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Chapter 1
Compact Groups: Basics

In the first chapter we introduce basic concepts, look at elementary examples
and constructions, and provide the essential tools of the trade.

Definitions and Examples

Definition 1.1. A compact groupG is a compact Hausdorff space whose underlying
set has a group structure such that the function

(∗) (x, y) 7→ xy−1:G×G→ G

is continuous. ut

For the concept of compactness and Hausdorff separation of a space see the set
of Lecture Notes “Introductction to Topology.” Definition 1.1 is a special case of
the definition of a topological group , which is a topologcial space and a group such
that (∗) is continuous.

Our principal source of reference for compact groups is
[1] Hofmann, K. H., and S. A. Morris, The Structure of Compact Groups, de

Gruyter Verlag, Berlin, 1998, xvii + 834pp.
Second Completely Revised, Corrected and Augmented Edition 2006, xviii +
860pp. To appear at de Gruyter Verlag, Berlin.

Exercise E1.1. (i) Let G be a group and a topological space Show that the
following conditions are equivalent:
(1) The function (x, y) 7→ xy−1 : G×G→ G is continuous.
(2) Multiplication and inversion are continuous functions.

Here we recall that multiplication is the function (x, y) 7→ xy : G×G→ G.

Examples 1.2. (i) All finite groups with the discrete topology are compact groups.

(ii) The multiplicative groups

S0 = {r ∈ R : |r| = 1},
S1 = {z ∈ C : |z| = 1},
S3 = {q ∈ H : |q| = 1}

are compact groups on the unit spheres of the fields of real and complex numbers
and of the skew field of quaternions.
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The skew field of quaternions is isomorphict to a real 4-dimensional subalgebra
of the algebra of 2× 2 complex matrices

M(u, v) def=
(

u v
−v u

)
∈M2(C), u, v ∈ C.

Using the basis 1, i, j, k of H, we find the isomorphism via

r·1 + x·i + y·j + z·k 7→M(r + x·i, y + z·i).

Accordingly, S3 ∼= SU(2) def= {M(u, v) : uu + vv = 1}.
If G is a compact group on an n-sphere Sn, then n = 0, 1, 3. But his is a

nontrivial result: see [1] 9.59(iv).

(iii) Each of the groups O(n) of n× n-orthogonal matrices forms a closed and
bounded subset in the vector space Mn(R) of all n×n real matrices and therefore is
a compact group, since matric multiplication, being polynomial in each coefficient,
is continuous and inversion agrees with transposition and is, therefore, continuous.
By a similar argument, each of the groups U(n) of n × n-unitary matrices is a
compact group; alternatively, one may identify U(n) with a closed subgroup of
O(2n).

(iv) Every closed subgroup of a compact group is a compact group.

(v) If {Gj : j ∈ J} is an arbitrary family of compact groups, then their cartesian

product G
def=

∏
j∈J Gj with componentwise multiplication and the product topol-

ogy is a compact group. The compactness of G is a consequence of the Tychonoff
product theorem; the continuity of (x, y) 7→ xy−1 : G × G → G follows from the
natural homeomorphy of G×G and

∏
j∈J Gj ×Gj and the continuity of

(xj , yj) 7→ xjy
−1
j : Gj ×Gj → Gj

for all j ∈ J .
(va) Let p ∈ N. Define f : Z→ P

def=
∏

n∈N Z/pnZ by f(x) = (x+pnZ)n∈N. Then

Zp
def= f(Z) is a compact abelian group. If prn:P → Z/pnZ denotes the projection

given by prn((xm)m∈N = xn, then fn
def= prn |Zp is a morphism Zp → Z/pnZ. It

is an exercise to show that it is surjective. Thus ker fn is a subgroup In such that
Zp/In

∼= Z/pnZ. All morphisms in sight also preserve multiplication, so Zp is a
ring and the In are ideals, and In turns out to agree exactly with pnZp. One calls
Zp the ring of p-adic integers, and its elements are called p-adic integers.

(vb) Every product
∏

j∈J O(nj) or any product
∏

j∈J U(nj) of a family of or-
thogonal, respectively, unitary groups is a compact group, as is any closed subgroup
of these. ut

It is remarkable and is a first goal of this course to prove that every compact
group is isomorphic as a topological group to a closed subgroup of one of the groups
exhibited in Example 1.2(vb).
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Exercise E1.2. Verify the details of the propositions that a product of an arbi-
trary family {Gj : j ∈ J} of compact groups is a compact group and that a closed
subgroup of a compact group is a compact group.

Exercise E1.3. Prove the following assertion:
If G is a compact group and N a closed normal subgroup, then G/N is a

compact group with respect to the quotient topology.
We must know that a subset V ∈ G/N is open iff q−1V is open in G where

q:G→ G/N is the quotient map given by q(g) = gN = Ng.

Exercise E1.4. (p-adic integers). Let L denote the subset of all sequences (xn +
pnZ)n∈N ∈ P

def=
∏

n∈N Z/pnZ, xn ∈ Z such that xn+1 ∈ xn +pnZ. Show that L is

a compact subring of P and that it contains the subring Z′ def= {(x+pnZ)n∈N ∈ L :
x ∈ Z}. Prove that Z′ ∼= Z and that every open subset of L contains an element
of Z′, that is, Z′ is dense in L and L = Z′. Conclude that L = Zp.

Applications to Abelian Groups

An important example arises out of the preceding proposition. For two sets X and
Y the set of all functions f :X → Y will be denoted by Y X .

Definition 1.3. If A is an abelian group (which we prefer to write additively)
then the group

Hom(A, T) ⊆ TA

of all morphisms of abelian groups into the underlying abelian group of the circle
group (no continuity involved!) given the induced group structure and topology of
the product group TA (that is, pointwise operations and the topology of pointwise
convergence) is called the character group of A and is written Â. Its elements are
called characters of A. ut

Proposition 1.4. The character group Â of any abelian group A is a compact
abelian group.

