let X be a topological space. Recall that a curve from p to q in a topological space
X is a continuous function f : I → X, I = [0, 1] such that f(0) = p and f(1) = q.
The relation Rarc on X given by

Rarc = {(x, y) ∈ X ×X : there is a curve from x to y}

is an equivalence relation.

Give an example of a space such that the equivalence classes of this relation
fail to be closed.

Each connected component of a space is the intersection of its open neighbor-
hoods: Indeed, if y /∈ R(x) then R(y)∩R(x) = ∅, and thus R(x) is the intersection
of the open sets X \R(y), y ∈ X \R(x).

Definition 3.14. A topological space in which all components are singletons is
called totally disconnected.

Exercise E3.4. (i) Show that every discrete space is totally disconnected.
(ii) Show that the space of rational numbers, the space of irrational numbers,

the Cantor set are all totally disconnected but nondiscrete spaces.

Theorem 3.15. (i) If A is a connected subspace of a space X and {Bj : j ∈ J}
is a family of connected subspaces of a topological space X such that A ∩ Bj 6= ∅
for all j ∈ J , then A ∪

⋃
j∈J Bj is connected.

(ii) Let {Xj : j ∈ J} be a family of topological spaces and let X def=
∏

j∈J Xj

be its product. If all Xj are connected, respectively, arcwise connected, then X is
connected, respectively, arcwise connected.

(iii) For any family of topological spaces {Xj : j ∈ J}, if R is the connectivity

relation of X def=
∏

j∈J Xj and Rj the connectivity relation of Xj for j ∈ J , then

R = {
(
(xj)j∈J , (yj)j∈J

)
: (∀j ∈ J) (xj , yj) ∈ Rj}.
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Equivalently, R
(
(xj)j∈J

)
=

∏
j∈J R(xj) for all j ∈ J .

(iv) If all Xj are totally disconnected, then X is totally disconnected. ut

The proof of (ii) is easy for arc connectivity, but is less obvious for connectivity.

Lemma 3.16. If X is a space such that for each pair x, y ∈ X of different points
there is a clopen subset U with x ∈ U and y /∈ U , then X is totally disconnected.ut

Proposition 3.17. Let R be the connectivity relation on X. Then X/R is totally
disconnected T1-space.

Proof . If U and V are open and U ∪ V = X and U ∩ V = ∅, then any R-
class is entirely contained in either U or V . Hence U and V are R-saturated,
i.e. are unions of R-equivalence classes. Thus by the definition of the quotient
topology, the sets U/R and V/R are open; morover, X/R = (U/R) ∪ (V/R)
and (U/R) ∩ (V/R) = ∅. Suppose that C is a component of X/R. Then we
consider X ′ =

⋃
C (i.e., X ′ = q−1

R (C) where qR:X → X/R is the quotient map.

Then R′
def= R ∩ (X ′ × X ′) is the connectivity relation of X ′ and C = X ′/R′.

By replacing X by X ′ and renaming, if necessary, let us assume that X/R is
connected. We claim that X/R is singleton, i.e. that X is connected. So let
X = U ∪V , U ∩V = ∅ for open subsets U and V of X. By what we have seen this
implies X/R = (U/R) ∪ (V/R) and (U/R) ∩ (V/R) = ∅. Since X/R is connected,
one of U/R or V/R is empty. Hence one of U and V is empty, showing that X is
connected.

This shows that X/R is totally disconnected. Since all connected components
R(x) are closed by 3.12, the singletons in X/R are closed by the definition of the
quotient topology. Hence X/R satisfies the Frechet separation axiom T1. ut

Recall I = [0, 1] and let S = {0} ∪ { 1
n : n ∈ N} with the topology induced from

that of of R and set X = (S × I) \ ({0}×]0, 1[ with the topology induced from
that of R2. Let R be the connectivity relation on X. Then T def= X/R is a totally
disconnected compact T1-space which is not Hausdorff. Each equivalence class of
R is closed, but R ⊆ X ×X is not closed.

Proposition 3.18. Any continuous function f :X → Y into a totally disconnected
space factors through qR:X → X/R where R is the connectivity relation on X.
That is, there is a continuous function ϕ:X/R→ Y such that f = ϕ ◦ qR.

Proof . If x ∈ X then the image f
(
R(x)

)
of the component R(x) of x is connected

by 3.6. On the other hand, as a subspace of the totally disconnected space Y
it is totally disconnected. Hence it is singleton. Set ϕ

(
R(x)

)
= f(x). If V is

open in Y , then q−1
R

(
ϕ−1(V )

)
= f−1(U) is an open R-saturated set. But then

ϕ−1(U) = qR
(
f−1(U)

)
is open by the definition of the quotient topology. Thus ϕ

is continuous. ut
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Corollary 3.19. For a topological space X the following conditions are equivalent:
(i) X is a connected.
(ii) All continuous functions f :X → Y into a totally disconnected space are

constant.

Proof . Let R be the connectivity relation on X and qR:X → X/R the quotient
map.

(i)⇒(ii): Every continuous function f :X → Y into a totally disconnected space
Y factors through qR:X → X/R by 3.18. But since X is connected by (i), X/R
is singleton, and thus f is constant.

(ii)⇒(i): q:X → X/R is a continuous surjective function into a totally discon-
nected space by 3.17; since such a function is constant by (ii), X/R is singleton.
i.e. X is connected. ut

We saw that a connected component C of a space X does have clopen neigh-
borhoods. It is not true in general that C is the intersection of all of its clopen
neighborhoods.

Proposition 3.20. For an arbitrary topological space X with connectivity relation
R, the following conditions are equivalent:

(i) Every component is the intersection of its clopen neighborhoods.
(ii) X/R is a totally disconnected Hausdorff space in which every singleton is

the intersection of its clopen neighborhoods. ut

The best situation prevails for compact spaces. We discuss this now; but we
need a bit of preparation.

