Introduction to Compact Groups Karl H. Hofmann; Summer Term 2006 Exercise Sheet 4 May 11, 2006

Projective Limits

1. Exercise. (Nonstrict projective limits) Let G be a compact group and \mathcal{F} a filter basis of closed subgroups. Then

$$\{H, H \in \mathcal{F}; f_{HK}: K \to H, H, K \in \mathcal{N}, K \subseteq H, \}$$

 $f_{HK}(k) = k$, is a projective system. Show that $\lim_{H \in \mathcal{F}} H = \bigcap_{H \in \mathcal{F}} H = \bigcap \mathcal{F}$

[Hint. Define $f: \bigcap \mathcal{F} \to \lim_{H \in \mathcal{F}} H$, $f(g) = (g)_{H \in \mathcal{F}} \in \prod_{H \in \mathcal{F}} H$. Prove that f is bijective. For this purpose first observe that f is injective. Easy. Indeed very easy!. Next f is surjective. So let $(g_H)_{H \in \mathcal{F}}$. What does that mean for the g_H ? Find $g \in \bigcap \mathcal{F}$ so that $g = g_H$ for all H.]

2. Exercise. (Strict projective limits) Let $\phi_n: G_{n+1} \to G_n, n = 1, 2, ...$ be a sequence of morphisms of compact groups. For $m \le n$ in \mathbb{N} define $\phi_{mn}: G_n \to G_m$ by $\phi_{mn} = \phi_m \circ \phi_{m-1} \circ \cdots \circ \phi_n$. Show that $\{G_n, n \in \mathbb{N}; \phi_{mn}: G_n \to G_m, m \le n\}$ is a projective system.

Give an elementary proof that the limit maps $f_m: \lim_{n \in \mathbb{N}} G_n \to G_m$ are surjective if all ϕ_n are surjective.