Proof. By Exercise 1.2(v), the product TA is a compact abelian group. For any
pair (a, b) ∈ A× A the set M(a, b) = {χ ∈ TA | χ(a + b) = χ(a) + χ(b)} is closed
since χ 7→ χ(c): TA → T is continuous by the definition of the product topology.
But then Â =

⋂
(a,b)∈A×A M(a, b) is closed in TA and therefore compact. ut

Let us look at a few examples: In order to recognize Ẑ we note that the function
f 7→ f(1): Hom(Z, T) → T is an algebraic isomorphism and is continuous by the
definition of the topology of pointwise convergence. Since Ẑ is compact and T
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Hausdorff, it is an isomorphism of compact groups. Hence

(1) Ẑ ∼= T.

If Z(n) = Z/nZ is the cyclic group of order n, then the function z + nZ 7→
1
nz+Z gives an injection j: Z(n)→ T which induces an isomorphism Hom(Z(n), j):
Hom

(
Z(n), Z(n)

)
→ Hom(Z(n), T) = Ẑ(n). Since the function f 7→ f(1 + nZ):

Hom
(
Z(n), Z(n)

)
→ Z(n) is an isomorphism, we have

(2) Ẑ(n) ∼= Z(n).

If X is a set, and {Ax | x ∈ X} a family of abelian groups, let us denote with⊕
x∈X Ax the direct sum of the Ax, that is, the subgroup of the cartesian product∏
x∈X Ax consisting of all elements (ax)x∈X with ax = 0 for all x outside some

finite subset of X. A special case is Z(X) =
⊕

x∈X Ax with Ax = Z for all x ∈ X.
This is the free abelian group on X

Proposition 1.5. The function

Φ:
∏
x∈X

Hom(Ax, T)→ Hom(
⊕
x∈X

Ax, T)

which associates with a family (fx)x∈X of morphisms fx:Ax → T the morphism

(ax)x∈X 7→
∑
x∈X

fx(ax):
⊕
x∈X

Ax → T

is an isomorphism of compact groups. Notably,

(3) (
⊕
x∈X

Ax)̂ ∼= ∏
x∈X

Âx.

In particular

(4) Z(X)̂ ∼= ẐX ∼= TX .

Proof. Abbreviate
⊕

x∈X Ax by A. We notice that Φ is well defined, since the
fx(ax) vanish with only finitely many exceptions for (ax)x∈X . Clearly Φ is a mor-
phism of abelian groups. Further (fx)x∈X ∈ ker Φ if and only if

∑
x∈X fx(ax) = 0

for all (ax)x∈X ∈ A. Choosing for a given y ∈ X the family (ax) so that ax = 0
for x 6= y and ay = a we obtain fy(a) = 0 for any a ∈ Ay. Thus fy = 0 for all
y ∈ X. Hence Φ is injective. If f :A → T is a morphism, define fy:Ay → T by
fy = f ◦copry where copry:Ay → A is the natural inclusion. Then Φ

(
(fx)x∈X

)
= f

follows readily. Thus Φ is surjective, too, and thus is an isomorphism of abelian
groups. Next we show that Φ is continuous. By the definition of the topology on
Hom(A, T) ⊆ TA, it suffices to show that for each (ax)x∈X ∈ A, the function
(fx)x∈X 7→ Φ

(
(fx)x∈X

)(
(ax)x∈X

)
=

∑
x∈X fx(ax) : Hom(Ax, T)X → T is contin-

uous. Since only finitely many ax are nonzero, this is the case if (fx)x∈X 7→ fy(ay)
is continuous for each fixed y, and this holds if fy 7→ fy(ay): Hom(Ay, T) → T is
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continuous. However, by definition of the topology of pointwise convergence, this
is indeed the case. Since the domain of Φ is compact by the theorem of Tychonoff
and the range is Hausdorff, this suffices for Φ to be a homeomorphism.

The last assertion of the proposition is a special case. This remark concludes
the proof of the proposition. ut

The compact abelian groups TX are called torus groups. The finite dimensional
tori Tn are special cases.

We cite from the basic theory of abelian groups the fact that a finitely generated
abelian group is a direct sum of cyclic groups. Thus (1), (2) and (3) imply the
following remark:

Remark 1.6. If E is a finite abelian group, then Ê is isomorphic to E (although
not necessarily in any natural fashion!). If F is a finitely generated abelian group
of rank n, that is, F = E ⊕ Zn with a finite abelian group E, then F̂ ∼= Ê × Tn.ut

In particular, the character groups of finitely generated abelian groups are
compact manifolds. (We shall not make any use of this fact right now.

There are examples of compact abelian groups whose topological nature is quite
different.

Example 1.7. Let {Gj | j ∈ J} be any family of finite discrete nonsingleton
groups. Then G =

∏
j∈J Gj is a compact group. All connected components are

singleton, and G is discrete if and only if J is finite. ut

A topological space in which all connected components are singletons is called
totally disconnected. Arbitrary products of totally disconnected spaces are totally
disconnected, and all discrete spaces are totally disconnected. The standard Cantor
middle third set C is a compact metric totally disconnected space. In fact it may be
realized as the set of all real numbers r in the closed unit interval, whose expansion
r =

∑∞
n=1 an3−n with respect to base 3 has all coefficients an in the set {0, 2}.

Then the map f : {−1, 1}N → C given by f
(
(rn)n∈N

)
=

∑∞
n=1(rn + 1)3−n is a

homeomorphism. The set S0 = {−1, 1} is a finite group, and thus, by Exercise
1.2(v), the domain of f is a compact group.

Hence the Cantor set can be given the structure of a compact abelian group.
In this group, every element has order 2, so that in fact, algebraically, it is a
vector space over the field GF(2) of 2 elements, and by (2) and (3) above, it is the
character group of Z(2)(N).

One can show that all compact metric totally disconnected spaces without
isolated points are homeomorphic to C. In particular, all metric compact totally
disconnected infinite groups are homeomorphic to C.

Definition 1.8. Let X and Y be sets and F ⊆ Y X a set of functions from X to
Y . We say that F separates the points of X if for any two different points x1 and
x2 in X, there is an f ∈ F such that f(x1) 6= f(x2). ut
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If G and H are groups, then a set F of homomorphisms from G to H is easily
seen to separate the points of G if and only if for each g 6= 1 in G there is an f ∈ F
with f(g) 6= 1.