Lemma 3.21. (A. D. Wallace’s Lemma) Let A be a compact subspace of X and
B a compact subspace of Y , and assume that there is an open subset U of X × Y
containing A × B. Then there are open neighborhoods V of A in X and W of B
in Y such that V ×W ⊆ U . ut

[See Exercise Sheet no 12, Exercise 4 with hints.]

Lemma 3.22. (Normality Lemma) Let A and B be two disjoint compact subsets
of a Hausdorff space X. Then there are two disjoint open neighborhoods of A and
B, respectively.

[See Exercise Sheet no 12, Exercise 5 with hints.]
In fact the Normality Lemma shows that A and B have disjoint closed neigh-

borhoods: Let U and V be open neighborhoods of A and B, respectively. Then
U ∩ V = ∅ since X \ V is a closed set containing U . Now apply the Normality
Lemma to U and B and find disjoint open sets P and Q such that U ⊆ P and
B ⊆ Q. Now Q∩U = ∅. Hence U and Q are two disjoint closed neighborhoods of
A and B, respectively.
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Lemma 3.23. (Filter Basis Lemma). Let B be a filter basis of closed subsets
in a space and assume that B has a a compact member B. If U is an open set
containing

⋂
B, then there is a C ∈ B such that C ⊆ U .

In particular, a filter basis of closed sets in a compact Hausdorff space converges
to x iff

⋂
B = {x}.

[Hint. Suppose not, then {C \ U : C ∈ B} is a filter basis of closed sets, whose
members are eventually contained in the compact space B, hence there is an
element b ∈

⋂
C∈B C \ U . Then b ∈ (

⋂
B) \ U = ∅, a contradiction.]

The Filter Basis Lemma allows us to formulate 3.20 for compact Hausdorff
spaces in a sharper form

Proposition 3.20′. For a compact Hausdorff space X with connectivity relation
R the following conditions are equivalent:

(i) Every component has a basis of clopen neighborhoods.
(ii) X/R is a totally disconnected Hausdorff space in which every singleton is

the intersection of its clopen neighborhoods. ut

If U is a clopen subset of a space X, then U and X \ U are the classes of an
equivalence relation with open cosets. The intersection of any family of equivalence
classes is an equivalence class; a finite collection of open closed sets thus gives rise to
a finite decomposition of the space into finitely many clopen sets. An equivalence
relation with clopen classes on a compact space has finitely many classes.

Definition 3.24. An equivalence relation R on a topological space is open if R is
open as a subset of X ×X.

Remark 3.25. The connectivity relation is contained in all open equivalence
relations. ut

Proposition 3.26. Let R be an equivalence relation on a space X. Then the
following conditions are equivalent:

(i) All equivalence classes are open.
(ii) R is open in X ×X.
(iii) The quotient space X/R is discrete.
(iv) All components are clopen.

Proof . (i)⇔(ii): For every equivalence relation R we have R =
⋃

x∈X R(x)×R(x).
If each R(x) is open in X, then each R(x)×R(x) is open in X×X and vice versa.

(i)⇒(iii): If R(x) is open in X, then by the definition of the quotient topology,
the singleton set {R(x)} is open in X/R.

(iii)⇒(iv): In a discrete space every subset is clopen, so {R(x)} is clopen in
X/R and thus R(x) is clopen by the continuity of the quotient map.

(iv)⇒(i) is trivial. ut
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Notice that for a compact space X, the component space X/R is a compact
totally disconnected Hausdorff space regardless of any separation property of X.

Lemma 3.27. On a topological space X, the following conditions are equivalent:
(i) The connectivity relation is the intersection of all open equivalence relation.
(ii) Every component is the intersection of its clopen neighborhoods.

Proof . Exercise. ut

[Hint for (ii)⇒(i): If U is a clopen subset of X, then U and X \ U are the
two classes of an open equivalence relation U . If (x, y) /∈ R, let U be clopen
neighborhood of R(a) not containing b (by (ii)). Then (a, b) /∈ RU .]

If A,B ⊆ X ×X are binary relations on X, then

A ◦B def= {(x, z) : (∃y ∈ X) (x, y) ∈ A and (y, z) ∈ B}.

Note that A ◦A ⊆ A means that A is transitive.

Exercise E3.5. Show that
on a compact Hausdorff space the relation product A ◦ B of two closed binary
relations is closed.

A spaceX is a Hausdorff space iff the diagonal is closed. Then by the Normality
Lemma, ∆ has a basis of closed neighborhoods.

Exercise E3.6. Show that
on a compact Hausdorff space every neighborhood U of the diagonal ∆ of X ×X
contains a neighborhood W of ∆ such that W ◦W ⊆ U .
[Hint. Suppose that U is an open member of U(∆), the set of neighborhoods
of the diagonal ∆ in X × X such that W ◦ W 6⊆ U for all W ∈ U(∆). Then
{(W ◦W ) \ U : W = W ∈ U(∆)} is a filter basis of closed sets on the compact
space (X ×X) \ U . Let (x, y) be in the intersection of this filterbasis. Then, on
the one hand, (x, y) ∈ ∆, i.e. x = y and one the other (x, y) /∈ U .]

Theorem 3.28. Let X by a compact Hausdorff space. Then every component has
a neighborhood basis of clopen subsets.

Proof . Let X by a compact Hausdorff space. Then every component has a
neighborhood basis of clopen subsets.

Proof . Let U be a neighborhood of the diagonal ∆ in X × X. By replacing U
by {(u, v) : (u, v), (v, u) ∈ U} if necessary, we may assume that U is symmetric.
We define RU to be the set of all pairs (x, y) such that there is a finite sequence
x0 = x, x1, . . . , xn = y such that (xj−1, xj) ∈ U ; we shall call such a sequence a U -
chain. Then RU is reflexive, symmetric, and transitive. Hence RU is an equivalence
relation. Write U(x) = {u ∈ X : (x, u) ∈ U}. Then U(x) is a neighborhood of x.
Since U(x′) ⊆ RU (x) for each x′ ∈ RU (x), the relation RU is open and therefore
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closed as the complement of all other equivalence classes. Let S be the intersection
of the clopen equivalence relations RU as U ranges through the filterbasis Us(∆) of
symmetric neighborhoods of ∆. Then S is an equivalence relation and S is closed
in X ×X. Then for each x ∈ X, every pair of elements in S(x) is RU -equivalent
for all U ∈ Us(∆). Let R denote the connectivity relation on X and set C = S(x).
The component R(x) of x is contained in C. We aim to show that C is connected.
Then C = R(x) for all x and thus R = S. So R(x) =

⋂
U∈Us(∆)RU (x), and then,

by the Filter Basis Lemma, the sets RU (x) form a basis of the neighborhoods of
C = R(x). This will complete the proof.

