Linear Algebra II (MCS), SS 2006, Exercise 7

Groupwork

G 28 (i) Let $u=\left(x_{1}, x_{2}\right)^{t}$ and $v=\left(y_{1}, y_{2}\right)^{t}$. Which of the following expressions are bilinear forms on \mathbb{R}^{2} ?
(a) $f(u, v)=2 x_{1} y_{2}-3 x_{2} y_{1}$,
(d) $f(u, v)=x_{1} x_{2}+y_{1} y_{2}$,
(b) $f(u, v)=x_{1}+y_{2}$,
(e) $f(u, v)=1$,
(c) $f(u, v)=3 x_{2} y_{2}$,
$(f) \quad f(u, v)=0$.
(ii) Let $u=\left(x_{1}, x_{2}, x_{3}\right)^{t}$ and $v=\left(y_{1}, y_{2}, y_{3}\right)^{t}$. Determine the matrix A associated with the map:

$$
f(u, v):=3 x_{1} y_{1}-2 x_{1} y_{2}+5 x_{2} y_{1}+7 x_{2} y_{2}-8 x_{2} y_{3}+4 x_{3} y_{2}-x_{3} y_{3}
$$

(iii) Let A be a $n \times n$ matrix over K. Show that the map $f(u, v)=u^{t} \cdot A \cdot v$ is a bilinear form on K^{n}. G 29 On \mathbb{R}^{2} consider the quadratic form $f(x, y)=\lambda x^{2}+\mu y^{2}$ with parameters $\lambda>\mu \in \mathbb{R}$.
(i) Let $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ denote the unit circle. What are the extremal values of $\left.f\right|_{S^{1}}$?
(ii) For $\lambda=1$ and $\mu=-\frac{1}{4}$ show that the isohypsis of height 0 , i.e. the level set $M_{0}:=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $f(x, y)=0\}$, is the union of two intersecting lines. Draw a picture of them together with the isohypsis M_{1} of height 1 . What can you say about the distance of a point P on M_{0} to M_{1}, as the distance of P to the origin goes to infinity?
G 30 Let ϕ be an endomorphism of a vector space V over K.
(i) Show that the following subspaces of V are invariant under ϕ :
(a) $\{0\}$,
(b) V,
(c) $\operatorname{ker}(\phi)$,
(d) $\operatorname{im}(\phi)$.
(ii) Let $W_{i}, i \in I$ be a collection of ϕ-invariant subspaces of V. Show that $\bigcap_{i \in I} W_{i}$ is also ϕ-invariant.
(iii) Let $p \in K[t]$ be an arbitrary polynomial over K. Show that $\operatorname{ker}(p(\phi))$ is invariant under ϕ.

G 31 Let $\phi: V \rightarrow V$ be an endomorphism and $V=U \oplus W$. Show that U and W are both invariant under ϕ if and only if $\phi \circ \pi=\pi \circ \phi$, where $\pi: V \rightarrow V$ denotes the projection of V along W onto U.
G 32 Let V be a vector space and W_{1}, \ldots, W_{r} linear subspaces of V.
(i) Is it true that $V=W_{1} \oplus \cdots \oplus W_{r}$ if and only if $V=W_{1}+\cdots+W_{r}$ and $W_{i} \cap W_{j}=\{0\}$ for $i \neq j$? Give a proof or a counterexample!
(ii) Suppose that $\left\{w_{i 1}, \ldots, w_{i n_{i}}\right\}$ is a basis of W_{i} for $i=1, \ldots, r$. Show that $V=W_{1} \oplus \cdots \oplus W_{r}$ if and only if $\beta=\left\{w_{11}, \ldots, w_{1 n_{1}}, \ldots, w_{r 1}, \ldots, w_{r n_{r}}\right\}$ is a basis of V.
(iii) Let $U, W \subset V$ be linear subspaces with $V=U \oplus W$. Suppose that $U=U_{1} \oplus U_{2}$ and $W=W_{1} \oplus W_{2}$. Show that $V=U_{1} \oplus U_{2} \oplus W_{1} \oplus W_{2}$.

