
Department of Mathematics
Prof. Dr. Christian Herrmann
Dipl.-Math. Frederick Magata
Dr. Abdelhadi Es-Sarhir A

TECHNISCHE
UNIVERSITÄT
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Linear Algebra II (MCS), SS 2006, Exercise 7
Groupwork
G 28 (i) Let u = (x1, x2)t and v = (y1, y2)t. Which of the following expressions are bilinear forms on R2?

(a) f(u, v) = 2x1y2 − 3x2y1, (d) f(u, v) = x1x2 + y1y2,
(b) f(u, v) = x1 + y2, (e) f(u, v) = 1,
(c) f(u, v) = 3x2y2, (f) f(u, v) = 0.

(ii) Let u = (x1, x2, x3)t and v = (y1, y2, y3)t. Determine the matrix A associated with the map:

f(u, v) := 3x1y1 − 2x1y2 + 5x2y1 + 7x2y2 − 8x2y3 + 4x3y2 − x3y3.

(iii) Let A be a n×n matrix over K. Show that the map f(u, v) = ut ·A · v is a bilinear form on Kn.

G 29 On R2 consider the quadratic form f(x, y) = λx2 + µy2 with parameters λ > µ ∈ R.
(i) Let S1 = {(x, y) | x2 + y2 = 1} denote the unit circle. What are the extremal values of f |S1?
(ii) For λ = 1 and µ = −1

4 show that the isohypsis of height 0, i.e. the level set M0 := {(x, y) ∈ R2 |
f(x, y) = 0}, is the union of two intersecting lines. Draw a picture of them together with the
isohypsis M1 of height 1. What can you say about the distance of a point P on M0 to M1, as
the distance of P to the origin goes to infinity?

G 30 Let φ be an endomorphism of a vector space V over K.
(i) Show that the following subspaces of V are invariant under φ:

(a) {0}, (b) V, (c) ker(φ), (d) im(φ).

(ii) Let Wi, i ∈ I be a collection of φ-invariant subspaces of V . Show that
⋂

i∈I Wi is also φ-invariant.
(iii) Let p ∈ K[t] be an arbitrary polynomial over K. Show that ker(p(φ)) is invariant under φ.

G 31 Let φ : V → V be an endomorphism and V = U ⊕W . Show that U and W are both invariant under
φ if and only if φ ◦ π = π ◦ φ, where π : V → V denotes the projection of V along W onto U .

G 32 Let V be a vector space and W1, . . . , Wr linear subspaces of V .
(i) Is it true that V = W1⊕ · · ·⊕Wr if and only if V = W1 + · · ·+Wr and Wi ∩Wj = {0} for i 6= j?

Give a proof or a counterexample!
(ii) Suppose that {wi1, . . . , wini} is a basis of Wi for i = 1, . . . , r. Show that V = W1 ⊕ · · · ⊕Wr if

and only if β = {w11, . . . , w1n1 , . . . , wr1, . . . , wrnr} is a basis of V .
(iii) Let U,W ⊂ V be linear subspaces with V = U⊕W . Suppose that U = U1⊕U2 and W = W1⊕W2.

Show that V = U1 ⊕ U2 ⊕W1 ⊕W2.

Homework
H 23 Determine the symmetric matrices associated to each of the following quadratic forms:

(i) q(x, y) = 4x2 − 6xy − 7y2, (iii) q(x, y, z) = 3x2 + 4xy − y2 + 8xz − 6yz + z2,
(ii) q(x, y) = xy + y2, (iv) q(x, y, z) = x2 − 2yz + xz.

H 24 Let V be an n-dimensional vector space. Show that an endomorphism φ : V → V has a triangular
matrix representation, if and only if there exist φ-invariant subspaces W1 ⊂ W2 ⊂ . . . ⊂ Wn = V ,
such that dimWi = i, for i = 1, . . . , n.