Now suppose that C is not connected. Then C = C1∪̇C2 with the disjoint
nonempty closed subsets of C. We claim that there is an open symmetric neigh-
borhood U ∈ U(∆) of the diagonal ∆ in X ×X such that the set U(C1) ∩ C2 is
empty. [It suffices to show that every open neighborhood W of a compact subset
K of X contains one of the form U(K). Proof by contradiction: If not, then for all
open neighborhoods U of the diagonal in X×X, U(K)∩(X \W ) is not empty and
the collection of sets U(K)∩ (X \W ) is a filterbasis on the compact space X \W .
Let z be in the intersection of the closures of the sets in this filterbasis. Since X
is Hausdorff, the diagonal is closed in X ×X and by the Normality Lemma is the
intersection of its closed neighborhoods. Thus z in the intersection of all U(K) for
all closed U and this is K. Thus z ∈ K \W = ∅, a contradiction!]

Recall that for two subsets A,B ⊆ X×X we set A◦B = {x, z) ∈ X×X : (∃y ∈
X) (x, y) ∈ A and (y, z) ∈ B}. Now assume that W is an open neighborhood of
the diagonal such that W ◦W ◦W ⊆ U . and set D = X \

(
W (C1)∪W (C2)

)
. Now

let V ∈ U(∆), V ⊆ W . By replacing V by {(u, v) : (u, v), (v, u) ∈ V } if necessary,
we may assume that V is symmetric.

If x ∈ C1 and c2 ∈ C2, then (x, c2) ∈ RV since C ∈ RV (x). Now any V -chain
x = x0, x1, . . . , xn = c2 has at least one element in D. Thus RV (x) ∩ D 6= ∅.
Thus the RV (x) ∩ D form a filterbasis on the compact space D. Let y be in its
intersection. Then y ∈

⋂
V ∈Us(∆)RV (x) = C and y ∈ D, whence y ∈ C ∩D = ∅:

a contradiction. This shows that C is connected as asserted and completes the
proof. ut

The preceding theorem shows that
the connectivity relation R is the intersection of open equivalence relations.

In Theorem 3.28, compactness is sufficient, but it is not necessary.

Exercise E3.7. Show that in the space Q in its order topology every point has a
basis of clopen neighborhoods. ut

Corollary 3.28. In a compact totally disconnected space, every point has a a
neighborhood basis of clopen sets. ut

Quite generally, a space is clalled zero-dimensional if for all of its elements x,
the neighborhood filter U(x) has a basis of clopen sets.
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Thus a compact Hausdorff spaces is zero-dimensional iff it is totally discon-
nected.
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Chapter 4
Covering Spaces and Maps

Definition 4.1. A function f :X → Y is called a covering map or simply a
covering if Y has an open cover {Uj | j ∈ J} such that for each j ∈ J there is a
nonempty discrete space Fj and a homeomorphism hj :Fj × Uj → f−1(Uj) such
that the following diagram commutes:

Fj × Uj
hj−−−−−−−−−→ f−1(Uj)

pr2

y yf |f−1(Uj)

Uj −−−−−−−−−→
idUj

Uj .

We will briefly say that f−1(Uj) is compatibly homeomorphic to Fj × Uj . We call
Fj the fiber over Uj and Y the base space of the covering.

A function f :X → Y between topological spaces is said to induce a local
homeomorphism at x if there are open neighborhoods U of x in X and V of
f(x) in Y such that f |U :U → V is a homeomorphism. It is said to induce local
homeomorphisms if it induces local homeomorphisms at all points. (Many authors
say in these circumstances that f is a local homeomorphism.) ut

Local homeomorphisms are clearly continuous and open; thus a covering is
always a continuous and open map.

Remark 4.2. Every covering induces local homeomorphisms. The converse fails
in general. ut

The assertions in the following examples are left as an exercise.
A topological group G is a topological space and a group such that multipli-

cation (x, y) 7→ xy : G × G → G and inversion x 7→ x−1:G → G are continuous
functions. The additive group R and the multiplicative group C \ {0}, and indeed
all matrix groups are topological groups.

Examples 4.3. (i) Let G be a topological group and H a discrete subgroup. Let
G/H denote the space of all cosets gH, g ∈ G endowed with the quotient topology
and let p:G→ G/H, p(g) = gH be the quotient map. Then p is a covering.

(ii) If f :G → H is a continuous homomorphism of topological groups then f
is a covering if and only if the following conditions are satisfied:

(a) ker f is discrete.
(b) f is open.
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(c) f is surjective.
(iii) Let (g, x) 7→ g·x : G×X → X be an action of a finite discrete group G on

a Hausdorff space such that all x 7→ g·x are continuous and that the action is free,
i.e. that g·x = x implies g = 1. Then the orbit map q:X → X/G = {G·x | x ∈ X}
is a covering when X/G is given the quotient topology.

(iv) By (i), the homomorphism p: R → T = R/Z, p(r) = r + Z is a covering.
Its restriction to

]
0, 1 1

2

[
induces local homeomorphisms but is not a covering. ut

Exercise E4.1. Verify the claims of Examples 4.3.