Homework

H 23 Determine the symmetric matrices associated to each of the following quadratic forms:
(i) $q(x, y)=4 x^{2}-6 x y-7 y^{2}$,
(iii) $q(x, y, z)=3 x^{2}+4 x y-y^{2}+8 x z-6 y z+z^{2}$,
(ii) $q(x, y)=x y+y^{2}$,
(iv) $\quad q(x, y, z)=x^{2}-2 y z+x z$.

H 24 Let V be an n-dimensional vector space. Show that an endomorphism $\phi: V \rightarrow V$ has a triangular matrix representation, if and only if there exist ϕ-invariant subspaces $W_{1} \subset W_{2} \subset \ldots \subset W_{n}=V$, such that $\operatorname{dim} W_{i}=i$, for $i=1, \ldots, n$.
H25 Let $P=(-p, 0)^{t}, Q=(p, 0)^{t}$ and $X=\left(x_{1}, x_{2}\right)^{t}$ be points in \mathbb{R}^{2} with $p>0$ fixed and denote by r_{P}, resp. r_{Q}, the distance of X to P, resp. Q, in the Euclidean distance. Show that the set E of all X satisfying $r_{P}+r_{Q}=2 c$ for some constant $c>p$ is an ellipse. I.e. $E=\left\{X \in \mathbb{R}^{2} \left\lvert\, \frac{x_{1}^{2}}{\lambda^{2}}+\frac{x_{2}^{2}}{\mu^{2}}=1\right.\right\}$ with $\lambda, \mu \in \mathbb{R}^{>0}$. Remark: Gardeners use this principle to create elliptically shaped flower beds.
H26 Let ϕ and ψ be diagonalizable endomorphisms of an n-dimensional vector space V. Show that ϕ and ψ commute if and only if they can be simultaneously diagonalized. I.e. $\phi \circ \psi=\psi \circ \phi$ if and only if there is a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, such that the matrices of ϕ, resp. ψ, w.r.t. this basis are diagonal.

Due to the holiday 'Pfingstmontag' on 5.6.2006, lectures will instead take place on Thu. 8.6.2006 8:00 am - 9:40 am in room S1 03/123.

Linear Algebra II (MCS), SS 2006, Exercise 7, Solution

Groupwork

G 28 (i) Let $u=\left(x_{1}, x_{2}\right)^{t}$ and $v=\left(y_{1}, y_{2}\right)^{t}$. Which of the following expressions are bilinear forms on \mathbb{R}^{2} ?
(a) $f(u, v)=2 x_{1} y_{2}-3 x_{2} y_{1}$,
(d) $f(u, v)=x_{1} x_{2}+y_{1} y_{2}$,
(b) $f(u, v)=x_{1}+y_{2}$,
(e) $f(u, v)=1$,
(c) $f(u, v)=3 x_{2} y_{2}$,
(f) $f(u, v)=0$.
(ii) Let $u=\left(x_{1}, x_{2}, x_{3}\right)^{t}$ and $v=\left(y_{1}, y_{2}, y_{3}\right)^{t}$. Determine the matrix A associated with the map:

$$
f(u, v):=3 x_{1} y_{1}-2 x_{1} y_{2}+5 x_{2} y_{1}+7 x_{2} y_{2}-8 x_{2} y_{3}+4 x_{3} y_{2}-x_{3} y_{3} .
$$

(iii) Let A be a $n \times n$ matrix over K. Show that the map $f(u, v)=u^{t} \cdot A \cdot v$ is a bilinear form on K^{n}.

