Linear Algebra II (MCS), SS 2006, Exercise 6

Mini-Quiz

(1) If $\phi: V \rightarrow V$ is an endomorphism and λ is an eigenvalue of ϕ, then the eigenspace U_{λ} of ϕ to the eigenvalue λ is...?The set of all eigenvectors to the eigenvalue λ.
$\sqrt{ }$ The set consisting of all eigenvectors to the eigenvalue λ and the zero vector.$\operatorname{ker}(\lambda \cdot \mathrm{id})$.
(2) An endomorphism ϕ of an n-dimensional vector space is diagonalizable if and only if...? $\square \phi$ has n distinct eigenvalues.
$\square \phi$ has only one eigenvalue whose geometric multiplicity is equal to n.
$\sqrt{ } n$ is equal to the sum of the geometric multiplicities of the distinct eigenvalues of ϕ.
(3) Suppose that A and B are $n \times n$-matrices and that there exists an invertible $n \times n$-matrix P such that $A=P B P^{-1}$. Then A and B have...?
$\sqrt{ }$ The same eigenvalues.
\square The same eigenvectors. \square The same eigenspaces.

Groupwork

G 23 Compute the eigenvalues and eigenvectors of the following matrices over \mathbb{R}, resp. over \mathbb{C} :

$$
\text { (i) } \quad A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right), \quad \text { (ii) } \quad B=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Also determine transformation matrices P, Q and their inverses P^{-1}, Q^{-1}, such that $P^{-1} A P$, resp. $Q^{-1} B Q$ are diagonal matrices.

G 24 Let

$$
A=\left(\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right)
$$

Determine the eigenspaces. Can A be diagonalized?
Hint: Use that the characteristic polynomial of A is $\chi_{A}(x)=-(x+2)^{2}(x-4)$.
G 25 Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right) .
$$

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over \mathbb{C}, but not over \mathbb{R}. Find a real transformation matrix P, such that $P^{-1} A P$ is of the form $\left(\begin{array}{ll}\lambda & 0 \\ 0 & B\end{array}\right)$, where $\lambda \in \mathbb{R}$ and B is a real 2×2 square matrix.

G 26 Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
-2 & -1 & -1
\end{array}\right)
$$

(i) Show that for $p(x)=x^{3}-x$ we have $p(A)=0$.
(ii) Compute A^{2006}.

Remark: $-p(x)$ is the characteristic polynomial of A.
G 27 Let V be an n-dimensional vector space and $U, W \subset V$ complementary subspaces. I.e. $V=U+W$ and $U \cap W=\{0\}$. Give a geometric interpretation of the real eigenvalues and eigenvectors of the following endomorphisms: Reflection of V on U along W, Projection of V onto U along W, Central scaling of V, Scaling of V in n linearly independent directions.
Hint: The first step to the solution of this exercise is to write down the correct definition of each endomorphism. Thinking of $n=2$ or $n=3$ may help your imagination.

Homework

H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diagonalize the matrix over \mathbb{R} or \mathbb{C}, if possible:

$$
\text { (i) }\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 0 & -1 \\
1 & 2 & 2
\end{array}\right), \quad \text { (ii) } \quad\left(\begin{array}{cccc}
-4 & 4 & 4 & -1 \\
-3 & 4 & 3 & -1 \\
-5 & 4 & 5 & -1 \\
-5 & 4 & 5 & -1
\end{array}\right)
$$

H 18 The elements of the sequence u_{1}, u_{2}, \ldots given by the initial values $u_{1}=u_{2}=1$ and the recurrence relation

$$
u_{n+1}=u_{n-1}+u_{n}
$$

are called Fibonacci numbers. The first 14 Fibonacci numbers were produced for the first time in 1228 in the manuscripts of Leonardo of Pisa (Fibonacci).
(i) Compute the first 8 Fibonacci numbers.
(ii) We write the Fibonacci numbers as entries of a vector in the following way:

$$
x_{n}:=\binom{u_{n}}{u_{n-1}}
$$

for $n=2,3, \ldots$. Find a matrix A such that

$$
A x_{n}=x_{n+1} .
$$

Express x_{n} in terms of x_{2} and A.
(iii) Derive $u_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$ (Binet's formula) by computing x_{n} with help of the above.
H 19 In exercise $\mathbf{G} 25$ the basis of the eigenspaces, and hence the matrix P, can be chosen such that B is a spiral $\left(\begin{array}{cc}r \cdot \cos \alpha & -r \cdot \sin \alpha \\ r \cdot \sin \alpha & r \cdot \cos \alpha\end{array}\right)$, with $r>0$ and $\alpha \in[0,2 \pi)$. Determine such a P as well as r and α.
H 20 Let T be the endomorphism $D^{2}+D+$ id on the vector space of polynomials of degree $\leq n$ (c.f. exercise G 20). I.e. $T p(x)=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)$. Can T be diagonalized? (Corr.: We assume that $K=\mathbb{R}$ or $K=\mathbb{C}!$)
H 21 Compute the characteristic polynomial of

$$
A:=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right),
$$

with $a_{i} \in K$ for $i=0,1, \ldots, n-1$.
H 22 (i) Given a polynomial of degree n of the form Corr.: $p(x)=(-1)^{n}\left(x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right) \in K[x]$, is there always an endomorphism ϕ of an n-dimensional vector space V over K, such that p is the characteristic polynomial of ϕ ?
(ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic polynomial.
(i) (Corr.:) $p(x)=-\left(x^{3}-5 x^{2}+6 x+8\right)$,
(ii) $\quad q(x)=x^{4}-5 x^{3}+7 x+4$.

Hint: Exercise H 21 may be helpful for the solution.

Linear Algebra II (MCS), SS 2006, Exercise 6, Solution

Mini-Quiz

(1) If $\phi: V \rightarrow V$ is an endomorphism and λ is an eigenvalue of ϕ, then the eigenspace U_{λ} of ϕ to the eigenvalue λ is...?
\square The set of all eigenvectors to the eigenvalue λ.
$\sqrt{ }$ The set consisting of all eigenvectors to the eigenvalue λ and the zero vector.
$\square \operatorname{ker}(\lambda \cdot \mathrm{id})$.
(2) An endomorphism ϕ of an n-dimensional vector space is diagonalizable if and only if...?
$\square \phi$ has n distinct eigenvalues.
$\square \phi$ has only one eigenvalue whose geometric multiplicity is equal to n.
$\sqrt{ } n$ is equal to the sum of the geometric multiplicities of the distinct eigenvalues of ϕ.
(3) Suppose that A and B are $n \times n$-matrices and that there exists an invertible $n \times n$-matrix P such that $A=P B P^{-1}$. Then A and B have...?
\checkmark The same eigenvalues.
\square The same eigenvectors.
\square The same eigenspaces.

Groupwork

G 23 Compute the eigenvalues and eigenvectors of the following matrices over \mathbb{R}, resp. over \mathbb{C} :

$$
\text { (i) } \quad A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right), \quad \text { (ii) } \quad B=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \text {. }
$$

Also determine transformation matrices P, Q and their inverses P^{-1}, Q^{-1}, such that $P^{-1} A P$, resp. $Q^{-1} B Q$ are diagonal matrices.
To (i): The real (and thus also complex) eigenvalues are $\lambda_{1}=5$ and $\lambda_{2}=-1$. The corresponding eigenvectors are $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{2}{-1}$. Hence, $P=\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right)$ and $P^{-1}=\frac{1}{3}\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right)$.
To (ii): The (complex) eigenvalues are $\lambda_{1}=1-i$ and $\lambda_{2}=1+i$. The corresponding eigenvectors are $v_{1}=\binom{1}{i}$ and $v_{2}=\binom{1}{-i}$. Hence, $Q=\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$ and $Q^{-1}=\frac{1}{2}\left(\begin{array}{cc}1 & -i \\ 1 & i\end{array}\right)$.
G 24 Let

$$
A=\left(\begin{array}{ccc}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right)
$$