[Hint for (iii). Let x ∈ X. Find an open neighborhood U of x in X such that
(∀g ∈ G \ {1}) g·U ∩U = ∅; indeed if that were not possible, then for each U there
would be xU , yU ∈ U and a gU ∈ G such that gU ·xU = yU . Since G is finite, we
may assume that for a basis of neighborhoods V of x we have gV = g ∈ G \ {1}.
But xV , yV → x; thus g·x = x by the continuity of z 7→ g·z; a contradiction to
the freeness of the action. Now the function (g, u) 7→ G× U → G·U = q−1q(U) is
a homeomorphism.] ut

One can construct new coverings from given ones as the following proposition
shows.

Proposition 4.4. (i) If fj :Xj → Yj, j = 1, 2 are coverings, then f1 × f2:
X1 × X2 → Y1 × Y2 is a covering. In short: Finite products of coverings are
coverings.

(ii) If p:E → B is a covering, f :X → B any continuous function, and if

P
f∗−−−−−−−−−→ E

p∗
y yp

X −−−−−−−−−→
f

B

is a pullback diagram (i.e. P = {(x, e) ∈ X × E | f(x) = p(e)}, f∗(x, e) = e,
p∗(x, e) = x), then p∗:P → X is a covering. In short: Pullbacks of coverings are
coverings.

(iii) If f :X → Y is a covering and Y ′ ⊆ Y , then f ′:X ′ → Y ′ is a covering where
X ′ = f−1(Y ′) and f ′ = f |X ′. In short: Restrictions of coverings are coverings.

(iv) Assume that p:E → B is a covering, B is connected, and that B admits
a cover of connected open sets Uj , j ∈ J such that p−1(Uj) is compatibly homeo-
morphic to F × Uj . Then for every connected component E′ of E the restriction
p|E′:E′ → B is a covering.

Proof . The proofs are largely straightforward from the definition of a covering:
(i) Assume that {Uj | j ∈ J} is an open cover of Y1 such that for each j ∈ J ,

the space p−1(Uj) is compatibly homeomorphic to Fj×Uj , and {Vk | k ∈ K} is an
open cover of Y2 such that f−1

2 (Vk) is compatibly homeomorphic to Gk×Vk. Then
{Uj×Vk | (j, k) ∈ J×K} is an open cover of Y1×Y2 such that (f1×f2)−1(Uj×Vk)
is compatibly homeomorphic to (Fj ×Gk)× (Uj × Vk).



4. Covering Spaces and Maps 53

(ii) Assume that {Uj | j ∈ J} is an open cover of B such that for each j ∈ J , the
space f−1

1 (Uj) is compatibly homeomorphic to Fj × Uj . Then {f−1(Uj) | j ∈ J}
is an open cover of X such that for each j the space (p∗)−1

(
f−1(Uj)

)
= {(x, e) ∈

X × E | f(x) = p(e) ∈ Uj} is compatibly homeomorphic to Fj × f−1(Uj).
In fact this proof shows that in pullbacks the fibers are pulled back.
The proof of (iii) is quite straightforward.
(iv) For each j ∈ J there is a homeomorphism hj :Fj × Uj → p−1(Uj) such

that phj(x, u) = u. We consider e ∈ p−1(Ui) ∩ E′. Then hj

(
x, p(e)

)
= e for

some x ∈ Fj , and hj({x} × Uj) is a connected open subset of E containing e.
Hence it is contained in E′. If we set F ′j = {x ∈ Fj | hj({x} × Uj) 6= ∅}, then
(p|E)−1(Uj) = p−1(Uj) ∩ E′ is compatibly homeomorphic to F ′j × Uj . ut

Even though in the context of topological groups the great generality in which
coverings are defined is justified, the most viable context is that of connected spaces
and of pointed spaces. A pointed space is a pair (X,x) of a space and a base point
x ∈ X; a morphism of pointed spaces f : (X,x) → (Y, y) is a continuous function
f :X → Y such that f(x) = y. It is also called a base point preserving continuous
map. Often pointed spaces occur quite naturally; e.g. all topological groups have
their identity as a natural base point, and homomorphisms are automatically base
point preserving.

A covering of pointed spaces is a covering between pointed spaces which is base
point preserving.

If p: (E, e) → (B, b) is a covering of pointed spaces and f : (X,x) → (B, b) is
a morphism of pointed spaces, then a function F :X → E is called a lifting of f
across p if it is a morphism of pointed spaces and f = p ◦ F .

(X,x) F−−−−−−−−−→ (E, e)
idX

y yp

(X,x) −−−−−−−−−→
f

(B, b).

Proposition 4.5. (i) Assume that X is a connected space, x0 ∈ X and that
ϕ, ψ:X → Y are continuous functions such that ϕ(x0) = ψ(x0). Assume further
that for some continuous function ρ:Y → Z which induces local homeomorphisms
the compositions ρ ◦ ϕ and ρ ◦ ψ agree. Then ϕ = ψ.

(ii) A lifting of a morphism f of pointed spaces across a covering of pointed
spaces is unique if the domain of f is connected. ut

Exercise E4.2. Prove Proposition 4.5.

[Hint. (i) Define X ′ = {x′ ∈ X | ϕ(x′) = ψ(x′)}. Since all spaces considered are
assumed to be Hausdorff spaces, X ′ is closed. Note that x0 ∈ X ′ and prove that
X ′ is open in X using the fact that p induces local homeomorphisms. Use the
connectivity of X to conclude the assertion. Derive (ii) from (i).] ut
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Definition 4.6. (Defining Simple Connectivity) A topological space X is called
simply connected if it is connected and has the following universal property: For
any covering map p:E → B between topological spaces, any point e0 ∈ E and
any continuous function f :X → B with p(e0) = f(x0) for some x0 ∈ X there is a
continuous map f̃ :X → E such that p ◦ f̃ = f and f̃(x0) = e0.

X
f̃−−−−−−−−−→ E

idX

y yp

X −−−−−−−−−→
f

B. ut

The lifting f̃ , if it exists, is automatically unique by 4.5(ii).
The definition we give is particularly useful in the context of topological groups

and transformation groups because it specifies directly the property one uses most
often. It is noteworthy that it does not depend on arcwise connectedness.