To (i): The maps in (a), (c) and (f) are bilinear forms, since they can be represented by matrices $\left(\begin{array}{cc}0 & 2 \\ -3 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, respectively. The other forms fail to be bilinear because $f\left(0,(1,1)^{t}\right)=1 \neq 0$ in each case.
To (ii): $A=\left(\begin{array}{ccc}3 & -2 & 0 \\ 5 & 7 & -8 \\ 0 & 4 & -1\end{array}\right)$.
To (iii): We have

$$
\begin{aligned}
f(\lambda \cdot u+\tilde{u}, v) & =(\lambda \cdot u+\tilde{u})^{t} \cdot A \cdot v=\left(\lambda \cdot u^{t}+\tilde{u}^{t}\right) \cdot A \cdot y=\lambda \cdot\left(u^{t} \cdot A \cdot v\right)+\tilde{u}^{t} \cdot A \cdot v \\
& =\lambda \cdot f(u, v)+f(\tilde{u}, v),
\end{aligned}
$$

proving linearity in the first argument. Linearity in the second argument is proven analogously.
G 29 On \mathbb{R}^{2} consider the quadratic form $f(x, y)=\lambda x^{2}+\mu y^{2}$ with parameters $\lambda>\mu \in \mathbb{R}$.
(i) Let $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ denote the unit circle. What are the extremal values of $\left.f\right|_{S^{1}}$?
(ii) For $\lambda=1$ and $\mu=-\frac{1}{4}$ show that the isohypsis of height 0 , i.e. the level set $M_{0}:=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $f(x, y)=0\}$, is the union of two intersecting lines. Draw a picture of them together with the isohypsis M_{1} of height 1 . What can you say about the distance of a point P on M_{0} to M_{1}, as the distance of P to the origin goes to infinity?

To (i): For $(x, y) \in S^{1}$, we have $f(x, y)=\lambda x^{2}+\mu y^{2}=\lambda x^{2}+\mu\left(1-x^{2}\right)=(\lambda-\mu) x^{2}+\mu$. Since x ranges through the interval $[-1,1]$ we see that the extremal values are assumed for $(0, \pm 1)$ and $(\pm 1,0)$ and the corresponding values are μ and λ, respectively.
To (ii): We have $f(x, y)=0 \Leftrightarrow x^{2}=\frac{1}{4} y^{2}$. Hence, $M_{0}=l_{1} \cup l_{2}$, where $l_{1}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{2} y\right.\right\}$ and $l_{2}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=-\frac{1}{2} y\right.\right\}$.

The distance of P to M_{1} goes to zero as the distance of P to the origin goes to infinity. l_{1} and l_{2} are the asymptotes of M_{1}. The following graphic shows an example of a topographic map with drawn isohypses:

G 30 Let ϕ be an endomorphism of a vector space V over K.
(i) Show that the following subspaces of V are invariant under ϕ :
(a) $\{0\}$,
(b) V,
(c) $\operatorname{ker}(\phi)$,
(d) $\operatorname{im}(\phi)$.
(ii) Let $W_{i}, i \in I$ be a collection of ϕ-invariant subspaces of V. Show that $\bigcap_{i \in I} W_{i}$ is also ϕ-invariant.
(iii) Let $p \in K[t]$ be an arbitrary polynomial over K. Show that $\operatorname{ker}(p(\phi))$ is invariant under ϕ.

To (i): (a) and (b) are trivial. Since $0 \in \operatorname{ker}(\phi)$, (c) is clear as well. Furthermore, $\operatorname{im}(\phi)=\phi(V) \subset V$. Therefore, $\phi(\operatorname{im}(\phi)) \subset \operatorname{im}(\phi)$.
To (ii): Let $w \in \bigcap_{i \in I} W_{i}$ be arbitrary. Then $w \in W_{i}$ for all $i \in I$. Hence, $\phi(w) \in W_{i}$ for all $i \in I$, whence $\phi(w) \in \bigcap_{i \in I} W_{i}$.
To (iii): Let $v \in \operatorname{ker}(p(\phi))$ be arbitrary. Since $p(\phi) \circ \phi=\phi \circ p(\phi)$, it follows that $p(\phi)(\phi(v))=(\phi \circ p(\phi))(v)=$ 0 . Hence, $\operatorname{ker}(\phi)$ is ϕ-invariant.
G 31 Let $\phi: V \rightarrow V$ be an endomorphism and $V=U \oplus W$. Show that U and W are both invariant under ϕ if and only if $\phi \circ \pi=\pi \circ \phi$, where $\pi: V \rightarrow V$ denotes the projection of V along W onto U.