Determine the eigenspaces. Can A be diagonalized?
Hint: Use that the characteristic polynomial of A is $\chi_{A}(x)=-(x+2)^{2}(x-4)$.
The eigenspace to the eigenvalue $\lambda_{1}=-2$ is $\mathbb{R} \cdot(1,1,0)^{t}$. The eigenspace to the eigenvalue $\mu=4$ is $\mathbb{R} \cdot(0,1,1)^{t}$. The geometric multiplicity of λ is therefore less than its algebraic multiplicity and A is not diagonalizable.
G 25 Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over \mathbb{C}, but not over \mathbb{R}. Find a real transformation matrix P, such that $P^{-1} A P$ is of the form $\left(\begin{array}{ll}\lambda & 0 \\ 0 & B\end{array}\right)$, where $\lambda \in \mathbb{R}$ and B is a real 2×2 square matrix.
The characteristic polynomial of A is $\chi_{A}(x)=-x\left(x^{2}+3\right)=-x(x-i \sqrt{3})(x+i \sqrt{3})$. Therefore A has one real eigenvalue $\lambda_{1}=0$ and two imaginary eigenvalues $\lambda_{2}=i \sqrt{3}$ and $\lambda_{3}=-i \sqrt{3}$, which are complex conjugated to each other. The corresponding complex eigenvectors are $v_{1}=(1,1,-1)^{t}, v_{2}=$ $(1-i \sqrt{3}, 1+i \sqrt{3}, 2)^{t}$ and $v_{3}=(1+i \sqrt{3}, 1-i \sqrt{3}, 2)^{t}$. Note that $\overline{v_{2}}=v_{3}$.

Since there are three different eigenvalues over \mathbb{C}, we conclude that A is diagonalizable over \mathbb{C}. However, A is not diagonalizable over \mathbb{R}. From chapter 32 we know that with respect to the basis $w_{1}=v_{1}, w_{2}=\Im\left(v_{2}\right)$ and $w_{3}=\Re\left(v_{2}\right)$ our matrix A gets transformed to a block-matrix as claimed. In fact, put $P=\left(\begin{array}{ccc}1 & -\sqrt{3} & 1 \\ 1 & \sqrt{3} & 1 \\ -1 & 0 & 2\end{array}\right)$. Then $P^{-1}=\frac{1}{6}\left(\begin{array}{ccc}2 & 2 & -2 \\ -\sqrt{3} & \sqrt{3} & 0 \\ 1 & 1 & 2\end{array}\right)$ and $P^{-1} A P=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -\sqrt{3} \\ 0 & \sqrt{3} & 0\end{array}\right)$.

G 26 Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
-2 & -1 & -1
\end{array}\right) .
$$

(i) Show that for $p(x)=x^{3}-x$ we have $p(A)=0$.
(ii) Compute A^{2006}.

Remark: $-p(x)$ is the characteristic polynomial of A.
We have $A^{2}=\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$ and $A^{3}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -1 & -1\end{array}\right)=A$. Hence, $p(A)=A^{3}-A=0$ and it follows that $A^{2 k-1}=A$ and $A^{2 k}=A^{2}$ for all $k \in \mathbb{N} \backslash\{0\}$. Thus, $A^{2006}=A^{2}$.
A more systematic approach would be to compute the eigenvalues of A, which are $0,-1$ and 1 and then determine a transformation matrix P such that $P^{-1} A P$ is the diagonal matrix $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Then $A^{2006}=P\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) P^{-1}$.
G 27 Let V be an n-dimensional vector space and $U, W \subset V$ complementary subspaces. I.e. $V=U+W$ and $U \cap W=\{0\}$. Give a geometric interpretation of the real eigenvalues and eigenvectors of the following endomorphisms: Reflection of V on U along W, Projection of V onto U along W, Central scaling of V, Scaling of V in n linearly independent directions.
Hint: The first step to the solution of this exercise is to write down the correct definition of each endomorphism. Thinking of $n=2$ or $n=3$ may help your imagination.