The conventional definition in the context of arcwise connected spaces is more
geometric but coincides on this class of spaces with our definition. We shall deal
with the equivalence of the two concepts for arcwise connected pointed spaces in
Proposition 4.10 and Exercise E4.6 below.

One notices that Definition 4.6 is best phrased in terms of the category of
pointed topological spaces and base point preserving continuous maps. Then it
simply says that a pointed space is simply connected if any morphism into the base
space of a covering lifts across the covering. In this category, simply connected
spaces are, for those who know category theoretical elementary concepts, exactly
the connected relative projectives with respect to the class of epics containing
exactly the coverings.

Notice also that the definition of a simply connected pointed space (X,x0) can
also be expressed as follows.

Whenever
(P, p0)

F−−−−−−−−−→ (E, e)
π

y yp

(X,x0) −−−−−−−−−→
f

(B, b)

is a pullback, then there is a subspace (P ′, p0) of (P, p0) such that π|(P ′, p0) is
bijective. Indeed, this restriction being a covering by 4.4.(ii), (iii), its inversion is
continuous and gives rise to the required lifting; the necessity is clear.

This raises at once the question of the existence of simply connected spaces.
We shall first give examples and later exhibit a far ranging existence theorem.

Example 4.7. Assume that X is a totally ordered space, i.e. a set with a total
order and a topology generated by the set of all open intervals ]a, b[ def= {x ∈
X | a < x < b}, and assume that X is connected. Then X is simply connected.
Examples are the space of real numbers and all of its intervals. ut

Exercise E4.3. Prove the claim in Example 4.7.
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[Hint. Let x0 ∈ X and f :X → B a continuous map for a covering p:E → B
and let e0 ∈ E be such that p(e0) = f(x0). Let U be the set of all functions
ϕ:U → E such that U is an open interval of X with x ∈ U and that ϕ(x0) = e0
and p(ϕ(u)

)
= f(u) for u ∈ U . Consider an open neighborhood V of f(x0) and

a discrete set F and a homeomorphism h:F × V → E such that imh = p−1(V )
and p

(
h(y, v)

)
= v. Let h

(
y0, f(x0)

)
= e0. There is an open interval U around x0

in X with f(U) ⊆ V and define ϕ:U → E by ϕ(u) = h
(
y0, f(u)

)
. Verify ϕ ∈ U .

Show that U is inductive with respect to extension of functions as partial order.
Let f̃ :W → E be a maximal element in U using Zorn’s Lemma. Finish the proof
by showing that W = X; if not then there is an x ∈ X with u < x (say) and
x /∈ W . Set W1 = {x ∈ X | (∃w ∈ W )x ≤ w}. Since W is open, so is W1. Set
W2 = {x ∈ X | (∀w ∈ W )w < x}. For x ∈ W2 use the covering property around
f(x) ∈ B to show that there is a whole neighborhood of x contained in W2. Thus
W2 is open. Show that X = W1 ∪W2 and note that this is a contradiction to the
connectivity of X.] ut

Proposition 4.8. (i) Assume that (X,x0) and (Y, y0) are simply connected
pointed spaces and that p: (E, e) → (B, b) is a covering. Let f :

(
X ×Y, (x0, y0)

)
→

(B, b) be a morphism of pointed spaces. Then f has a lifting f̃ :
(
X×Y, (x0, y0)

)
→

(E, e) across p.

(ii) If X and Y are simply connected, then X × Y is simply connected.
(iii) All spaces Rn, [0, 1]n (i.e. all open and all closed n-cells), n ∈ N, are simply

connected.
(iv) Each retract of a simply connected space is simply connected. In particular,

if a product of spaces is simply connected, then each factor is simply connected.

Proof . Exercise E4.4. ut

Exercise E4.4. Prove Proposition 4.8.

[Hint. (i) Assume that

(P, p0)
F−−−−−−−−−→ (E, e)

π

y yp(
X × Y, (x0, y0)

)
−−−−−−−−−→

f
(B, b)

be a pullback; i.e. P = {(x, y, z) ∈ X × Y × E | f(x, y) = p(z)}, p0 = (x0, y0, e),
π(x, y, z) = (x, y) and F (x, y, z) = z. The restriction of f to X×{y0} lifts across p
to a function ϕ: (X,x0) → (E, e) so that

(
x, y0, ϕ(x)

)
∈ P . Then the restriction of

f to {x} × Y lifts to a function ψx: (Y, y0) →
(
E,ϕ(x)

)
so that

(
x, y, ψx(y)

)
∈ P .

Now the restriction π′ of π to P ′ def= {(x, y, ψx(y)) ∈ P | (x, y) ∈ X×Y } is bijective.
If ι is the inclusion of P ′ into P , then f̃

def= ι ◦ π′−1:
(
X × Y, (x0, y0)

)
→ (E, e) is

the required lifting.
(ii) is a consequence of (i) and (ii) implies (iii).
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(iv) Let X ⊆ Y and r:Y → X be a retraction. If p:E → B is a covering and
f :X → B a continuous function, then fp:Y → B has a lifting F :Y → E. Then
F |X:X → E is the required lifting of f .] ut

Proposition 4.9. For a connected space X, the following statements are equiva-
lent:

(i) X is simply connected.
(ii) Whenever f :E → X is a covering and E0 is a connected component of E, then

f |E0:E0 → X is a homeomorphism.

Proof . (i)⇒(ii) Let f :E → X be a covering and assume (i). Pick e0 ∈ E0 and
set x0 = f(e0). Then the identity map i:X → X has a lifting ĩ:X → E such that
f
(̃
i(x0)

)
= x0 and f ◦ ĩ = i. We claim that the image ĩ(X) is open in E. Indeed

let x ∈ X and find an open neighborhood U of x in X such that for some discrete
set F and some homeomorphism h:F ×U → f−1(U) we have f

(
h(y, u)

)
= u. Let

h(y0, x) = ĩ(x). Then W
def= h({y0} × U) is an open neighborhood of ĩ(x). Since

ĩ is continuous there is an open neighborhood V of x in U such that ĩ(V ) ⊆ W .
Since f |W :W → U is a homeomorphism, ĩ(V ) is a neighborhood of ĩ(x). Hence
W and thus ĩ(X) is a neighborhood of ĩ(x). Now ĩ ◦ f :E → E is a retraction with
image ĩ(X) and the image of retractions in Hausdorff spaces are closed, ĩ(X) is a
connected open closed subset of E containing e0. It therefore agrees with E0 and
the assertion follows.