First suppose that U and W are ϕ-invariant. Let $v \in V$ be arbitrary. Since $V=U \oplus W$, we have a unique decomposition $v=u+w$ with $u \in U$ and $w \in W$ and hence $\pi(v)=u$. Then

$$
(\phi \circ \pi)(v)=\underbrace{\phi(u)}_{\in U}=(\pi \circ \phi)(u)+\underbrace{0}_{=(\pi \circ \phi)(w)}=(\pi \circ \phi)(u+w)=(\pi \circ \phi)(v) .
$$

Next, suppose that ϕ and π commute. Then $\phi(U)=\phi(\pi(U))=(\phi \circ \pi)(U)=(\pi \circ \phi)(U) \subset U$ showing that U is ϕ-invariant. If now $w \in W$ is arbitrary, then $\pi(\phi(w))=\phi(\pi(w))=\phi(0)=0$ and $\phi(w) \in \operatorname{ker}(\pi)=W$. Therefore $\phi(W) \subset W$.
G 32 Let V be a vector space and W_{1}, \ldots, W_{r} linear subspaces of V.
(i) Is it true that $V=W_{1} \oplus \cdots \oplus W_{r}$ if and only if $V=W_{1}+\cdots+W_{r}$ and $W_{i} \cap W_{j}=\{0\}$ for $i \neq j$? Give a proof or a counterexample!
(ii) Suppose that $\left\{w_{i 1}, \ldots, w_{i n_{i}}\right\}$ is a basis of W_{i} for $i=1, \ldots, r$. Show that $V=W_{1} \oplus \cdots \oplus W_{r}$ if and only if $\beta=\left\{w_{11}, \ldots, w_{1 n_{1}}, \ldots, w_{r 1}, \ldots, w_{r n_{r}}\right\}$ is a basis of V.
(iii) Let $U, W \subset V$ be linear subspaces with $V=U \oplus W$. Suppose that $U=U_{1} \oplus U_{2}$ and $W=W_{1} \oplus W_{2}$. Show that $V=U_{1} \oplus U_{2} \oplus W_{1} \oplus W_{2}$.

To (i): No. Take for instance $V=\mathbb{R}^{2}$ and for W_{1}, W_{2}, W_{3} any three lines which pairwise only intersect in the origin. Then $V=W_{1}+W_{2}+W_{3}$ but the sum is not direct for dimension reasons.

To (ii): This is part (4) of Theorem 34.1 in the finite dimensional case.
To (iii): Let $\left\{u_{11}, \ldots, u_{1 n_{1}}\right\},\left\{u_{21}, \ldots, u_{2 n_{2}}\right\},\left\{w_{11}, \ldots, w_{1 n_{3}}\right\}$ and $\left\{w_{21}, \ldots, w_{2 n_{4}}\right\}$ be bases of U_{1}, U_{2}, W_{1} and W_{2}, respectively. By (ii), or part (4) of Theorem 34.1, $\left\{u_{11}, \ldots, u_{1 n_{1}}, u_{21}, \ldots, u_{2 n_{2}}\right\}$ is a basis of U and $\left\{w_{11}, \ldots, w_{1 n_{3}}, w_{21}, \ldots, w_{2 n_{4}}\right\}$ is a basis of W. Since $V=U \oplus W$ and (ii) again, we have that $\left\{u_{11}, \ldots, u_{1 n_{1}}, u_{21}, \ldots, u_{2 n_{2}}, w_{11}, \ldots, w_{1 n_{3}}, w_{21}, \ldots, w_{2 n_{4}}\right\}$ is a basis of V. Invoking (ii) for a third time, we conclude that $V=U_{1} \oplus U_{2} \oplus W_{1} \oplus W_{2}$.