H 25 Let P = (−p, 0)t, Q = (p, 0)t and X = (x1, x2)t be points in R2 with p > 0 fixed and denote by rP ,
resp. rQ, the distance of X to P , resp. Q, in the Euclidean distance. Show that the set E of all X

satisfying rP + rQ = 2c for some constant c > p is an ellipse. I.e. E = {X ∈ R2 | x2
1

λ2 + x2
2

µ2 = 1} with
λ, µ ∈ R>0. Remark: Gardeners use this principle to create elliptically shaped flower beds.

H 26 Let φ and ψ be diagonalizable endomorphisms of an n-dimensional vector space V . Show that φ and
ψ commute if and only if they can be simultaneously diagonalized. I.e. φ ◦ ψ = ψ ◦ φ if and only if
there is a basis {e1, . . . , en} of V , such that the matrices of φ, resp. ψ, w.r.t. this basis are diagonal.

Due to the holiday ‘Pfingstmontag’ on 5.6.2006, lectures will instead take place on
Thu. 8.6.2006 8:00 am - 9:40 am in room S1 03/123.
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Groupwork

G 28 (i) Let u = (x1, x2)t and v = (y1, y2)t. Which of the following expressions are bilinear forms on R2?

(a) f(u, v) = 2x1y2 − 3x2y1, (d) f(u, v) = x1x2 + y1y2,
(b) f(u, v) = x1 + y2, (e) f(u, v) = 1,
(c) f(u, v) = 3x2y2, (f) f(u, v) = 0.

(ii) Let u = (x1, x2, x3)t and v = (y1, y2, y3)t. Determine the matrix A associated with the map:

f(u, v) := 3x1y1 − 2x1y2 + 5x2y1 + 7x2y2 − 8x2y3 + 4x3y2 − x3y3.

(iii) Let A be a n×n matrix over K. Show that the map f(u, v) = ut ·A · v is a bilinear form on Kn.

To (i): The maps in (a), (c) and (f) are bilinear forms, since they can be represented by matrices(
0 2
−3 0

)
,

(
0 0
0 3

)
and

(
0 0
0 0

)
, respectively. The other forms fail to be bilinear because

f(0, (1, 1)t) = 1 6= 0 in each case.

To (ii): A =




3 −2 0
5 7 −8
0 4 −1


.

To (iii): We have

f(λ · u + ũ, v) = (λ · u + ũ)t ·A · v = (λ · ut + ũt) ·A · y = λ · (ut ·A · v) + ũt ·A · v
= λ · f(u, v) + f(ũ, v),

proving linearity in the first argument. Linearity in the second argument is proven analogously.

G 29 On R2 consider the quadratic form f(x, y) = λx2 + µy2 with parameters λ > µ ∈ R.
(i) Let S1 = {(x, y) | x2 + y2 = 1} denote the unit circle. What are the extremal values of f |S1?
(ii) For λ = 1 and µ = −1

4 show that the isohypsis of height 0, i.e. the level set M0 := {(x, y) ∈ R2 |
f(x, y) = 0}, is the union of two intersecting lines. Draw a picture of them together with the
isohypsis M1 of height 1. What can you say about the distance of a point P on M0 to M1, as
the distance of P to the origin goes to infinity?

To (i): For (x, y) ∈ S1, we have f(x, y) = λx2 + µy2 = λx2 + µ(1− x2) = (λ− µ)x2 + µ. Since x ranges
through the interval [−1, 1] we see that the extremal values are assumed for (0,±1) and (±1, 0)
and the corresponding values are µ and λ, respectively.

To (ii): We have f(x, y) = 0 ⇔ x2 = 1
4y2. Hence, M0 = l1 ∪ l2, where l1 = {(x, y) ∈ R2 | x = 1

2y} and

l2 = {(x, y) ∈ R2 | x = −1
2y}.
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The distance of P to M1 goes to zero as the distance of P to the origin goes to infinity. l1 and l2
are the asymptotes of M1. The following graphic shows an example of a topographic map with
drawn isohypses:
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G 30 Let φ be an endomorphism of a vector space V over K.
(i) Show that the following subspaces of V are invariant under φ:

(a) {0}, (b) V, (c) ker(φ), (d) im(φ).