(ii)⇒(i) Assume (ii) and consider a covering p:E → B and a continuous
function f :X → B such that f(x0) = p(e0) for suitable (x0, e0) ∈ X ×E. Now we
consider the pullback

P
f∗−−−−−−−−−→ E

p∗
y yp

X −−−−−−−−−→
f

B.

Let p0 ∈ P denote the unique point with p∗(p0) = x0 and f∗(p0) = e0. Then
p∗ is a covering by 4.3.(ii). Let P0 denote the component of p0 in P . Then by
(ii) the restriction p∗|P0:P0 → X is a homeomorphism. Denote the inclusion
map P0 → P by j and set f̃ def= f∗ ◦ j ◦ (p∗|P0)−1 : X → E. Then f̃(x0) =
f∗(p0) = e0 and p ◦ f̃ = p ◦ f∗ ◦ j ◦ (p∗|P0)−1 = f ◦ p∗ ◦ j ◦ (p∗|P0)−1 = f . This
completes the proof. ut

Sometimes simple connectivity is defined by condition (ii).
We say that two continuous functions f, g: (X,x0) → (Y, y0) of pointed spaces

are homotopic if there is a continuous function H: [0, 1] × X → Y such that
H(0, x) = f(x), H(t, x0) = y0 and H(1, x) = g(x) for all t ∈ [0, 1] and x ∈ X. Let
I denote the pointed unit interval ([0, 1], 0). A continuous function f : (S1, 1) →
(Y, y0) is called a loop at y0. It is said to be contractible, if it is homotopic to the
constant morphism of pointed spaces. We note that the contractibility of loops
in X at x0 is the same as saying that every continuous function ∂D → X from
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the boundary of the unit square D = [0, 1]2 into X (mapping (0, 0) to x0) ex-
tends to a continuous function D → X, and that, in turn, means that two paths
α, β: I → (X,x0) starting at x0 and ending at the same point α(1) = β(1) are
homotopic. Homotopy is an equivalence relation on the set C0(X,Y ) of base point
preserving functions from a pointed space X to a pointed space Y .

For each point x in an arcwise connected pointed space (X,x0) we associate a
discrete set F (x), namely the set of homotopy classes [α] of arcs α: I → X from
x0 = α(0) to x = α(1). Write X̃ =

⋃
x∈X F (x) and set p: X̃ → X, p([α]) = α(x).

Now assume that X has an open cover {Uj | j ∈ J} such that each Uj is arcwise
connected and every loop in every Uj is contractible; we call such spaces locally

arcwise simply connected. For each j ∈ J pick a uj ∈ Uj . For each f = [α] ∈ Fj
def=

F (uj) and u ∈ Uj we connect uj and u by an arc ε in Uj . Every other arc from
uj to u is homotopic to ε by assumption on Uj . Let β denote the arc obtained
by going from x0 to uj by α and from uj to u by ε. Write hj(f, u) = [β] ∈ F (u).
Then p

(
hj(f, u)

)
= u. Thus hj :Fj × Uj → p−1(Uj) is a well-defined function. If

[γ] ∈ p−1(Uj), then u = p([γ]) = γ(1) and there is an arc η in Uj from u to uj ,
unique up to homotopy. The arc δ is obtained by going from x0 to u by γ and from
u→ uj by η. Then f def= [δ] is an element of F (uj) = fj , and (f, u) = h−1(u). Thus
hj is bijective. There is a unique topology on X̃ which induces on p−1(Uj) that
topology which makes hj :Fj ×Uj → p−1(Uj) a homeomorphism. Then p: X̃ → X
is a covering map.

Proposition 4.10. For an arcwise connected locally arcwise connected pointed
Hausdorff space (X,x0) consider the following conditions:

(i) All loops at x0 are contractible.
(ii) (X,x0) is simply connected.
Then (i) implies (ii). If X is also locally arcwise simply connected, then both
conditions are equivalent.

Proof . (i)⇒(ii) Let p: (E, e) → (X,x0) be a covering which we assume to be
connected by 4.4(iv). By the simple connectivity of I, every arc α: I → (X,x0) lifts
to a unique arc α̃: I → (E, e), and by the simple connectivity of D, homotopic arcs
lift to homotopic arcs. Define σ: (X,x0) → (E, e) by σ(x) = α̃(1) for any member
α of the class of homotopic arcs from x0 to x. Then pσ(x) = pα̃(1) = α(1) = x.
Let {Uj | j ∈ J} be an open cover of X consisting of arcwise connected open
sets such that for each Uj there is a discrete space Fj and a homeomorphism
hj :Fj × Uj → p−1(Uj) such that p

(
hj(f, u)

)
= u for all (f, u) ∈ Fj × Uj . Let

x ∈ Uj . Elements y nearby in Uj can be reached by a small arc ε from x to y,
giving an arc via α from x0 to x and from there to y; call this arc β. There is
a unique f ∈ Fj such that hj(f, α(x)) = α̃(x) = σ(x). Then t 7→ hj

(
f, ε(t)

)
is a

small arc in hj({f}×Uj) from σ(x) to a unique point in the set above y, which is
necessarily the endpoint of β̃. This point is σ(y). It follows that σ(u) = hj(f, u) for
u ∈ Uj . In particular, σ is continuous, induces local homeomorphisms, and satisfies



58 4. Covering Spaces and Maps

pσ = idX . Then σ(X) is an open subspace of E such that for all j ∈ J the relation
hj({f}×Uj)∩ σ(X) 6= ∅ implies hj({f}×Uj) ⊆ σ(X). Hence p|σ(X):σ(X) → X
is a covering map and the complement of σ(X) in E is open, too. Since E is
connected, σ(X) = E. Then σ = p−1. That is, p is a homeomorphism. Then X is
simply connected by 4.9.

