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Linear Algebra II (MCS), SS 2006, Exercise 8
Groupwork
G 33 We put u = (x1, x2)t and v = (y1, y2)t. Let f be the bilinear form on R2 defined by

f(u, v) = 2x1y1 − 3x1y2 + x2y2.

(i) Determine the Gram-matrix A of f w.r.t. the basis {e1 = (1, 0)t, e2 = (1, 1)t}.
(ii) Determine the Gram-matrix B of f w.r.t. the basis {e′1 = (2, 1)t, e′2 = (1,−1)t}.
(iii) Determine the transition matrix P from {e1, e2} to {e′1, e′2} and verify that B = P tAP .

G 34 For each of the following matrices Ai, i = 1, 2 find matrices Pi, such that P t
i AiPi is diagonal. What is

the signature of Ai?

(i) A1 =

 1 −3 2
−3 7 −5
2 −5 8

 , (ii) A2 =

0 1 1
1 −2 2
1 2 −1

 .

G 35 Let V be a n-dimensional vector space and let β = {e1, . . . , en} be a basis of V . Show that a
∗-sesquilinear form Φ on V is ∗-hermitean, resp. ∗-skew hermitean, if and only if its associated Gram-
Matrix A w.r.t. β is ∗-hermitean, resp. ∗-skew hermitean. I.e. A satisfies A∗ = A, resp. A∗ = −A.

G 36 Let P =
(

i i
−1 1

)
and A =

(
a b
b a

)
. Compute

(i) P−1AP, (ii) P ∗AP, (iii) P tAP.

Which transformation is the correct one if we view A as the matrix associated with
(a) a linear endomorphism of C2

(b) a complex bilinear form on C2 (i.e. ∗-sesquilinear w.r.t. the trivial involution)
(c) a sesquilinear form on C2 (i.e. ∗-sequilinear w.r.t. complex conjugation)

and perform a change of basis from {(1, 0)t, (0, 1)t} to {(i,−1)t, (i, 1)t} in C2? If a = 1, b = 0,
which transformations preserve the eigenvalues of A, which the signs of the eigenvalues and which the
invertability of A?

G 37 Let V be a n-dimensional vector space over a field K with involution ∗ and let β = {e1, . . . , en} be a
basis of V .
(i) Show that the set of ∗-sesquilinear forms Sesq(V ) on V is a vector space over K with respect to the

following definitions of scalar multiplication and addition for every λ ∈ K and Φ,Ψ ∈ Sesq(V ):

λ · Φ : V × V → K, (u, v) 7→ λ · Φ(u, v)

Φ + Ψ : V × V → K, (u, v) 7→ Φ(u, v) + Ψ(u, v).
(ii) To a bilinear form Φ on V , let AΦ denote its Gram-matrix w.r.t. β. Show that the map Φ 7→ AΦ

is a linear isomorphism from Sesq(V ) onto the space Mn(K) of n× n-square matrices over K.
(iii) What is the dimension of Sesq(V )?



Homework
H 27 Determine the rank and signature of the quadratic form on R3 defined by

q(x1, x2, x3) = x1x2 + 2x1x3 + x2
3.

H 28 Let V be the real vector space of complex 2× 2 hermitean matrices and let W ⊂ V be the subspace
of matrices with trace (i.e. sum of the diagonal entries) equal to 0. Show:
(i) q = det is a quadratic form on V , i.e. there is a symmetric bilinear form Φ with Φ(v, v) = q(v).
(ii) The symmetric bilinear form Φ is negative definite on W . I.e. Φ(w,w) < 0 for all w ∈ W \ {0}.

H 29 Let V be a vector space over some field K with involution ∗ in which 2 = 1 + 1 6= 0. Recall that a ∗-
sesquilinear form Ψ on V is called ∗-hermitean (resp. ∗-skew hermitean), if Ψ = Ψ∗ (resp. Ψ = −Ψ∗).
Show that every ∗-sesquilinear form Φ on V is the unique sum of a ∗-hermitean and a ∗-skew hermitean
sesquilinear form.

Please note that the next exercise groups will, instead of Thursday, take place on the
coming Monday 12.6.2006 3:20 pm-5:00 pm in room S2 15/201. Homework solutions
may also be submitted on Thursday, 22.6.2006.
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Groupwork

G 33 We put u = (x1, x2)t and v = (y1, y2)t. Let f be the bilinear form on R2 defined by

f(u, v) = 2x1y1 − 3x1y2 + x2y2.