The reflection of V on U along W is the endomorphism $\phi: V \rightarrow V$ which restricted to U is the identity and which restricted to W is minus the identity. I.e. $\left.\phi\right|_{U}=\mathrm{id}_{U}$, resp. $\left.\phi\right|_{W}=-\mathrm{id}_{W}$. It follows that ϕ satisfies the identity $\phi^{2}=\mathrm{id}$, so if λ is an eigenvalue of ϕ with eigenvector $v \neq 0$, then $v=\phi^{2} v=\lambda^{2} \cdot v$. Hence, the only possible eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1$. Obviously, U, the set of fixed points of ϕ, is the eigenspace to $\lambda_{1}=1$ and W is the eigenspace to $\lambda_{2}=-1$. In geometric terms, U is the mirror plane and W is the direction of reflection. Since the geometric multiplicities, i.e. $\operatorname{dim} U$ and $\operatorname{dim} W$ add up to $n=\operatorname{dim} V$, it follows that the reflection ϕ is diagonalizable.

The projection of V onto U along W is the map, which restricted to U is the identity and which restricted to W is the zero map. I.e. $\left.\phi\right|_{U}=\mathrm{id}_{U}$, resp. $\left.\phi\right|_{W}=0$. It follows that ϕ satisfies the identity $\phi^{2}=\phi$, so if λ is an eigenvalue of ϕ with eigenvector $v \neq 0$, then $\lambda \cdot v=\phi v=\phi^{2} v=\lambda^{2} \cdot v$. Hence, the only possible eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=0$. Obviously, U, the set of fixed points of ϕ, is the eigenspace to $\lambda_{1}=1$ and W is the eigenspace to $\lambda_{2}=0$. In geometric terms, U is the projection plane and W is the direction of projection. Since the geometric multiplicities, i.e. $\operatorname{dim} U$ and $\operatorname{dim} W$ add up to $n=\operatorname{dim} V$, it follows that the reflection ϕ is diagonalizable.

The central scaling of V by some scaling factor λ is the map $\phi(v)=\lambda \cdot v$ for all $v \in V$. Clearly, ϕ is diagonalizable, since every nonzero vector $v \in V$ is an eigenvector. In fact, ϕ is diagonal in the sense, that w.r.t to any basis $e_{1}, \ldots, e_{n}, \phi$ is represented by the matrix $A=\lambda \cdot \mathrm{id}$. It is not difficult to see, that this property characterizes a central scaling.

Scaling of V in n directions v_{1}, \ldots, v_{n}, with scaling factors $\lambda_{1}, \ldots, \lambda_{n}$ is the endomorphism ϕ, which is characterized by $\phi v_{i}=\lambda_{i} v_{i}$, for $i=1, \ldots, n$. Hence the λ_{i} are the eigenvalues of ϕ and each v_{i} is an eigenvector to λ_{i}. Since the eigenvectors form a basis of V, we have that ϕ is diagonalizable.

Homework

H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diagonalize the matrix over \mathbb{R} or \mathbb{C}, if possible:

$$
\text { (i) }\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 0 & -1 \\
1 & 2 & 2
\end{array}\right), \quad \text { (ii) } \quad\left(\begin{array}{cccc}
-4 & 4 & 4 & -1 \\
-3 & 4 & 3 & -1 \\
-5 & 4 & 5 & -1 \\
-5 & 4 & 5 & -1
\end{array}\right)
$$

To (i): The characteristic polynomial of $A:=\left(\begin{array}{ccc}2 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 2\end{array}\right)$ is $\chi_{A}(x)=-(x-2)(x-1)^{2}$. Therefore the eigenvalues are $\lambda_{1}=1$ with algebraic multiplicity 2 and $\lambda_{1}=2$ with algebraic multiplicity 1 . An eigenvector to λ_{1} is $v_{1}=(-1,0,1)^{t}$ and there is no second eigenvector to λ_{1} linearly independent to v_{1}. Hence, the geometric multiplicity of λ_{1} is 1 and we already know, that A is not diagonalizable. An eigenvector to λ_{2} is $v_{2}=(-2,1,0)^{t}$.
To (ii): The characteristic polynomial of $B:=\left(\begin{array}{cccc}-4 & 4 & 4 & -1 \\ -3 & 4 & 3 & -1 \\ -5 & 4 & 5 & -1 \\ -5 & 4 & 5 & -1\end{array}\right)$ is $\chi_{B}(x)=x^{2}(x-1)(x-3)$. The eigenvalues are thus $\mu_{1}=0$ with alg. multiplicity $2, \mu_{2}=1$ with alg. multiplicity 1 and $\mu_{3}=3$ with alg. multiplicity 1. Two linearly independent eigenvectors to μ_{1} are $w_{1}=(1,0,1,0)^{t}$ and $w_{2}=(0,1,0,4)^{t}$. For μ_{3} an eigenvector is given by $w_{3}=(-1,1,-3,-3)^{t}$ and for μ_{4} an eigenvector is given by $w_{4}=(1,1,1,1)^{t}$. It follows that B is diagonlizable. A corresponding transformation matrix P with $P^{-1} B P$ diagonal is given by $P=\left(\begin{array}{cccc}1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & -3 & 1 \\ 0 & 4 & -3 & 1\end{array}\right)$.
H 18 The elements of the sequence u_{1}, u_{2}, \ldots given by the initial values $u_{1}=u_{2}=1$ and the recurrence relation