(ii)⇒(i) Let p: X̃ → X be the covering constructed in the paragraph pre-
ceding the proposition. Since X is simply connected, p is bijective by 4.9. By
the definition of X̃ this means that two arcs linking x0 with a point x in X are
homotopic, and this is equivalent to (i). ut

Example 4.11. (i) All continuous functions f : (X,x0) → (C, c0) preserving base
points into a convex subset C of any real topological vector space E are con-
tractible. Hence all convex subsets of any real topological vector space are simply
connected.

(ii) All spheres Sn are simply connected spaces with the exception of the zero-
and one-dimensional ones. In particular S3 ∼= SU(3) is a simply connected compact
topological group.

(iii) Let {Sj | j ∈ J} be a family of simply connected, arcwise connected, locally
arcwise connected and locally arcwise simply connected pointed spaces. Then the
product space

∏
j∈J Sj is simply connected.

Proof . Exercise E4.5. ut

Exercise E4.5. Prove the assertions of the examples in 4.11.

[Hint. (i) Work with the function H(r, x) = (1− r)·f(x) + r·c0.
(ii) Show that in all spheres of dimension 2 or more each loop is contractible.

Observe that S0 fails to be connected. Show that for the covering p: R → S1, p(t) =
eit the identity map f : S1 → S1 does not lift to a continuous function f̃ : S1 → R; if
it did, the map f̃ and then f would be contractible, but the coextension f : S1 →
C \ {0} has winding number one, and contractible loops in C \ {0} would have
winding number 0. (A little elementary complex analysis is used here!)

(iii) The product S =
∏

j∈J Sj is arcwise and locally arcwise connected by the
definition of the product topology. If α: S1 → S is a loop, then α(t) =

(
αj(t)

)
j∈J

and αj : S1 → Sj is a loop in Sj . Then by 4.10, since Aj is simply connected,
there is continuous extension Aj : D → Sj to the complex unit disc D. Then
A: D → S, A(t) =

(
Aj(t)

)
j∈J

is a continuous extension of α. Hence every loop in
S is contractible and thus S is simply connected by 4.10.] ut

In the Definition 4.1 of a covering, the open cover {Uj : j ∈ J} plays a somewhat
volatile role; there is however, a class of spaces in which such a cover may be chosen
in a canonical fashion. Indeed, a space X will be called locally simply connected if
the set S(X) of simply connected open subsets ofX coversX. (In the constructions
of 4.10 we have used a similar hypothesis.)
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Lemma 4.12. Let X be a locally simply connected space. Then for each covering
p:E → X there is a family (FS)S∈S(X) of discrete spaces and a family of home-
omorphisms (hS)S∈S(X), hS :FS × S → f−1(S) such that f

(
hS(y, s)

)
= s for all

s ∈ S.

Proof . Let S ∈ S(X). The restriction f |f−1(S) : f−1(S) → S is a covering by
4.4(iii). Let FS denote the set of connected components of f−1(S). By 4.9 each
restriction f |T :T → S for T ∈ FS is a homeomorphism. Define hS :FS × S →
f−1(S) by hS(T, s) = (f |T )−1(s). Then f

(
hS(T, s)

)
= f

(
(f |T )−1(s)

)
= s. ut

We fix a connected and locally simply connected space X and consider the
class C(X) of all coverings p:E → X, denoted (E, p), together with the maps
f :E1 → E2 for objects (Ej , pj), j = 1, 2 satisfying p2 ◦ f = p1. This class forms a
category with these maps as morphisms f : (E1, p1) → (E2, p2).

We assume that X is connected and consider the subclass C0(X) of connected
coverings (meaning, of course those coverings (E, p) for which E is connected. We
claim that there is an upper bound to the cardinality of E depending on X only.
We define an equivalence relation R on E consisting of all pairs (x, y) ∈ E × E
such that there is a finite sequence of open subsets U1, . . . , Un in E such that
(i) p(Uj) ∈ S(X) for j = 1, . . . , n,
(ii) Uj−1 ∩ Uj 6= ∅, j = 2, . . . , n,
(iii) x ∈ U1 and y ∈ Un.

Undoubtedly R is an equivalence relation, and obviously its cosets are all open.
But each coset of an equivalence relation whose cosets are open is closed (as the
complement of the union of all the other cosets). Since E is connected, there is
only one equivalence class. At this point we pass to pointed spaces and fix an
x0 ∈ X and consider each covering (E, p) of X to be equipped with a base point
e0 ∈ E such that p(e0) = x0. For each x we find a chain U1, . . . , Un satisfying (i),
(ii) and

(iii)0 e0 ∈ U1 and x ∈ Un.
Then we set Vj

def= p(Uj), j = 1, . . . , n and notice
(a) Vj ∈ S(X) for j = 1, . . . , n,
(b) Vj−1 ∩ Vj 6= ∅, j = 2, . . . , n,
(c) x0 ∈ V1 and p(x) ∈ Vn.

We observe that every such chain Vj and every choice of an element y ∈ Vn

gives rise to only one lifting to a chain of sets Uj satisfying (i), (ii), and (iii) and
the selection of exactly one x ∈ Un such that p(x) = y. The cardinality of the
set of all finite chains V j is not bigger than the cardinality of finite sequences of
the infinite set of all subsets of X and is therefore not bigger than 2card(X). The
function assigning to (V1, . . . , Vn; y) where (V1, . . . , Vn) satisfies (a), (b), and (c)
and y ∈ Vn the unique x ∈ Un with the unique lifting (U1, . . . , Un) and f(x) = y
is surjective. Hence

cardE ≤ card(X)·2card(X) = 2card(X).
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It follows that there is a set J of coverings
(
(E, e0), p)

)
of (X,x0) with a con-

nected covering space E such that every isomorphy class of C(X) contains exactly
one member of J , and we may assume that (X, idX) is one of them. We say that
a covering j1 =

(
(E1, e10), p1

)
is above a covering j2 =

(
(E2, e20, p2

)
iff there is

a morphism of coverings of pointed spaces f : j1 → j2 and write j2 ≤ j1. Since a
base point preserving morphism is a lifting of the base point preserving covering
p1:E1 → X, it is unique by Proposition 4.5(ii). Hence J is a partially ordered set
with respect to the “above” relation. Due to the pullback construction in 2.4(ii)
this partially ordered set is directed, since for any two coverings there will be one
which is above the two.