For any abelian group A there is always a large supply of characters. In fact
there are enough of them to separate the points. In order to see this we resort to
some basic facts on abelian groups:

An abelian group A is called divisible if for each a ∈ A and each natural
number n there is an x ∈ A such that n·x = a. Examples of divisible groups are
Q and R. Every homomorphic image of a divisible group is divisible, whence T is
divisible. The crucial property of divisible groups is that for every subgroup S of
an abelian group A and a homomorphism f :S → I into a divisible group there is
a homomorphic extension F :A→ I of f , as we shall argue now.

Definition 1.9. An abelian group I is called injective if for every injective mor-
phism i:A→ B and every morphism j:A→ I there is a morphism f :B → I with
j = f ◦ i.

I
idI−−−−−−−−−→ I

j

x xf

A −−−−−−−−−→
i

B ut

One may rephrase injectivity in the following convenient fashion: An abelian group
I is injective if and only if any homomorphism j:A → I of a subgroup A of a
group B extends to a homomorphism f :B → I on the whole group.

Proposition 1.10. For an abelian group G the following conditions are equivalent:
(1) G is divisible.
(2) G is injective.

Proof. (1)⇒(2). (AC) Assume that A is a subgroup of B and that a homomorphism
j:A → G is given. We must extend j to a morphism f :B → G. We consider the
set of all morphisms ϕ:C → G with A ⊆ C ⊆ B and ϕ|A = j. This set is partially
ordered by inclusion of domains and extension of mappings (i.e. ϕ ≤ ϕ′ if C ⊆ C ′

and ϕ′|C = ϕ). One verifies quickly that this set is inductive, hence by Zorn’s
Lemma contains a maximal element µ:M → G. We must show M = B. Let
b ∈ B. Then M ∩ Z·b is a cyclic group, say nZ·b. Since G is divisible, there is an
element d ∈ G such that n·d = µ(n·b). Assume now that m1 + z1·b = m2 + z2·b.
Then m2 − m1 = (z1 − z2)·b ∈ M ∩ Z·b = nZ·b. In particular, the kernel of
m 7→ m·b: Z→ G is contained in nZ. Thus there is a z ∈ Z with (z1−z2−zn)·b = 0,
and thus z1−z2−zn = z′n for some z′ ∈ Z. Hence µ(m2−m1) = µ

(
(z1−z2)·b

)
=

µ
(
(z + z′)n·b

)
= (z + z′)n·d = (z1 − z2)·d and thus µ(m1) + z1·d = µ(m2) + z1·d.
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Therefore we define unambiguously a function µ′:M ′ → I, M ′ = M + Z·b by
µ′(m + z·b) = µ(m) + z·d satisfying µ′|M = µ. It is easy to verify that µ is
a morphism. Hence µ ≤ µ′. By the maximality of µ we have µ′ = µ and thus
M ′ = M . Hence b ∈M . Thus M = B.

(2)⇒(1). There is a set X and a surjective homomorphism p: Z(X) → G. We
may assume that G = Z(X)/K with K = ker p and that cardX = cardG. Now
K ⊆ Z(X) ⊆ Q(X). Then G = Z(X)/K ⊆ Q(X)/K, and D = Q(X)/K is divisible.
Hence there is a divisible group D with G ⊆ D. Since G is injective there is a
morphism f :D → G such that f |G = idG. Hence G is a homomorphic image of a
divisible group and is, therefore, divisible. ut

T =−−−−−−−−−→ T
f

x xχ

S −−−−−−−−−→
incl

A

Lemma 1.11. The characters of an abelian group A separate the points.

Proof. Assume that 0 6= a ∈ A. We must find a morphism χ:A → T such that
χ(a) 6= 0. Let S be the cyclic subgroup Z·a of A generated by a. If S is infinite,
then S is free and for any nonzero element t in T (e.g. t = 1

2 + Z) there is an
f :S → T with f(a) = t 6= 0. If S has order n, then S is isomorphic to 1

nZ/Z ⊆ T,
and thus there is an injection f :S → T. If we let χ:A → T be an extension of f
which exists by the divisibility of T, then χ(a) = f(a) 6= 0. ut

Definitions 1.12. For a compact abelian group G a morphism of compact groups
χ:G → T is called a character of G. The set Hom(G, T) of all characters is an
abelian group under pointwise addition, called the character group of G and written
Ĝ. Notice that we do not consider any topology on Ĝ. ut

Now we can of course iterate the formation of character groups and oscillate be-
tween abelian groups and compact abelian groups. This deserves some inspection;
the formalism is quite general and is familiar from the duality of finite-dimensional
vector spaces.

Lemma 1.13. (i) If A is an abelian group, then the function

ηA:A→ ̂̂
A, ηA(a)(χ) = χ(a)

is an injective morphism of abelian groups.
(ii) If G is a compact abelian group, then the function

ηG:G→ ̂̂
G, ηG(g)(χ) = χ(g)

is a morphism of compact abelian groups.
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Proof. (i) The morphism property follows readily from the definition of pointwise
addition in Â. An element g is in the kernel of ηA if χ(g) = 0 for all characters.
Since these separate the points by Lemma 1.11, we conclude g = 0. Hence ηA is
injective.

(ii) Again it is immediate that ηG is a morphism of abelian groups. We must ob-
serve its continuity: The function g 7→ χ(g):G→ T is continuous for every charac-
ter χ by the continuity of characters. Hence the function g 7→

(
χ(g)

)
χ∈Ĝ

:G→ TĜ

is continuous by the definition of the product topology. Since ̂̂
G = Hom(Ĝ, T) ⊆ TĜ

inherits its structure from the product, ηG is continuous. ut

Exercise E1.5. For a discrete group A and a compact group G the members of̂̂
A and ̂̂

GG separate the points of Â, respectively, Ĝ. Equivalently, the evaluation

morphisms ηÂ : Â→
̂̂̂
A and ηĜ: Ĝ→

̂̂̂
G are injective.

[Hint. Observe that already ηA(A) separates the points of Â.] ut

Let us look at our basic examples: If A is a finite abelian group, then Â is

isomorphic to A by Remark 1.6. Hence ̂̂
A is isomorphic to A and ηA:A → ̂̂

A is
injective by Lemma 1.23. Hence ηA is an isomorphism.