$$
u_{n+1}=u_{n-1}+u_{n}
$$

are called Fibonacci numbers. The first 14 Fibonacci numbers were produced for the first time in 1228 in the manuscripts of Leonardo of Pisa (Fibonacci).
(i) Compute the first 8 Fibonacci numbers.
(ii) We write the Fibonacci numbers as entries of a vector in the following way:

$$
x_{n}:=\binom{u_{n}}{u_{n-1}}
$$

for $n=2,3, \ldots$. Find a matrix A such that

$$
A x_{n}=x_{n+1} .
$$

Express x_{n} in terms of x_{2} and A.
(iii) Derive $u_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$ (Binet's formula) by computing x_{n} with help of the above.
(i) The first Fibonacci numbers are $1,1,2,3,5,8,13,21$.
(ii) Put $A:=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Then $x_{n+1}=A \cdot x_{n}$ and further $x_{n+1}=A^{n-1} \cdot x_{2}$, as can be verified by induction.
(iii) The eigenvalues of A are $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}$. The correspnding eigenvectors are $v_{1}=$ $\left(\lambda_{1}, 1\right)^{t}$ and $v_{2}=\left(\lambda_{2}, 1\right)^{t}$. Put $P=\left(\begin{array}{cc}\lambda_{1} & \lambda_{2} \\ 1 & 1\end{array}\right)$, then $P^{-1} A P$ is diagonal with λ_{1}, λ_{2} as the diagonal entries. More precisely, $P^{-1}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}1 & -\lambda_{2} \\ -1 & \lambda_{1}\end{array}\right)$ and then

$$
A^{n-1}=P\left(\begin{array}{cc}
\lambda_{1}^{n-1} & 0 \\
0 & \lambda_{2}^{n-1}
\end{array}\right) P^{-1}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\lambda_{1}^{n}-\lambda_{2}^{n} & -\lambda_{2} \lambda_{1}^{n}+\lambda_{1} \lambda_{2}^{n} \\
\lambda_{1}^{n-1}-\lambda_{2}^{n-1} & -\lambda_{2} \lambda_{1}^{n-1}+\lambda_{1} \lambda_{2}^{n-1}
\end{array}\right)
$$

Multiplying this with x_{2}, we obtain for u_{n}, as the second component of the resulting vector,

$$
u_{n}=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}-\lambda_{2} \lambda_{1}^{n-1}+\lambda_{1} \lambda_{2}^{n-1}\right)=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n-1}+\lambda_{1}^{n-2}-\left(\lambda_{2}^{n-1}+\lambda_{2}^{n-2}\right)\right) .
$$

Finally, using $\lambda_{i}+1=\lambda_{i}^{2}$ for $i=1,2$ we obtain Binet's formula from the last equation.
H19 In exercise G 25 the basis of the eigenspaces, and hence the matrix P, can be chosen such that B is a spiral $\left(\begin{array}{cc}r \cdot \cos \alpha & -r \cdot \sin \alpha \\ r \cdot \sin \alpha & r \cdot \cos \alpha\end{array}\right)$, with $r>0$ and $\alpha \in[0,2 \pi)$. Determine such a P as well as r and α.