We propose to show that J contains a maximal element (X̃, p̃) which is above
all others. If there is such an element then X̃ will be simply connected by Propo-
sition 4.9, and up to isomorphisms of coverings, it will be unique.

Definition 4.13. A covering (X̃, p̃), p̃: X̃ → X is called a universal covering if X̃
is simply connected. ut

As an example consider the one-sphere S1. We take x0 = 1 as base point.
Among the coverings we have the following morphisms
1) All maps µn: S1 → S1, n ∈ Z. The fiber over any simply connected open

set in S1 (here being homeomorphic to an interval) is isomorphic to kerµn =
{e2πim/n | m = 0, . . . , n− 1},

2) The map exp: R → S1, exp r = e2πir. The fiber over any simply connected
open set in S1 is ker exp Z.
Since R is simply connected by Proposition 4.7 the covering in 2) is universal,

and indeed given any other one in 1) there is a covering from the universal one to
it. The issue is now: Do we always find a universal covering?

The construction of an inverse limit in Chapter 1, notably 1.25ff. (for which
category theory provides sweeping generalisations) suggests that we construct a
limit. For this purpose, we let M denote the set of all morphisms f : (Ef , pf ) →
(Ef , pf ) between the coverings of X in J and consider, in the category of pointed
spaces , the projective limit

L(X) def= {(xE)(E,p)∈J ∈
∏

(E,p)∈J E | (∀f ∈M) f(xEf ) = xEf
}.

We define the map p:L(X) → X, p
(
(xE)(E,p)∈J

)
= xX recalling (X, idX) to

be the minimal element of J . Set e = (ej)j∈J where ej is the base point of E
where j = (E, p) ∈ J . Then p(e) = x0. Now let ξ = (xj)j∈J ∈ L(X) and set
x = p(ξ). Let S ∈ S(X) be a simply connected open neighborhood of x in X.
Then for each j = (E, p) ∈ J there is a unique cross section σj :S → E of pointed

spaces such that p◦σj = idS and σj(x) = xj see 4.9). Then σ(x′) def= (σj(x′))j∈J ∈∏
(E,p)∈J E is seen to be in L(X) for all x′ ∈ S by the uniqueness of liftings (4.5(ii)).

Hence σ(ξ,S):X → L(X), is a cross section satisfying σ(ξ,S)(p|p−1(S)) = idS and
σ(ξ,S)(x) = ξ. In particular, if x is in the image of p then every simply connected
neighborhood S of X is in the image I of p. This shows that I is open. If x ∈ I
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then some simply connected neighborhood S of x meets I. Hence x ∈ S ⊆ I. Thus
x ∈ I and I is also closed. Since X is connected, I = X and thus L(X) → X is
surjective. The set B of all open subsets U ofX for which there is an S ∈ S(X) with
U ⊆ S form a basis for the topology of X. The set of all Vξ,U

def= σξ,S(U) for any
S ∈ S(X), U ⊆ S is a basis for a topology O on L(X) such that the components
of p−1(S) are exactly the sets σξ,S(S). For S ∈ S we let FS denote the set of
these components and define hS :FS × S → p−1(S) by hS(σξ,S(S), y) = σξ,S(y).
Then p

(
hS(C, y)) = y. This shows that p:

(
L(X),O) → X is a covering of pointed

spaces. Let X̃ be the connected component of e in
(
L(X),O

)
, and let p̃ be

the restriction p|X̃. Then p̃: (X̃, e) → (X,x0) is a covering by 4.4(iv). Thus(
(X̃, e), p̃

)
∈ J .

For each k ∈ J we have a limit map pk:L(X) → E for k = (E, p) given by
p
(
(xj)j∈J

)
= xk. The space E is locally simply connected; e.g. the connected

components of p−1(S), S ∈ S(X) are homeomorphic to S by 4.4(iv) and 4.9.
Then just as in the case of the minimal k = (X, idX) we see that pk:

(
L(X),O

)
→

(E, p) = k is a covering. By 4.4(iv), accordingly, write x̃ = (xj)j∈J for an element
in X̃ and note that p

(
pk(x̃)

)
= p(xk) = x(X,idX) = p̃

(
(xj)j∈J

)
= p̃(x̃). Thus the

map pk|X̃: (X̃, e) → (E, ej) is a morphism of pointed coverings of (X,x0). Thus
(X̃, p̃) is maximal in J and p̃: (X̃, e) → (X,x0) is a universal covering.

We have now proved the following existence theorem:

Theorem 4.14. (Existence of Universal Coverings) Every connected locally simply
connected Hausdorff space has a universal covering. ut

Since each open n-ball in Rn is simply connected (see E4.8(iii)) every locally
euclidean space (i.e. every space having an open cover consisting of sets homeo-
morphic to an open ball of Rn) is locally simply connected. By 4.10 and 4.11(i) all
open balls in a Banach space are simply connected. Thus every space covered by
a family of open sets each homeomorphic to an open ball in some Banach space is
locally simply connected. Let us call such spaces topological manifolds.

Corollary 4.15. (Universal Coverings of Manifolds) Every connected topological
manifold has a universal covering. ut

From hindsight the somewhat lengthy proof of Theorem 4.14 exhibits a curios-
ity as far as limit constructions go: After we were all through we discovered that
the limit was none other than a member of the inverse system itself because the
index set turned out to have a maximal element . The example of the one-sphere
mentioned above illustrates this fact: The limit of the coverings listed under 1)
alone is a genuine solenoid; if we include the covering under 2), the limit degener-
ates to the universal covering itself.


