Technische Universität Darmstadt Fachbereich Mathematik

Prof. Dr. Alexander Martin Agnes Dittel 31. Mai 2006

6. Übungsblatt

Gruppenübungen

G16 Gegeben sei die Familie ganzzahliger Programme mit $k \in \mathbb{N}$:

mit den zugehörigen Polyedern P_k .

a) Zeigen Sie, dass P_k^1 durch das folgende System beschrieben wird:

- b) Benutzen Sie Ihre Ergebnisse aus Teil a), um zu zeigen, dass in diesem Beispiel die Zahl t mit $t = \min_{s \in \mathbb{N}} P_k^s = (P_k)_I$ (siehe Satz 3.9 im Skript) exponentiell in der Kodierungslänge der Eingabe (A, b) ist.
- **G17** a) Sei $P_1 = \{(x,y) \in \mathbb{R}_+ \times \mathbb{Z} \mid x+y \ge b\}$ und $f = b \lfloor b \rfloor$. Zeigen Sie, dass die Ungleichung $x \ge f \cdot (\lceil b \rceil y)$

gültig für P_1 ist.

b) Sei $P_2=\{(x,y)\in\mathbb{R}_+\times\mathbb{Z}\mid y\leq b+x\}$ und $f=b-\lfloor b\rfloor$. Zeigen Sie, dass die Ungleichung

$$y \le \lfloor b \rfloor + \frac{x}{1 - f}$$

gültig für P_2 ist.

G18 Zeigen Sie: Ein Graph G=(V,E) ist bipartit genau dann, wenn er keine Kreise ungerader Länge enthält.

Hausübungen

H15 (5 Punkte)

Lösen Sie folgende Optimierungsprobleme mit Hilfe von Gomory-Schnitten:

H16 (5 Punkte)

Sei $P = \{(x,y) \in \mathbb{R}_+ \times \mathbb{Z}_+^2 \mid a_1y_1 + a_2y_2 \leq b + x\}$ mit $a_1, a_2, b \in \mathbb{R}$ und $b \notin \mathbb{Z}$. Sei weiterhin $f = b - \lfloor b \rfloor$ und $f_i = a_i - \lfloor a_i \rfloor$ für i = 1, 2.

Zeigen Sie, dass die Ungleichung

$$\lfloor a_1 \rfloor y_1 + \left(\lfloor a_2 \rfloor + \frac{f_2 - f}{1 - f} \right) y_2 \le \lfloor b \rfloor + \frac{x}{1 - f}$$

gültig für P ist.

H17 (5 Punkte)

Gegeben sei ein 0/1-Programm (P):

$$\begin{array}{ll} \max & c^{\mathrm{T}}x \\ \mathrm{s.\ t.} & Ax \leq b \\ & x \in \{0,1\}^n. \end{array}$$

Zeigen Sie, dass jede 0/1-Lösung der LP-Relaxierung von (P) eine Ecke von $P(A, b) \cap [0, 1]^n$ ist.