Homework

H 23 Determine the symmetric matrices associated to each of the following quadratic forms:
(i) $q(x, y)=4 x^{2}-6 x y-7 y^{2}$, (iii) $q(x, y, z)=3 x^{2}+4 x y-y^{2}+8 x z-6 y z+z^{2}$,
(ii) $q(x, y)=x y+y^{2}$,
(iv) $\quad q(x, y, z)=x^{2}-2 y z+x z$.
(i) $\left(\begin{array}{cc}4 & -3 \\ -3 & -7\end{array}\right)$,
(iii) $\left(\begin{array}{ccc}3 & 2 & 4 \\ 2 & -1 & -3 \\ 4 & -3 & 1\end{array}\right)$,
(ii) $\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 1\end{array}\right)$,
(iv) $\left(\begin{array}{ccc}1 & 0 & \frac{1}{2} \\ 0 & 0 & -1 \\ \frac{1}{2} & -1 & 0\end{array}\right)$.

H 24 Let V be an n-dimensional vector space. Show that an endomorphism $\phi: V \rightarrow V$ has a triangular matrix representation, if and only if there exist ϕ-invariant subspaces $W_{1} \subset W_{2} \subset \ldots \subset W_{n}=V$, such that $\operatorname{dim} W_{i}=i$, for $i=1, \ldots, n$.

Let ϕ have a triangular matrix representation. That is, there exists some basis $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ of V such that the matrix $A=\left(a_{i j}\right)$ of ϕ w.r.t. β is in lower triangular form. By the latter one we mean that $a_{i j}=0$ for $i<j$. The proof works slightly modified for the upper triangular form, too. Now A being triangular implies that $\phi\left(e_{i}\right)=\sum_{j=1}^{i} a_{i j} e_{j}$. If we therefore put $W_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}$ then $W_{1} \subset W_{2} \subset \cdots \subset W_{n}=V, \operatorname{dim} W_{i}=i$ for $i=1, \ldots, n$ and furthermore $\phi\left(W_{i}\right) \subset W_{i}$.
Conversely, given $W_{1} \subset W_{2} \subset \cdots \subset W_{n}=V$ as above, we construct a basis β_{i} of W_{i} inductively as follows. For $i=1$ put $\beta_{1}=\left\{e_{1}\right\}$, where $e_{1} \in W_{1} \backslash\{0\}$ is an arbitrary element. For $i>1$ suppose that we have already constructed β_{i-1}. Since β_{i-1} is a system of linear independent vectors in W_{i} and $\operatorname{dim} W_{i}=i$, we may complete β_{i-1} by an element of W_{i} to a basis β_{i} of W_{i}. By ϕ-invariance of the W_{i} we conclude that $\phi\left(e_{i}\right)=\sum_{j=1}^{i} a_{i j} e_{j}$ for some coefficients $a_{i j}$ in the ground field. If we put $a_{i j}:=0$ for $i<j$, then the matrix $A:=\left(a_{i j}\right)$ is obviously a triangular representation matrix of ϕ.
H 25 Let $P=(-p, 0)^{t}, Q=(p, 0)^{t}$ and $X=\left(x_{1}, x_{2}\right)^{t}$ be points in \mathbb{R}^{2} with $p>0$ fixed and denote by r_{P}, resp. r_{Q}, the distance of X to P, resp. Q, in the Euclidean distance. Show that the set E of all X satisfying $r_{P}+r_{Q}=2 c$ for some constant $c>p$ is an ellipse. I.e. $E=\left\{X \in \mathbb{R}^{2} \left\lvert\, \frac{x_{1}^{2}}{\lambda^{2}}+\frac{x_{2}^{2}}{\mu^{2}}=1\right.\right\}$ with $\lambda, \mu \in \mathbb{R}^{>0}$. Remark: Gardeners use this principle to create elliptically shaped flower beds.
We have $r_{P}=\sqrt{\left(x_{1}+p\right)^{2}+x_{2}^{2}}$ and $r_{Q}=\sqrt{\left(x_{1}-p\right)^{2}+x_{2}^{2}}$. To get rid of the square roots in the equation $r_{P}+r_{Q}=2 c$, we square it first and obtain $r_{P}^{2}+r_{Q}^{2}+2 r_{P} r_{Q}=4 c^{2}$, which we rearrange to $2 r_{P} r_{Q}=4 c^{2}-r_{P}^{2}-r_{Q}^{2}$ and square again to finally arrive at

