Introduction to Compact Groups Karl H. Hofmann; Summer Term 2006 Exercise Sheet 3 May 4, 2006

Morphisms between abelian groups, continued

1. Exercise. (Injectivity-Projectivity) A n abelian group P is called *projective* if for every surjective morphism $e: A \to B$ and every morphism $f: P \to B$ there is a morphism $F: P \to A$ such that $e \circ F = f$.

Draw a diagram. Compare it with the diagram drawn for the definition of an injective group.

Prove the following Theorem:

For an abelian group G, the following conditions are equivalent:

- (1) G is projective.
- (2) G is free.

[Hint. (1) \Rightarrow (2): *G* is a quotient of a free group, say via $e: F \rightarrow G$. Let $f: G \rightarrow G$ be the identity morphism. Since *G* is projective, find $F: G \rightarrow F$ such that $e \circ F = f$. conclude that *G* is isomorphic to a subgroup of a free group. You are no allowed to use a Theorem of Schreier: A subgroup of a free abelian group is free.

 $(2) \Rightarrow (1)$: Let X be a free generating set of G, i.e, $G = \mathbb{Z}^{(X)}$ and let $f: G \to B$ be given. Let $e: A \to B$ be a surjective morphism. Use the Axiom of Choice to find a function $s: B \to A$ such that $e \circ s$ is the identity function of B. The function $s: f | X: X \to A$ extends to a morphism $F: G \to A$. Show that F satisfies the requirement.]

2. Exercise. Let G be a cyclic group (finite or infinite). Show that $\eta_G: G \to \widehat{\widehat{G}}$ is an isomorphism.

[Hint. Use your knowledge on the character groups of finite cyclic groups and the character groups of \mathbb{Z} and \mathbb{T} .]

3. Exercise. If A is a direct sum of groups A_1 and A_2 with the property that η_{A_n} is an isomorphism for n = 1, 2, then η_A is an isomorphism.

4. **Exercise.** Let G be a finitely generated abelian group.

Show that $\eta_G: G \to \widehat{G}$ is an isomorphism.

[Hint. Use the following facts: (a) A finitely generated abelian group is a finite direct sum of cuclic groups. (b) Exercise 3.]