Every character χ: T → T yields a morphism of topological groups f : R → T
via f(r) = χ(r + Z). Let q: R → T be the quotient homomorphism. We set V =
] − 1

3 , 1
3 [⊆ R and W = q(V ). Then q|V :V → W is a homeomorphism. Assume

that x and y are elements of W such that x + y ∈ W , too. Then r = (q|V )−1(x),
s = (q|V )−1(y) and t = (q|V )−1(x + y) are elements of V such that q(r + s− t) =
q(t) + q(s) − q(t) = x + y − (x + y) = 0 in T. Hence r + s − t ∈ ker q = Z. But
also |r + s − t| ≤ |r| + |s| + |t| < 3· 13 = 1. Hence r + s − t = 0 and (q|V )−1(x) +
(q|V )−1(y) = r + s = t = (q|V )−1(x + y). Now let U denote an open interval
around 0 in R such that f(U) ⊆ W . If we set ϕ = (q|V )−1 ◦ f |U :U → R then for
all x, y, x + y ∈ U we have ϕ(x + y) = ϕ(x) + ϕ(y). Under these circumstances ϕ
extends uniquely to a morphism F : R → R of abelian groups (see Exercise E1.6
below). Now q◦F = f = χ◦q since F extends ϕ and U generates the abelian group
R. Then Z = ker q ⊆ ker(q◦F ), that is, F (Z) ⊆ ker q = Z. Thus if we set n = F (1),
then n ∈ Z. Since ϕ is continuous, then F is continuous at 0. As a morphism, F
is continuous everywhere (see Exercise E1.7 below). As a morphism of abelian
groups, F is quickly seen to be Q-linear, and from its continuity it follows that it
is R-linear. Thus F (t) = nt and χ(t + Z) = nt + Z follows. Thus the characters
of T are exactly the endomorphisms µn = (g 7→ ng) and n 7→ µn: Z → T̂ is an
isomorphism.

Exercise E1.6. Prove the following proposition:

The Extension Lemma. Let U be an arbitrary interval in R containing 0 and
assume that ϕ:U → G is a function into a group such that x, y, x+ y ∈ U implies
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ϕ(x + y) = ϕ(x)ϕ(y). Then there is a morphism F : R→ G of groups extending ϕ.
If U contains more than one point then F is unique.
[Hint. Step 1. Show by induction that for any u ∈ U such that u, 2u, . . . nu ∈ U we
have ϕ(ku) = ϕ(u)k, k = 1, 2, . . . , n. Step 2. If u, mu ∈ U for a natural number m,
then for any n ∈ N , ϕ(u)mn = ϕ(mu)n. Step 3. For r ∈ R and two integers m and n
with r/m, r/n ∈ U show ϕ(r/m)m = ϕ(r/n)n. Indeed assume first that m,n ≥ 1;
let u = r/mn, then ϕ(u)mn = ϕ(r/m)m by Step 2; likewise ϕ(u)mn = ϕ(r/n)n.
Reduce the case m,n < 0 to this case. Step 4. Define F (r) to be the unique element
of G for which there is an integer m such that r/m ∈ U and F (r) = ϕ(r/m)m and
show that F is a morphism.] ut

Exercise E1.7. A homomorphism between topological groups is continuous iff it
is continuous at the identity.

Now that we have determined T̂ we look at ηZ. We have ηZ(n)(χ) = χ(n) =
nχ(1) = µn

(
χ(1)

)
for any character χ of Z. Since χ 7→ χ(1): Ẑ→ T is an isomor-

phism by (1) above and since every character of T is of the form µn, this shows
that ηZ is an isomorphism.

Now we show that ηT is an isomorphism, too. We recall that T̂ is infinite cyclic
and is generated by the identity map ε: T → T. In other words, any character
χ: T → T of T̂ is of the form χ = n·ε = µn(ε). Now we observe ηT(g)(n·ε) =
n·ε(g) = n·g for all n ∈ Z. Taking n = 1 we note that the kernel of ηT is singleton
and thus ηT is injective. In order to show surjectivity we assume that Ω: T̂ → T
is a character of T̂ ∼= Z. Then Ω(ε) is an element g ∈ T and we see ηT(g)(n·ε) =
n·g = n·Ω(ε) = Ω(n·ε). Thus ηT(g) = Ω. This shows that ηT is surjective, too.
Thus ηT is an isomorphism.

Remark 1.24. (i) Assume that A and B are abelian groups such that ηA and ηB

are isomorphisms. Then ηA⊕B is an isomorphism.
(ii) If G and H are compact abelian groups and ηG and ηH are isomorphisms,

then ηG×H is an isomorphism.

(iii) For any finitely generated abelian group A, the map ηA:A → ̂̂
A is an

isomorphism.
(iv) If G ∼= Tn × E for a natural number n and a finite abelian group E then

ηG:G→ ̂̂
G is an isomorphism.

(v) Every torus group Tn contains an element such that the subgroup generated
by it is dense.

Proof. Exercise E1.8. ut

Exercise E1.8. Prove Remarks 1.24(i)–(v).
[Hint. For (iii) and (iv) recall that the evaluation morphism is an isomorphism for
cyclic groups, for Z and for T. Also recall the Fundamental Theorem for Finitely
Generated Abelian Groups (cf.[1], Appendix A1.11).
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For a proof of (v) set T = Tn. Every quotient group of T modulo some closed
subgroup is a compact group which is a quotient group of Rn and is, therefore, a
torus by [1] Appendix 1, Theorem 1.12(ii). Now let x ∈ T ; then T/〈Z·x〉 is a torus,
and by (iv) above, its characters separate the points. Thus, Z·x is dense in T iff
all characters of T vanish on Z·x, i.e. on x, iff

(∀χ ∈ T̂ ) [χ(Z·x) = {0}]⇒[χ = 0]

iff the map χ 7→
(
n 7→ χ(n·x)

)
: T̂ → Ẑ is injective iff the map χ 7→ χ(x): T̂ → T

is injective (via the natural isomorphism Ẑ ∼= T). But since η:T → ̂̂
T is an

isomorphism by (iv) above, any homomorphism α: T̂ → T is an evaluation, i.e.
there is a unique x ∈ T such that for any χ ∈ T̂ we have χ(x) = α(χ). Thus, in
conclusion, we have an element x ∈ T such that Z·x is dense in T iff we have an
injective morphism Zn ∼= T̂ → T. But the injective morphisms Zn → R/Z abound
(cf. Appendix A1.43).