(ii) Let Wi, i ∈ I be a collection of φ-invariant subspaces of V . Show that
⋂

i∈I Wi is also φ-invariant.
(iii) Let p ∈ K[t] be an arbitrary polynomial over K. Show that ker(p(φ)) is invariant under φ.

To (i): (a) and (b) are trivial. Since 0 ∈ ker(φ), (c) is clear as well. Furthermore, im(φ) = φ(V ) ⊂ V .
Therefore, φ(im(φ)) ⊂ im(φ).

To (ii): Let w ∈ ⋂
i∈I Wi be arbitrary. Then w ∈ Wi for all i ∈ I. Hence, φ(w) ∈ Wi for all i ∈ I, whence

φ(w) ∈ ⋂
i∈I Wi.

To (iii): Let v ∈ ker(p(φ)) be arbitrary. Since p(φ)◦φ = φ◦p(φ), it follows that p(φ)(φ(v)) = (φ◦p(φ))(v) =
0. Hence, ker(φ) is φ-invariant.

G 31 Let φ : V → V be an endomorphism and V = U ⊕W . Show that U and W are both invariant under
φ if and only if φ ◦ π = π ◦ φ, where π : V → V denotes the projection of V along W onto U .

First suppose that U and W are φ-invariant. Let v ∈ V be arbitrary. Since V = U ⊕W , we have a
unique decomposition v = u + w with u ∈ U and w ∈ W and hence π(v) = u. Then

(φ ◦ π)(v) = φ(u)︸︷︷︸
∈U

= (π ◦ φ)(u) + 0︸︷︷︸
= (π ◦ φ)(w)

= (π ◦ φ)(u + w) = (π ◦ φ)(v).

Next, suppose that φ and π commute. Then φ(U) = φ(π(U)) = (φ ◦ π)(U) = (π ◦ φ)(U) ⊂ U
showing that U is φ-invariant. If now w ∈ W is arbitrary, then π(φ(w)) = φ(π(w)) = φ(0) = 0 and
φ(w) ∈ ker(π) = W . Therefore φ(W ) ⊂ W .

G 32 Let V be a vector space and W1, . . . , Wr linear subspaces of V .
(i) Is it true that V = W1⊕ · · ·⊕Wr if and only if V = W1 + · · ·+Wr and Wi ∩Wj = {0} for i 6= j?

Give a proof or a counterexample!
(ii) Suppose that {wi1, . . . , wini} is a basis of Wi for i = 1, . . . , r. Show that V = W1 ⊕ · · · ⊕Wr if

and only if β = {w11, . . . , w1n1 , . . . , wr1, . . . , wrnr} is a basis of V .
(iii) Let U,W ⊂ V be linear subspaces with V = U⊕W . Suppose that U = U1⊕U2 and W = W1⊕W2.

Show that V = U1 ⊕ U2 ⊕W1 ⊕W2.

To (i): No. Take for instance V = R2 and for W1, W2,W3 any three lines which pairwise only intersect
in the origin. Then V = W1 + W2 + W3 but the sum is not direct for dimension reasons.
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To (ii): This is part (4) of Theorem 34.1 in the finite dimensional case.
To (iii): Let {u11, . . . , u1n1}, {u21, . . . , u2n2}, {w11, . . . , w1n3} and {w21, . . . , w2n4} be bases of U1, U2,W1

and W2, respectively. By (ii), or part (4) of Theorem 34.1, {u11, . . . , u1n1 , u21, . . . , u2n2} is a basis
of U and {w11, . . . , w1n3 , w21, . . . , w2n4} is a basis of W . Since V = U ⊕ W and (ii) again, we
have that {u11, . . . , u1n1 , u21, . . . , u2n2 , w11, . . . , w1n3 , w21, . . . , w2n4} is a basis of V . Invoking (ii)
for a third time, we conclude that V = U1 ⊕ U2 ⊕W1 ⊕W2.

Homework
H 23 Determine the symmetric matrices associated to each of the following quadratic forms:

(i) q(x, y) = 4x2 − 6xy − 7y2, (iii) q(x, y, z) = 3x2 + 4xy − y2 + 8xz − 6yz + z2,
(ii) q(x, y) = xy + y2, (iv) q(x, y, z) = x2 − 2yz + xz.

