Übungsblatt 6 zur Vorlesung Darstellungstheorie

Prof. Dr. J. Bruinier Markus Schupp

Wintersemester 2008/2009 24.11.2008

Organisatorisches

- Die Vorlesung am 25.11. findet nicht statt.
- Die Übung am 01.12. findet nicht statt.

Aufgabe 1: Charaktere

Seien (π, V) und (π', V') endlichdimensionale Darstellungen. Beweisen Sie folgende Formeln für die Charaktere:

- a) $\chi_{\pi \otimes \pi'} = \chi_{\pi} \cdot \chi_{\pi'}$
- b) $\chi_{\Lambda\pi} = \frac{1}{2}(\chi_{\pi}(g)^2 \chi_{\pi}(g^2))$
- c) $\chi_{S^2\pi} = \frac{1}{2}(\chi_{\pi}(g)^2 + \chi_{\pi}(g^2))$

Aufgabe 2: Projektionsoperatoren

Definition 1. Sei (π, V) eine Darstellung. Der Raum V zerfalle in die direkte Summe von invarianten Unterräumen, d.h.

$$V = \bigoplus_{i=1}^{m} V_i$$

Der Projektionsoperator P_i auf V_i parallel zu den verbleibenden V_i ist definiert durch

$$P_i v = P_i (v_1 + \dots + v_i + \dots + v_m) = v_i$$

Zeigen Sie, dass P_i die folgenden Eigenschaften hat:

a)
$$P_i^2 = P_i$$
 b) $P_i P_j = P_j P_i = 0$ für $i \neq j$ c) $\sum_{i=1}^m P_i = 1$ d) $P_i \in C(\pi)$

Aufgabe 3: Zerlegung von Darstellungen (wird korrigiert)

In der Vorlesung wurde folgender Satz behandelt:

Satz: Sei (π, V) eine endlichdimensionale Darstellung einer endlichen Gruppe. Dann hat V eine Zerlegung

$$V = V_1^{\oplus \alpha_1} \oplus \cdots \oplus V_k^{\oplus \alpha_k}$$

in paarweise verschiedene irreduzible Unterdarstellungen V_i mit Multiplizitaeten a_i . Die V_i sowie die a_i sind durch (π, V) eindeutig bestimmt.

Vervollständigen Sie den Beweis des Satzes, indem Sie die Eindeutigkeit der Zerlegung beweisen.

Aufgabe 4: Berechnen von Charakteren (wird korrigiert)

Bestimmen Sie die Charaktere der irreduziblen Darstellungen von S_3 .