Provide a direct proof of Remark 1.24(v) as follows: Let rj ∈ R, j = 1, . . . , n,
be n real numbers such that {1, r1, . . . , rn} is a set of linearly independent elements
of the Q-vector space R. Then the element x + Z ∈ Rn/Zn, x = (r1, . . . , rn) has
the property that Z·(x + Z) is dense.] ut

Exercise E1.9. Prove the following universal property of the evaluation mor-
phism:
Lemma A. For every morphism f :A → Ĝ from an abelian group A to the
character group of a compact abelian group G there is a unique morphism f ′:G→
Â such that f = f̂ ′ ◦ ηA.

Lemma B. For every morphism f :G→ Â from a compact abelian group G to
the character group of an abelian group A there is a unique morphism f ′:A→ Ĝ
such that f = f̂ ′ ◦ ηG.

[Hint. Lemma B is proved in the same way as Lemma A. In the case of Lemma A,
define f ′ by f ′(g)(a) = f(a)(g) for a ∈ A und g ∈ G. Verify the asserted property
and uniqueness by using the definitions of f ′ and ηA and f̂ ′.]

Apply this to show

Lemma C. For each abelian group A we have η̂A ◦ ηÂ = idA and for each
compact abelian group wie have η̂G ◦ ηĜ = idG.

Exercise E1.10. Prove the following observation on morephisms of abelian
groups:

Lemma. If f :A → B is a morephism of abelian groups and f̂ : B̂ → Â
its adjoint, then a character β of B is in ker f̂ iff it annihilates f(A), that is,
β(f(A) = {0}.

Projective Limits
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Definition 1.25. Let J be a directed set, that is, a set with a reflexive, transitive
and antisymmetric relation ≤ such that every finite nonempty subset has an upper
bound. A projective system of topological groups over J is a family of morphisms
{fjk:Gk → Gj | (j, k) ∈ J × J, j ≤ k}, where Gj , j ∈ J are topological groups,
satisfying the following conditions:
(i) fjj = idGj

for all j ∈ J
(ii) fjk ◦ fkl = fjl for all j, k, l ∈ J with j ≤ k ≤ l. ut

Lemma 1.26. (i) For a projective system of topological groups, define the topo-
logical group P by P =

∏
j∈J Gj. Set

G = {(gj)j∈J ∈ P | (∀j, k ∈ J) j ≤ k ⇒ fjk(gk) = gj}.

Then G is a closed subgroup of P . If incl:G → P denotes the inclusion and
prj :P → Gj the projection, then the function fj = prj ◦ incl:G → Gj is a
morphism of topological groups for all j ∈ J , and for j ≤ k in J the relation
fj = fjk ◦ fk is satisfied.

(ii) If all groups Gj in the projective system are compact, then P and G are
compact groups.

Proof. (i) Assume that j ≤ k in J . Define Gjk = {(gl)l∈J ∈ P | fjk(gk) = gj}.
Since fjk is a morphism of groups, this set is a subgroup of P , and since fjk is
continuous, it is a closed subgroup. But G =

⋂
(j,k)∈J×J, j≤k Gjk. Hence G is a

closed subgroup. The remainder is straightforward.
(ii) If all Gj are compact, then P is compact by Tychonoff’s Theorem, and thus

G as a closed subgroup of P is compact, too. ut

Definitions 1.27. If P = {fjk:Gk → Gj | (j, k) ∈ J×J, j ≤ k} is a projective sys-
tem of topological groups, then the group G of Lemma 1.26 is called its projective
limit and is written G = limP. As a rule it suffices to remind oneself of the entire
projective system by recording the family of groups Gj involved in it; therefore the
notation G = limj∈J Gj is also customary. The morphisms fj :G → Gj are called
limit maps and the morphisms fjk:Gk → Gj are called bonding maps. ut

Example 1.28. Assume that we have a sequence ϕn:Gn+1 → Gn, n ∈ N of
morphisms of compact groups:

G1
ϕ1← G2

ϕ2← G3
ϕ3← G4

ϕ4← · · ·

Then we obtain a projective system of compact groups by defining, for natural
numbers j ≤ k, the morphisms

fjk = ϕj ◦ ϕj+1 ◦ · · · ◦ ϕk−1:Gk → Gj .

Then G = limn∈N Gn is simply given by {(gn)n∈N | (∀n ∈ N) ϕn(gn+1) = gn}.
(i) Choose a natural number p and set Gn = Z(pn) = Z/pnZ. Define

ϕn: Z(pn+1)→ Z(pn) by ϕn(z + pn+1Z) = z + pnZ:

Z(p)
ϕ1← Z(p2)

ϕ2← Z(p3)
ϕ3← Z(p4)

ϕ4← · · ·
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The projective limit of this system is none other than our group Zp of p-adic
integers.

(ii) Set Gn = T for all n ∈ N and define ϕn(g) = p·g for all n ∈ N and g ∈ T.
(It is customary, however, to write p in place of ϕp):

T p← T p← T p← T p← · · ·

The projective limit of this system is called the p-adic solenoid Tp. ut

Proposition 1.29. Assume that G = limj∈J Gj for a projective system
fjk:Gk → Gj of compact groups, j ≤ k in J , and denote with fj :G → Gj the
limit maps. Then the following statements are equivalent:

(1) All bonding maps fjk are surjective.
(2) All limit maps fj are surjective.

Proof. (1)⇒(2) Fix i ∈ J . Let h ∈ Gi; we must find an element g = (gj)j∈J ∈ G
with gi = fi(g) = h. For all k ∈ J with i ≤ k we define Ck ⊆

∏
j∈J Gj by

{(xj)j∈J | (∀j ≤ k) xj = fjk(xk) and xi = h}.