(i) Determine the Gram-matrix A of f w.r.t. the basis {e1 = (1, 0)t, e2 = (1, 1)t}.
(ii) Determine the Gram-matrix B of f w.r.t. the basis {e′1 = (2, 1)t, e′2 = (1,−1)t}.
(iii) Determine the transition matrix P from {e1, e2} to {e′1, e′2} and verify that B = P tAP .

To (i): A = (aij) with aij = f(ei, ej). E.g. a12 = f(e1, e2) = 2− 3 + 0 = −1. This gives A =
(

2 −1
2 0

)
.

To (ii): As above, B = (bij) with bij = f(e′i, e
′
j). Thus B =

(
3 9
0 6

)
.

To (iii): P =
(

1 2
1 −1

)
thus P t =

(
1 1
2 −1

)
and P tAP =

(
1 1
2 −1

) (
2 −1
2 0

) (
1 2
1 −1

)
=

(
3 9
0 6

)
= B.

G 34 For each of the following matrices Ai, i = 1, 2 find matrices Pi, such that P t
i AiPi is diagonal. What is

the signature of Ai?

(i) A1 =

 1 −3 2
−3 7 −5
2 −5 8

 , (ii) A2 =

0 1 1
1 −2 2
1 2 −1

 .

To (i): First, we form the block matrix (A1, I) =

 1 −3 2 | 1 0 0
−3 7 −5 | 0 1 0
2 −5 8 | 0 0 1

. Then we proceed by the

‘symmetric Gauss algorithm’ given in the script. I.e. we transform the left hand block in several
steps to diagonal form, where in each step an elementary column operation is followed by the
corresponding row operation, whereas the right hand block only records the column operation we
have made. For instance, in the left hand block add three times the first column to the second
column and then three times the (new) firs row to the (new) second row. In the right hand block

just add three times the first column to the second column. This gives

1 0 2 | 1 3 0
0 −2 1 | 0 1 0
2 1 8 | 0 0 1

.

After several such steps we end up with

1 0 0 | 1 3 −1
0 −2 0 | 0 1 1
0 0 18 | 0 0 2

. Thus P1 =

1 3 −1
0 1 1
0 0 2


and P t

1A1P1 =

1 0 0
0 −2 0
0 0 18

. The signature of A1 is easily read off as (2, 1).

To (ii): Just as in (i), we form (A2, I) =

0 1 1 | 1 0 0
1 −2 2 | 0 1 0
1 2 −1 | 0 0 1

. As above, we transform this pair

and obtain P2 =

0 0 2
0 1 −3
1 2 −4

 and P t
2A2P2 =

−1 0 0
0 2 0
0 0 −14

. The signature of A2 is (1, 2).

G 35 Let V be a n-dimensional vector space and let β = {e1, . . . , en} be a basis of V . Show that a
∗-sesquilinear form Φ on V is ∗-hermitean, resp. ∗-skew hermitean, if and only if its associated
Gram-Matrix A w.r.t. β is ∗-hermitean, resp. ∗-skew hermitean. I.e. A satisfies A∗ = A, resp.
A∗ = −A.

Suppose that Φ is ∗-hermitean. Since the entries of the Gram-matrix A = (aij) are given by aij =
Φ(ei, ej), we have by symmetry of Φ that aij = Φ(ei, ej) = Φ∗(ej , ei) = a∗ji, hence A = A∗. Similarly, if

Φ is ∗-skew hermitean one shows that A = −A∗. Conversely, suppose that A = A∗. Then Φ(ei, ej) =
aij = a∗ji = Φ∗(ej , ei). If now u, v ∈ V are arbitrary elements, we can write them w.r.t. β as
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u =
∑n

i=1 uiei and v =
∑n

i=1 viei. We therefore have

Φ(u, v) = Φ(
n∑

i=1

uiei,

n∑
j=1

vjej) =
n∑

i,j=1

u∗i vjΦ(ei, ej) =
n∑

i,j=1

u∗i vjΦ∗(ej , ei) =
n∑

i,j=1

(uiv
∗
j Φ(ej , ei))∗

=

 n∑
i,j=1

v∗j uiΦ(ej , ei)

∗

= Φ∗(v, u).