If we take P as in the solution of exercise $\mathbf{G} \mathbf{2 5}$, we obtain $B=\left(\begin{array}{cc}0 & -\sqrt{3} \\ \sqrt{3} & 0\end{array}\right)$, wherefore $r=\sqrt{3}$ and $\alpha=\pi / 2$.
H 20 Let T be the endomorphism $D^{2}+D+\mathrm{id}$ on the vector space of polynomials of degree $\leq n$ (c.f. exercise G 20). I.e. $T p(x)=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)$. Can T be diagonalized? (Corr.: We assume that $K=\mathbb{R}$ or $K=\mathbb{C}!$)

Suppose that $p \neq 0$ is an eigenvector of T for the eigenvalue λ and further suppose that $\operatorname{deg}(p)=k$. Then $\lambda \cdot p=T p=D^{2} p+D p+p$ and substracting p on both sides yields $D^{2} p+D p=(\lambda-1) \cdot p$. On the left hand side is a polynomial of degree $<k$, whereas on the right hand side we have a polynomial of degree k, unless $\lambda=1$. Thus, necessarily $\lambda=1$ and $D^{2} p+D p=0$. Another comparison of the degrees of the summands yields that p has degree zero and is hence a constant. In fact, $p=c$ for some $c \in K \backslash\{0\}$ is an eigenvector and every eigenvector is of this form. Hence, the geometric multiplicity of $\lambda=1$ is 1 and T is not diagonalizable.
H 21 Compute the characteristic polynomial of

$$
A:=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right)
$$

with $a_{i} \in K$ for $i=0,1, \ldots, n-1$.
We claim that

$$
\chi_{A}(x)=\operatorname{det}(A-x \cdot \mathrm{id})=(-1)^{n}\left(x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}\right)=(-1)^{n}\left(x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right)
$$

The proof goes by induction over n. For this purpose we index A by n, for reasons of bookeeping i.e. $A=A_{n}$. For $n=1$ we have $A_{1}=\left(-a_{0}\right)$ and $\chi_{A_{1}}(x)=-x-a_{0}$, as in the formula. For $n \rightarrow n+1$, we develop the matrix by the last row and obtain

$$
\begin{aligned}
\operatorname{det}\left(A_{n+1}-x \cdot \mathrm{id}\right) & =(-1)^{n+n-1} \operatorname{det}\left(A_{n}-x \cdot \mathrm{id}\right)+\left(-a_{n}-x\right)(-x)^{n} \\
& =(-1)^{n+1}\left(x^{n+1}+a_{n} x^{n}\right)-\operatorname{det}\left(A_{n}-x \cdot \mathrm{id}\right) \\
& =(-1)^{n+1}\left(x^{n+1}+a_{n} x^{n}\right)-(-1)^{n}\left(x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}\right) \\
& =(-1)^{n+1}\left(x^{n+1}+a_{n} x^{n}+x^{n}+\sum_{k=0}^{n-1} a_{k} x^{k}\right) \\
& =(-1)^{n+1}\left(x^{n+1}+\sum_{k=0}^{n} a_{k} x^{k}\right)
\end{aligned}
$$

We applyied the induction hypothese in the third equation.
$\mathbf{H} 22$ (i) Given a polynomial of degree n of the form Corr.: $p(x)=(-1)^{n}\left(x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right) \in K[x]$, is there always an endomorphism ϕ of an n-dimensional vector space V over K, such that p is the characteristic polynomial of ϕ ?
(ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic polynomial.
(i) (Corr.:) $p(x)=-\left(x^{3}-5 x^{2}+6 x+8\right)$,
(ii) $\quad q(x)=x^{4}-5 x^{3}+7 x+4$.

Hint: Exercise H 21 may be helpful for the solution.

To (i): Take some basis ov V and define ϕ with respect to this basis by a matrix A as in exercise $\boldsymbol{H} 21$. Then obviously, the answer is positive.

To(ii): Using (i), we put $P:=\left(\begin{array}{ccc}0 & 0 & -8 \\ 1 & 0 & -6 \\ 0 & 1 & -5\end{array}\right)$ and $Q:=\left(\begin{array}{cccc}0 & 0 & 0 & -4 \\ 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5\end{array}\right)$. Then $\chi_{P}(x)=p(x)$ and $\chi_{Q}(x)=q(x)$.