$$
\begin{equation*}
4 r_{P}^{2} r_{Q}^{2}=\left(4 c^{2}-r_{P}^{2}-r_{Q}^{2}\right)^{2} . \tag{*}
\end{equation*}
$$

Now we have $r_{P}^{2}=x_{1}^{2}+x_{2}^{2}+p^{2}+2 x_{1} p$ and $r_{Q}^{2}=x_{1}^{2}+x_{2}^{2}+p^{2}-2 x_{1} p$, such that $r_{P}^{2} r_{Q}^{2}=\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)^{2}-4 x_{1}^{2} p^{2}$ and $r_{P}^{2}+r_{Q}^{2}=2\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)$. Thus equation (*) becomes

$$
\begin{aligned}
4\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)^{2}-16 x_{1}^{2} p^{2} & =\left(4 c^{2}-2\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)\right)^{2} \\
& =16 c^{4}-16 c^{2}\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)+4\left(x_{1}^{2}+x_{2}^{2}+p^{2}\right)^{2}
\end{aligned}
$$

The fourth powers cancel out and we end up with an equation of degree two, which we rewrite in the final form

$$
\frac{x_{1}^{2}}{c^{2}}+\frac{x_{2}^{2}}{{\sqrt{c^{2}-p^{2}}}^{2}}=1 .
$$

Note how the condition $c>p$ enters in the calculation. Of course, there is a geometric reason for this condition. Can you see it?

If we put $\lambda:=c$ and $\mu:=\sqrt{c^{2}-p^{2}}$ then we have shown that all points of E lie on the ellipse described by $\frac{x_{1}^{2}}{\lambda^{2}}+\frac{x_{2}^{2}}{\mu^{2}}=1$.

Conversely, we have to show that every point X on the ellipse above is also a point of E. In fact, all transformations we have made were equivalence transformations. This is clear except for the two times we squared the equations. The first time we did, both sides of the equation $r_{P}+r_{Q}=2 c$ were positive and squaring the equation is an equivalence transformation. The second time, we squared the equation $2 r_{P} r_{Q}=4 c^{2}-r_{P}^{2}-r_{Q}^{2}$ and the left hand side is clearly nonnegative as both r_{P} and r_{Q} are nonnegative by definition. The right hand side involves a little estimate: Note that the defining relation of the ellipse $\frac{x_{1}^{2}}{\lambda^{2}}+\frac{x_{2}^{2}}{\mu^{2}}=1$ implies $x_{1}^{2} \leq \lambda^{2}=c^{2}$ and $x_{2}^{2} \leq \mu^{2}=c^{2}-p^{2}$. Then

$$
4 c^{2}-r_{P}^{2}-r_{Q}^{2}=4 c^{2}-2 x_{1}^{2}-2 x_{2}^{2}-2 p^{2} \geq 4 c^{2}-2 c^{2}-2 c^{2}+2 p^{2}-2 p^{2} \geq 0
$$