Similarly, one shows that Φ = −Φ∗ if A = −A∗.

G 36 Let P =
(

i i
−1 1

)
and A =

(
a b
b a

)
. Compute

(i) P−1AP, (ii) P ∗AP, (iii) P tAP.

Which transformation is the correct one if we view A as the matrix associated with
(a) a linear endomorphism of C2

(b) a complex bilinear form on C2 (i.e. ∗-sesquilinear w.r.t. the trivial involution)
(c) a sesquilinear form on C2 (i.e. ∗-sequilinear w.r.t. complex conjugation)

and perform a change of basis from {(1, 0)t, (0, 1)t} to {(i,−1)t, (i, 1)t} in C2? If a = 1, b = 0,
which transformations preserve the eigenvalues of A, which the signs of the eigenvalues and which the
invertability of A?

We have P−1 =
(
−i/2 −1/2
−i/2 1/2

)
, P ∗ =

(
−i −1
−i 1

)
and P t =

(
i −1
i 1

)
. Then

(i) P−1AP =
(

a −ib
ib a

)
, (ii) P ∗AP =

(
2a −2ib
2ib 2a

)
, (iii) P tAP =

(
−2ib −2a
−2a 2ib

)
.

(i) describes the transformation of the linear endomorphism, (ii) describes the transformation of the
sequilinear form and (iii) the transformation of the complex bilinear form. Furthermore, (i), (ii) and
(iii) preserve the invertability of A, (i) and (ii) preserve the signs of the eigenvalues of A and (i)
preserves the eigenvalues of A.

G 37 Let V be a n-dimensional vector space over a field K with involution ∗ and let β = {e1, . . . , en} be a
basis of V .
(i) Show that the set of ∗-sesquilinear forms Sesq(V ) on V is a vector space over K with respect to the

following definitions of scalar multiplication and addition for every λ ∈ K and Φ,Ψ ∈ Sesq(V ):

λ · Φ : V × V → K, (u, v) 7→ λ · Φ(u, v)

Φ + Ψ : V × V → K, (u, v) 7→ Φ(u, v) + Ψ(u, v).
(ii) To a bilinear form Φ on V , let AΦ denote its Gram-matrix w.r.t. β. Show that the map Φ 7→ AΦ

is a linear isomorphism from Sesq(V ) onto the space Mn(K) of n× n-square matrices over K.
(iii) What is the dimension of Sesq(V )?

To (i): One could either verify all vector space axioms for Sesq(V ), which is a somewhat tedious or instead
show that Sesq(V ) is a linear subspace of a suitable vector space. In fact, Sesq(V ) is a subset of
the vector space V V ×V of all maps from V × V to V and the addition and scalar multiplication
we have defined, coincides with the ones on V V ×V . We just have to show that the zero vector is
contained in Sesq(V ) and that for Φ,Ψ ∈ Sesq(V ) and λ ∈ K we have λ · Φ + Ψ ∈ Sesq(V ). In
fact, the zero vector in V V ×V is the map which is zero everywhere on V × V . This is clearly a
∗-sesquilinear form. Furthermore,

(λ · Φ + Ψ)(u + ru′, v) = λΦ(u + ru′, v) + Ψ(u + ru′, v)
= λΦ(u, v) + λr∗Φ(u′, v) + Ψ(u, v) + r∗Ψ(u′, v)
= (λ · Φ + Ψ)(u, v) + r∗(λ · Φ + Ψ)(u′, v).

This proves linearity in the first argument. The second argument can be dealt with analogously.
To (ii): In the script it is already shown that the assignment Φ 7→ AΦ is a bijection. It remains to

show that it is linear. That is, we have to show that Aλ·Φ+Ψ = λ · AΦ + AΨ. However, since
(λ · Φ + Ψ)(ei, ej) = λΦ(ei, ej) + Ψ(ei, ej), describes on the left hand side the (i, j)-th entry of
Aλ·Φ+Ψ and the right hand side the (i, j)-th entry of λ ·AΦ + AΨ, we have proven our claim.