Since fik is surjective, Ck 6= Ø. If i ≤ k ≤ k′ then we claim Ck′ ⊆ Ck. Indeed
(xj)j∈J ∈ Ck′ implies fjk(xk) = fjkfkk′(xk′) = fjk′(xk′) = xj and xi = h.
Thus (xj)j∈J ∈ Ck and the claim is established. Now {Ck | k ∈ J, i ≤ k} is
a filter basis of compact sets in

∏
j∈J Gj and thus has nonempty intersection.

Assume that g = (gm)m∈J is in this intersection. Then, firstly, gi = h. Secondly,
let j ≤ k. Since J is directed, there is a k′ with i, k ≤ k′. Then (gm)m∈J ∈ Ck′ .
Hence gj = fjk′(gk′) = fjkfkk′(gk′) = fjk(gk) by the definition of Ck′ . Hence
g ∈ limj∈J Gj . Thus g is one of the elements we looked for.

(2)⇒(1) Let j ≤ k. Then fj = fjkfk. Thus the surjectivity of fj implies that
of fjk. ut

Definition 1.30. A projective system of topological groups in which all bonding
maps and all limit maps are surjective is called a strict projective system and its
limit is called a strict projective limit. ut

Proposition 1.31. (i) Let G = limj∈J Gj be a projective limit of compact groups.
Let Uj denote the filter of identity neighborhoods of Gj, U the filter of identity
neighborhoods of G, and N the set {ker fj | j ∈ J}. Then

(a) U has a basis of identity neighborhoods {f−1
k (U) | k ∈ J, U ∈ Uk}.

(b) N is a filter basis of compact normal subgroups converging to 1. (That is, given
a neighborhood U of 1, there is an N ∈ N such that N ⊆ U .)
(ii) Conversely, assume that G is a compact group with a filter basis N of

compact normal subgroups with
⋂
N = {1}. For M ⊆ N in N let fNM :G/M →

G/N denote the natural morphism given by fNM (gM) = gN . Then the fNM

constitute a strict projective system whose limit is isomorphic to G under the map
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g 7→ (gN)N∈N :G → limN∈N G/N . With this isomorphism, the limit maps are
equivalent to the quotient maps G→ G/N .

Proof. (i)(a) Let V ∈ U . Then by the definition of the projective limit there is
an identity neighborhood of

∏
j∈J Gj of the form W =

∏
j∈J Wj with Wj ∈ Uj

for which there is a finite subset F of J such that j ∈ J \ F implies Wj = Gj

such that W ∩ limj∈J Gj ⊆ V . Since J is directed, there is an upper bound k ∈ J
of F . There is a U ∈ Uk such that fjk(U) ⊆ Wj for all j ∈ J . Then f−1

k (U) ⊆
W ∩ limj∈J Gj ⊆ V .

(i)(b) Evidently, each ker fj is a compact normal subgroup. Since i, j ≤ k
implies ker fk ⊆ ker fi ∩ ker fj and J is directed, N is a filter basis. For each
j ∈ J we have ker fj = f−1

j (1) ⊆ f−1
j (U) for any U ∈ Uj . Since f−1

j (U) is a basic
neighborhood of the identity by (a), we are done.

(ii) It is readily verified that the family of all morphisms fNM :G/M → G/N
for M ⊆ N in N constitutes a strict projective system of compact groups. An
element (gNN)N∈N ∈

∏
N∈N G/N with gN ∈ G is in its limit L if and only if for

each pair M ⊇ N in N we have fMN (gNN) = gMM , that is, g−1
M gN ∈ M . Thus

for each g ∈ G certainly (gN)N∈N ∈ L. The kernel of the morphism ϕ = (g 7→
(gN)N∈N ):G→ L is

⋂
N = {1}. Hence ϕ is injective. Assume γ = (gNN)N∈N ∈

L. Then {gNN | N ∈ N} is a filter basis of compact sets in G, for if M ⊇ N
then g−1

M gN ∈M , and thus gN ∈ gMM ∩ gNN . Hence its intersection contains an
element g and then g ∈ gNN is equivalent to gN = gNN . Thus ϕ(g) = γ. We
have shown that ϕ is also surjective and thus is an isomorphism of compact groups
(see Remark 1.8). If qN :G → G/N is the quotient map, and if fN :L → G/N is
the limit map defined by fN

(
(gNN)N∈N

)
= gNN , then clearly qN = fN ◦ ϕ. The

proof of the proposition is now complete. ut

The significance of the preceding proposition is that we can think of a strict
projective limit G as a compact group which is approximated by factor groups
G/N modulo smaller and smaller normal subgroups N . This is not a bad image.
The group G is decomposed into cosets gN whose size can be made as small as
we wish using the normal subgroups in the filter basis N .

More Duality Theory

Let A be an arbitrary abelian group. Let F denote the family of all finitely gen-
erated subgroups. This family is directed, for if F, E ∈ F then F + E ∈ F .
Also, A =

⋃
F∈F F . If E, F ∈ F and E ⊆ F then the inclusion E → F in-

duces a morphism fEF : F̂ → Ê via fEF (χ) = χ|E for χ:F → T. The family
{fEF : F̂ → Ê | E, F ∈ F , E ⊆ F} is a projective system of compact abelian
groups. By the divisibility of T, each character on E ⊆ F extends to one on F and
so this system is strict. The inclusion F → A induces a morphism fF : Â → F̂ by
fF (χ) = χ|F for each character χ:A→ T.
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Proposition 1.32. The map χ 7→ (χ|F )F∈F : Â → limF∈F F̂ is an isomorphism
of compact abelian groups.

Proof. Define ϕ: Hom(A, T) → limF∈F Hom(F, T) by ϕ(χ) = (χ|F )F∈F . This
definition yields a morphism of compact groups. A character χ of A is in its kernel
if and only if χ|F = 0 for all F ∈ F . But since A =

⋃
F∈F F this is the case if

and only if χ = 0. Thus ϕ is injective. Now let γ = (χF )F∈F ∈ limF∈F F̂ . By the
definition of the bonding maps, this means that for every pair of finitely generated
subgroups E ⊆ F in A we have χF |E = χE . Now we can unambiguously define a
function χ:A → T as follows. We pick for each a ∈ A an F ∈ F with a ∈ F (for
instance, F = Z·a). By the preceding, the element χF (a) in T does not depend on
the choice of F . Hence we define a function χ:A→ T by χ(a) = χF (a). If a, b ∈ A,
take F = Z·a+Z·b and observe χ(a+b) = χF (a+b) = χF (a)+χF (b) = χ(a)+χ(b).
Thus χ ∈ Hom(A, T) and χ|F = χF . Hence ϕ(χ) = γ. Thus ϕ is bijective and
hence an isomorphism of compact groups (see Remark 1.8). ut

In short: The character group Â of any abelian group A is the strict projective
limit of the character groups F̂ of its finitely generated subgroups F . We know
that F̂ is a direct product of a finite group and a finite-dimensional torus group
(see Remark 1.18). In particular, every character group of an abelian group is
approximated by compact abelian groups on manifolds.