(i)
(

4 −3
−3 −7

)
, (iii)




3 2 4
2 −1 −3
4 −3 1


 ,

(ii)
(

0 1
2

1
2 1

)
, (iv)




1 0 1
2

0 0 −1
1
2 −1 0


 .

H 24 Let V be an n-dimensional vector space. Show that an endomorphism φ : V → V has a triangular
matrix representation, if and only if there exist φ-invariant subspaces W1 ⊂ W2 ⊂ . . . ⊂ Wn = V ,
such that dimWi = i, for i = 1, . . . , n.

Let φ have a triangular matrix representation. That is, there exists some basis β = {e1, . . . , en} of V
such that the matrix A = (aij) of φ w.r.t. β is in lower triangular form. By the latter one we mean
that aij = 0 for i < j. The proof works slightly modified for the upper triangular form, too. Now

A being triangular implies that φ(ei) =
∑i

j=1 aijej . If we therefore put Wi = span{e1, . . . , ei} then

W1 ⊂ W2 ⊂ · · · ⊂ Wn = V , dimWi = i for i = 1, . . . , n and furthermore φ(Wi) ⊂ Wi.
Conversely, given W1 ⊂ W2 ⊂ · · · ⊂ Wn = V as above, we construct a basis βi of Wi inductively as
follows. For i = 1 put β1 = {e1}, where e1 ∈ W1 \ {0} is an arbitrary element. For i > 1 suppose
that we have already constructed βi−1. Since βi−1 is a system of linear independent vectors in Wi

and dimWi = i, we may complete βi−1 by an element of Wi to a basis βi of Wi. By φ-invariance of

the Wi we conclude that φ(ei) =
∑i

j=1 aijej for some coefficients aij in the ground field. If we put

aij := 0 for i < j, then the matrix A := (aij) is obviously a triangular representation matrix of φ.

H 25 Let P = (−p, 0)t, Q = (p, 0)t and X = (x1, x2)t be points in R2 with p > 0 fixed and denote by rP ,
resp. rQ, the distance of X to P , resp. Q, in the Euclidean distance. Show that the set E of all X

satisfying rP + rQ = 2c for some constant c > p is an ellipse. I.e. E = {X ∈ R2 | x2
1

λ2 + x2
2

µ2 = 1} with
λ, µ ∈ R>0. Remark: Gardeners use this principle to create elliptically shaped flower beds.

We have rP =
√

(x1 + p)2 + x2
2 and rQ =

√
(x1 − p)2 + x2

2. To get rid of the square roots in the
equation rP + rQ = 2c, we square it first and obtain r2

P + r2
Q + 2rP rQ = 4c2, which we rearrange to

2rP rQ = 4c2 − r2
P − r2

Q and square again to finally arrive at

4r2
P r2

Q = (4c2 − r2
P − r2

Q)2. (∗)
Now we have r2

P = x2
1 + x2

2 + p2 + 2x1p and r2
Q = x2

1 + x2
2 + p2 − 2x1p, such that

r2
P r2

Q = (x2
1 + x2

2 + p2)2 − 4x2
1p

2 and r2
P + r2

Q = 2(x2
1 + x2

2 + p2). Thus equation (∗) becomes

4(x2
1 + x2

2 + p2)2 − 16x2
1p

2 = (4c2 − 2(x2
1 + x2

2 + p2))2

= 16c4 − 16c2(x2
1 + x2

2 + p2) + 4(x2
1 + x2

2 + p2)2.

The fourth powers cancel out and we end up with an equation of degree two, which we rewrite in
the final form

x2
1

c2
+

x2
2√

c2 − p2
2 = 1.

Note how the condition c > p enters in the calculation. Of course, there is a geometric reason for this
condition. Can you see it?