Thus, the second time we squared, we also did an equivalence transformation. Since all transformations can be performed in both directions, we have shown that $E=\left\{X \in \mathbb{R}^{2} \left\lvert\, \frac{x_{1}^{2}}{\lambda^{2}}+\frac{x_{2}^{2}}{\mu^{2}}=1\right.\right\}$ with $\lambda=c$ and $\mu=\sqrt{c^{2}-p^{2}}$.
H 26 Let ϕ and ψ be diagonalizable endomorphisms of an n-dimensional vector space V. Show that ϕ and ψ commute if and only if they can be simultaneously diagonalized. I.e. $\phi \circ \psi=\psi \circ \phi$ if and only if there is a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, such that the matrices of ϕ, resp. ψ, w.r.t. this basis are diagonal. Let $\beta\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis as above and let $A=\left(a_{i j}\right)$, resp. $B=\left(b_{i j}\right)$ be the matrices of ϕ, resp. ψ w.r.t. this base. We have $a_{i j}=b_{i j}=0$ for $i \neq 0$, by assumption. Now let $v \in V$ be arbitrary and let $v=\sum_{i=1}^{n} v_{i} e_{i}$ be its representation w.r.t. β. Then

$$
\begin{aligned}
(\phi \circ \psi)(v) & =(\phi \circ \psi)\left(\sum_{i=1}^{n} v_{i} e_{i}\right)=\phi\left(\sum_{i=1}^{n} v_{i} \psi\left(e_{i}\right)\right)=\phi\left(\sum_{i=1}^{n} v_{i} b_{i i} e_{i}\right)=\sum_{i=1}^{n} v_{i} a_{i i} b_{i i} e_{i} \\
& =(\psi \circ \phi)(v)
\end{aligned}
$$

It follows that ϕ and ψ commute.
Conversely, suppose that ϕ and ψ commute. Let $E_{1} \oplus \cdots \oplus E_{r}$ be the decomposition of V into eigenspaces of ϕ. We first claim that E_{k} is ψ-invariant. Let $v \in E_{k}$ be arbitrary. Then $\phi(v)=$ $\lambda_{k} v$, where λ_{k} denotes the eigenvalue of ϕ corresponding to E_{k}. We have $\phi(\psi(v))=\psi(\phi(v))=$ $\lambda_{k} \psi(v)$, wherefore $\psi(v) \in E_{k}$. Since each E_{k} is ψ-invariant, we have a ψ-invariant decomposition $V=E_{1} \oplus \cdots \oplus E_{r}$ and if $\pi_{k}: V \rightarrow V$ denotes the projection of V onto E_{k} along $\bigoplus_{j=1, j \neq k}^{r} E_{j}$, then by exercise \mathbf{G} 31, $\pi_{k} \circ \psi=\psi \circ \pi_{k}$. If now v is an arbitrary eigenvector of ψ to some eigenvalue, say μ, then $\psi(v)=\mu v$ implies $\mu \pi_{k}(v)=\pi_{k}(\psi(v))=\psi\left(\pi_{k}(v)\right)$. It follows that $\pi_{k}(v)$ is either zero or an eigenvector of ψ to the eigenvalue μ again. In any case, the unique decomposition $v=\sum_{k=1}^{r} \pi_{k}(v)$ with respect to the distinct eigenspaces of ϕ is also a decomposition of v into eigenvectors of ψ (or zero vectors) to a given eigenvalue. If we denote by F_{1}, \ldots, F_{s} the distinct eigenspaces of ψ, it follows that $V_{k l}:=\pi_{k}\left(F_{l}\right)=E_{k} \cap F_{l}$. Hence, $F_{l}=\bigoplus_{k=1}^{r} \pi_{k}\left(F_{l}\right)$ and $V=\bigoplus_{l=1}^{s} F_{l}=\bigoplus_{k=1}^{r} \bigoplus_{l=1}^{s} V_{k l}$ is a direct decomposition of V into ϕ - and ψ-invariant subspaces consisting of eigenvectors of both ϕ and ψ. Taking a basis of each $V_{k l}$ and concatenating them yields a basis of V which diagonalizes both ϕ and ψ.

Due to the holiday 'Pfingstmontag' on 5.6 .2006 , lectures will instead take place on Thu. 8.6.2006 8:00 am - 9:40 am in room S1 03/123.