Assume that G = limj∈J Gj is a strict projective limit of compact abelian
groups with limit maps fj :G→ Gj . Every character χ:Gj → T gives a character
χ ◦ fj :G→ T of G. Since fj is surjective, χ 7→ χ ◦ fj : Ĝj → Ĝ is injective. Under
this map, we identify Ĝj with a subgroup of Ĝ.

Proposition 1.33. If G is a strict projective limit limj∈J Gj then Ĝ =
⋃

j∈J Ĝj.

Proof. With our identification of Ĝj as a subgroup of Ĝ, the right side is contained
in the left one. Now assume that χ:G→ T is a character of G. If we denote with V
the image of ]− 1

3 , 1
3 [ in T, then {0} is the only subgroup of T which is contained

in V . Now U = χ−1(V ) is an open neighborhood of 0 in G. Hence by Proposition
1.31(i) there is a j ∈ J such that ker fj ⊆ U . Hence χ(ker fj) is a subgroup of
T contained in V and therefore is {0}. Thus ker fj ⊆ ker χ and there is a unique
morphism χj :Gj → T such that χ = χj ◦ fj . With our convention, this means
exactly χ ∈ Ĝj . Thus Ĝ ⊆

⋃
j∈J Ĝj . ut

The next theorem is one half of the famous Pontryagin Duality Theorem for
compact abelian groups.

Theorem 1.34. For any abelian group A the morphism ηA:A→ ̂̂
A is an isomor-

phism.
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Proof. We know that Â is the strict projective limit limF∈F F̂ with the directed
family F of finitely generated subgroups of A. (See Proposition 1.32.) The limit
maps fF : Â → F̂ are given by fF (χ) = χ|F , and these surjective maps induce
injective morphisms Hom(fF , T): Hom(F̂ , T)→ Hom(Â, T) with Hom(fF , T)(Σ) =
Σ ◦ fF . By Proposition 1.33, Hom(Â, T) is the union of the images of the injective
morphisms Hom(fF , T). Thus for any Ω ∈ Hom(Â, T) there is an F ∈ F such
that Ω is in the image of Hom(fF , T). Hence there is a Σ ∈ Hom(F̂ , T) such
that Ω = Hom(fF , T)(Σ) = Σ ◦ fF . But ηF :F → Hom(F̂ , T) is an isomorphism by
Remark 1.24(i). Hence there is an a ∈ F such that Σ = ηF (a). Thus Ω = ηf (a)◦fF .
Therefore, for any character χ:A → T of A we have Ω(χ) = ηF (a)

(
fF (χ)

)
=

ηF (a)(χ|F ) = (χ|F )(a) = χ(a) = ηA(a)(χ). Thus ηA is surjective. The injectivity
was established in Lemma 1.23. ut

It is helpful to visualize our argument by diagram chasing:

F
ηF−−−−−−−−−→ Hom(F̂ , T)

inc

y yHom(înc,T)

A −−−−−−−−−→
ηA

Hom(Â, T).

The other half of the Pontryagin Duality Theorem claims that ηG:G → ̂̂
G is

an isomorphism for any compact abelian group G, too. We cannot prove this at
the present level of information. However, in practicing the concept of a projective
limit we can take one additional step.

Let us, at least temporarily, use the parlance that a compact abelian group G

is said to have duality if ηG:G → ̂̂
G is an isomorphism. We propose the follow-

ing exercise whose proof we indicate rather completely since it is of independent
interest.

Lemma 1.35. If a compact abelian group G is the limit limj∈J Gj of a strict
projective system of compact abelian groups Gj which have duality, then G has
duality.

Proof. After Lemma 1.23, we have to show that ηG:G→ ̂̂
G is bijective. We attack

the harder part first and show that ηG is surjective. Assume that Ω ∈ ̂̂
G; that is,

Ω is a morphism of abelian groups Ĝ → T. By Proposition 1.36, Ĝ =
⋃

j∈J Ĝj .

If we denote with Ωj the restriction Ω|Ĝj , then Ωj : Ĝj → T is an element of ̂̂
Gj .

Since Gj has duality by hypothesis, ηGj is surjective and thus there is a gj ∈ Gj

such that ηGj
(gj) = Ωj . We claim that g

def= (gj)j∈J ∈
∏

j∈J Gj is an element of
limj∈J Gj = G. For this purpose assume that j ≤ k in J . We have a commutative
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diagram
Gk

ηGk−−−−−−−−−→ ̂̂
Gk

fjk

y ŷ̂
fjk

Gj −−−−−−−−−→
ηGj

̂̂
Gj .

(We shall consider this claim in a separate exercise below.) We notice that̂̂
fjk: ̂̂

Gk →
̂̂
Gj

is the restriction map sending Ωk to Ωk|Ĝj = Ωj . Thus

ηGj

(
fjk(gk)

)
= ̂̂

fjk

(
ηGk

(gk)
)

= ̂̂
fjk(Ωk) = Ωj = ηGj (gj).

But since Gj has duality, ηGj
is injective, and thus

fjk(gk) = gj ,

which establishes the claim g ∈ limj∈J Gj . For each limit map fj :G → Gj , as
before, we have a commutative diagram:

G
ηG−−−−−−−−−→ ̂̂

G

fj

y ŷ̂
fj

Gj −−−−−−−−−→
ηGj

̂̂
Gj .