If we put λ := c and µ :=
√

c2 − p2 then we have shown that all points of E lie on the ellipse

described by
x2
1

λ2 + x2
2

µ2 = 1.
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Conversely, we have to show that every point X on the ellipse above is also a point of E. In fact,
all transformations we have made were equivalence transformations. This is clear except for the two
times we squared the equations. The first time we did, both sides of the equation rP + rQ = 2c were
positive and squaring the equation is an equivalence transformation. The second time, we squared
the equation 2rP rQ = 4c2 − r2

P − r2
Q and the left hand side is clearly nonnegative as both rP and rQ

are nonnegative by definition. The right hand side involves a little estimate: Note that the defining

relation of the ellipse
x2
1

λ2 + x2
2

µ2 = 1 implies x2
1 ≤ λ2 = c2 and x2

2 ≤ µ2 = c2 − p2. Then

4c2 − r2
P − r2

Q = 4c2 − 2x2
1 − 2x2

2 − 2p2 ≥ 4c2 − 2c2 − 2c2 + 2p2 − 2p2 ≥ 0.

Thus, the second time we squared, we also did an equivalence transformation. Since all transformations

can be performed in both directions, we have shown that E = {X ∈ R2 | x2
1

λ2 + x2
2

µ2 = 1} with λ = c

and µ =
√

c2 − p2.

H 26 Let φ and ψ be diagonalizable endomorphisms of an n-dimensional vector space V . Show that φ and
ψ commute if and only if they can be simultaneously diagonalized. I.e. φ ◦ ψ = ψ ◦ φ if and only if
there is a basis {e1, . . . , en} of V , such that the matrices of φ, resp. ψ, w.r.t. this basis are diagonal.
Let β{e1, . . . , en} be a basis as above and let A = (aij), resp. B = (bij) be the matrices of φ, resp. ψ
w.r.t. this base. We have aij = bij = 0 for i 6= 0, by assumption. Now let v ∈ V be arbitrary and let
v =

∑n
i=1 viei be its representation w.r.t. β. Then

(φ ◦ ψ)(v) = (φ ◦ ψ)(
n∑

i=1

viei) = φ(
n∑

i=1

viψ(ei)) = φ(
n∑

i=1

vibiiei) =
n∑

i=1

viaiibiiei

= (ψ ◦ φ)(v).

It follows that φ and ψ commute.
Conversely, suppose that φ and ψ commute. Let E1 ⊕ · · · ⊕ Er be the decomposition of V into
eigenspaces of φ. We first claim that Ek is ψ-invariant. Let v ∈ Ek be arbitrary. Then φ(v) =
λkv, where λk denotes the eigenvalue of φ corresponding to Ek. We have φ(ψ(v)) = ψ(φ(v)) =
λkψ(v), wherefore ψ(v) ∈ Ek. Since each Ek is ψ-invariant, we have a ψ-invariant decomposition
V = E1 ⊕ · · · ⊕ Er and if πk : V → V denotes the projection of V onto Ek along

⊕r
j=1,j 6=k Ej , then

by exercise G31, πk ◦ ψ = ψ ◦ πk. If now v is an arbitrary eigenvector of ψ to some eigenvalue, say
µ, then ψ(v) = µv implies µπk(v) = πk(ψ(v)) = ψ(πk(v)). It follows that πk(v) is either zero or an
eigenvector of ψ to the eigenvalue µ again. In any case, the unique decomposition v =

∑r
k=1 πk(v)

with respect to the distinct eigenspaces of φ is also a decomposition of v into eigenvectors of ψ (or
zero vectors) to a given eigenvalue. If we denote by F1, . . . , Fs the distinct eigenspaces of ψ, it follows
that Vkl := πk(Fl) = Ek ∩ Fl. Hence, Fl =

⊕r
k=1 πk(Fl) and V =

⊕s
l=1 Fl =

⊕r
k=1

⊕s
l=1 Vkl is a

direct decomposition of V into φ- and ψ-invariant subspaces consisting of eigenvectors of both φ and
ψ. Taking a basis of each Vkl and concatenating them yields a basis of V which diagonalizes both φ
and ψ.

Due to the holiday ‘Pfingstmontag’ on 5.6.2006, lectures will instead take place on
Thu. 8.6.2006 8:00 am - 9:40 am in room S1 03/123.