To (iii): From (ii) we see that dimK Sesq(V ) = n2.
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Homework
H 27 Determine the rank and signature of the quadratic form on R3 defined by

q(x1, x2, x3) = x1x2 + 2x1x3 + x2
3.

The associated symmetric matrix is

0 1
2 1

1
2 0 0
1 0 1

. Using, for instance, the symmetric Gauss-algorithm

we obtain that the signature of q is (2, 1), hence the rank is 3.

H 28 Let V be the real vector space of complex 2× 2 hermitean matrices and let W ⊂ V be the subspace
of matrices with trace (i.e. sum of the diagonal entries) equal to 0. Show:
(i) q = det is a quadratic form on V , i.e. there is a symmetric bilinear form Φ with Φ(v, v) = q(v).
(ii) The symmetric bilinear form Φ is negative definite on W . I.e. Φ(w,w) < 0 for all w ∈ W \ {0}.

To (i): A general 2× 2-hermitian matrix has the form A =
(

a b + ic
b− ic d

)
with arbitrary a, b, c, d ∈ R.

Hence, det A = ad − b2 − c2. The sum of two hermitian matrices as well as a real(!) scalar
multiple of a hermitian matrix is again hermitian. Thus V is a subspace of the real vector space
of all complex 2 × 2-matrices. From the above description of a general 2 × 2-hermitian matrix,
we see that V has dimension 4 and a basis is given by

{e1 =
(

1 0
0 0

)
, e2 =

(
0 1
1 0

)
, e3 =

(
0 i
−i 0

)
, e4 =

(
0 0
0 1

)
}.

W.r.t. this basis, we can write down a Gram-matrix for q, showing that q is indeed a quadratic

form:


0 0 0 1

2
0 −1 0 0
0 0 −1 0
1
2 0 0 0

. If we put u =
(

a1 b1 + ic1

b1 − ic1 d1

)
and v =

(
a2 b2 + ic2

b2 − ic2 d2

)
, the

associated symmetric bilinear form is Φ(u, v) = 1
2a1d2 + 1

2a2d1 − b1b2 − c1c2.

To (ii): A general element of W has the form B =
(

a b + ic
b− ic −a

)
and W is easily recognized as a

three-dimensional (real) subspace of V , with a basis given by

{f1 =
(

1 0
0 −1

)
, f2 =

(
0 1
1 0

)
, f3 =

(
0 i
−i 0

)
}.

Now if w =
(

a b + ic
b− ic −a

)
, then Φ(w,w) = det

(
a b + ic

b− ic −a

)
= −a2 − b2 − c2 < 0, if w 6= 0

and we have shown that Φ is indeed negative definite on W .

H 29 Let V be a vector space over some field K with involution ∗ in which 2 = 1 + 1 6= 0. Recall that a ∗-
sesquilinear form Ψ on V is called ∗-hermitean (resp. ∗-skew hermitean), if Ψ = Ψ∗ (resp. Ψ = −Ψ∗).
Show that every ∗-sesquilinear form Φ on V is the unique sum of a ∗-hermitean and a ∗-skew hermitean
sesquilinear form.
Put Φ1 := 1

2(Φ+Φ∗) and Φ2 := 1
2(Φ−Φ∗). Obviously Φ = Φ1 +Φ2 and Φ∗

1 = Φ1 as well as Φ∗
2 = −Φ2.

This proves one half of the claim. Suppose now that Φ = Ψ1 + Ψ2 for some ∗-hermitian Ψ1 and some
∗-skew hermitian Ψ2. From our first desomposition we obtain the equation Ψ1 − Φ1 = Φ2 −Ψ2. It is
easy to verify that the sets of ∗-hermitian and ∗-skew hermitian sesquilinear forms each form a linear
subpace of the space of all ∗-sesquilinear forms Sesq(V ) on V . So on the left hand side of the equation
is a ∗-hermitian sesquilinear form and on the right hand side is a ∗-skew hermitian sesquilinear form.
However, Λ = Λ∗ = −Λ∗ shows that Λ = 0. Hence Ψi and Φi coincide for i = 1, 2 and we have shown
that the decomposition is unique.

Please note that the next exercise groups will, instead of Thursday, take place on the
coming Monday 12.6.2006 3:20 pm-5:00 pm in room S2 15/201. Homework solutions
may also be submitted on Thursday, 22.6.2006.