Thus ̂̂
fj

(
ηG(g)

)
= ηGj

(
fj(g)

)
= ηGj

(gj) = Ωj for all j ∈ J . Now we observe

that ̂̂
fj :

̂̂
G→ ̂̂

Gj is the restriction Σ→ Σ|Ĝj . Thus the restriction of the morphism
ηG(g): Ĝ→ T to each Ĝj is Ωj , and therefore this morphism is none other than the
given map Ω. Hence ηG(g) = Ω and the claim of the surjectivity of ηG is proved.

As a second step we show that ηG is injective. We have observed before that
this statement is equivalent to the assertion that the characters of G separate
the points. Hence we assume that 0 6= g ∈ G. Set N = {ker fj | j ∈ J}. From
Proposition 1.33(i) we know that

⋂
N = {0}. Hence there is a j ∈ J such that

g /∈ ker fj , that is, fj(g) 6= 0. Since the group Gj has duality, its characters separate
its points. Hence there is a χ ∈ Ĝj such that χ

(
fj(g)

)
6= 0. Hence χ ◦ fj ∈ Ĝ is a

character of G which does not annihilate g. The assertion is now proved. ut

Let us now assume the following result

Proposition 1.36. The characters of a compact abelian groups separate the points.
ut

The proof is a consequence of the basic theorem for compact groups saying that
every compact group has enough finite dimensional continuous lienar representa-
tions to separate the points. [See e.g. Lecture Notes “Introduction to Topological
Groups”, WS 2005-06, topgr.pdf.]
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Now we can prove the following result.

Theorem 1.37. For any compact abelian group G the morphism ηG:G → ̂̂
G is

an isomorphism.

Proof. From Proposition 1.36, it follows at once that ηG:G→ ̂̂
G is injective. Hence

the corestriction g 7→ ηG → Γ def= ηG(G) is an isomorphism onto the subgroup

Γ ⊆ ̂̂
G. We claim that Γ = ̂̂

G; a proof of this claim will finish the proof. By

Proposition 1.36 once again, the claim is proved if every character of ̂̂
G/Γ is zero,

that is, if every character of ̂̂
G which vanishes on Γ is zero. By Theorem 1.34 we

may identify Ĝ with the character group of ̂̂
G under the evaluation isomorphism.

Thus a character f of ̂̂
G vanishing on Γ is given by an element χ ∈ Ĝ such that

f(Ω) = Ω(χ). But we have 0 = f
(
ηG(g)

)
= ηG(g)(χ) for all g ∈ G since f

annihilates Γ. By the definition of ηG we then note χ(g) = ηG(g)(χ) = 0 for all
g ∈ G, that is, χ = 0 and thus f = 0. ut

Theorems 1.34 and 1.37 constitute the object portion of the Pontryagin Duality
Theorem for discrete and compact abelian groups. Up to natural isomorphism it
sets up a bijection between the class of discrete and that of compact abelian
groups. It shall reveal its true power when it is complemented by the morphism
part which sets up a similar bijection between morphisms. However, this belongs
to the domain of generalities and does, in fact, not require more work in depth.
The nontrivial portion of the duality is accomplished.

The following consequence of the duality theorem turns out to be very useful.

Corollary 1.38. (i) Let G be a compact abelian group and A a subgroup of the
character group Ĝ. The following two conditions are equivalent:

(1) A separates the points of G.
(2) A = Ĝ.

(ii) (The Extension Theorem for Characters) If H is a closed subgroup of G,
then every character of H extends to a character of G.

Proof. (i) Proposition 1.36 says that (2) implies (1), and so we have to prove that
(1) implies (2). Since the characters of the discrete group Ĝ/A separate the points
by Lemma 1.11, in order to prove (2) it suffices to show that every character of Ĝ

vanishing on A must be zero. Thus let Ω be a character of Ĝ vanishing on A. By
Theorem 1.37, there is a g ∈ G with ηG(g) = Ω. Thus χ ∈ A implies 0 = Ω(χ) =
ηG(g)(χ) = χ(g). From (1) we now conclude g = 0. Hence Ω = ηG(g) = 0.

(ii) The collection of all restrictions χ|H of characters of G to H separates the
points of H since the characters of G separate the points of G by Proposition 1.36.
Then (i) above shows that the function χ 7→ χ|H: Ĝ → Ĥ is surjective, and this
proves the assertion. ut
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Corollary 1.39. For every compact abelian group G there is a filter basis N of
compact subgroups such that G is the strict projective limit limN∈N G/N of factor
groups each of which is a character group of a finitely generated abelian group.

Proof. Let A = Ĝ denote the character group of G and F the family of finitely
generated subgroups. If F ∈ F , let NF = F⊥ denote the annihilator {g ∈ G |
χ(g) = 0 for all χ ∈ F}. Since F ⊆ F ′ in F implies NF ′ ⊆ NF , the family
N = {NF | F ∈ F} is a filter basis of closed subgroups. An element g is in

⋂
N if

and only if it is in the annihilator of every finitely generated subgroup of A, hence
if and only if it is annihilated by all of A, since A is the union of all of its finitely
generated subgroups. Thus g = 0 by Proposition 1.36. By Proposition 1.31(ii),
therefore, G is the strict projective limit G = limF∈F G/NF .

Now we claim that the character group of G/NF may be identified with F . This
will finish the proof of the corollary. If qF :G→ G/NF denotes the quotient map,
then the function ϕ 7→ ϕ ◦ qF : (G/NF )̂ → Ĝ is injective as qF is surjective. Its
image is precisely the group F⊥⊥ of all characters vanishing on NF . Since every
character χ ∈ F vanishes on NF , we have F ⊆ F⊥⊥. We shall now show equality
and thereby prove the claim. But when F⊥⊥ is identified with the Extension
character group of G/NF then the subgroup F separates the points of G/NF since
the only coset g+NF ∈ G/NF annihilated by all of F is NF by the definition of NF .
Now the Extension Theorem for Characters, Corollary 1.38(ii) shows F = F⊥⊥.ut

Corollary 1.39 yields the following remark:

Corollary 1.40. Every compact abelian group is the strict projective limit of a
projective system of groups G/N isomorphic to Tn(N)×EN with suitable numbers
n(N) = 0, 1, . . . , and finite abelian groups EN . ut

Thus every compact abelian groups is the strict projective limit of compact
abelian groups defined on compact manifolds. Such groups are called compact
abelian Lie groups
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