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Linear Algebra II (MCS), SS 2006, Exercise 6
Mini-Quiz

(1) If φ : V → V is an endomorphism and λ is an eigenvalue of φ, then the eigenspace Uλ of φ to the
eigenvalue λ is...?

� The set of all eigenvectors to the eigenvalue λ.√
The set consisting of all eigenvectors to the eigenvalue λ and the zero vector.

� ker(λ · id).
(2) An endomorphism φ of an n-dimensional vector space is diagonalizable if and only if...?

� φ has n distinct eigenvalues.
� φ has only one eigenvalue whose geometric multiplicity is equal to n.√

n is equal to the sum of the geometric multiplicities of the distinct eigenvalues of φ.
(3) Suppose that A and B are n × n-matrices and that there exists an invertible n × n-matrix P such

that A = PBP−1. Then A and B have...?√
The same eigenvalues.

� The same eigenvectors.
� The same eigenspaces.

Groupwork
G 23 Compute the eigenvalues and eigenvectors of the following matrices over R, resp. over C:

(i) A =
(

1 4
2 3

)
, (ii) B =

(
1 −1
1 1

)
.

Also determine transformation matrices P,Q and their inverses P−1, Q−1, such that P−1AP , resp.
Q−1BQ are diagonal matrices.

G 24 Let

A =

−3 1 −1
−7 5 −1
−6 6 −2

 .

Determine the eigenspaces. Can A be diagonalized?
Hint: Use that the characteristic polynomial of A is χA(x) = −(x + 2)2(x− 4).

G 25 Let

A =

 0 1 1
−1 0 −1
−1 1 0

 .

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over C, but not

over R. Find a real transformation matrix P , such that P−1AP is of the form
(

λ 0
0 B

)
, where λ ∈ R

and B is a real 2× 2 square matrix.

G 26 Let

A =

 1 1 0
1 0 1
−2 −1 −1

 .

(i) Show that for p(x) = x3 − x we have p(A) = 0.
(ii) Compute A2006.
Remark: −p(x) is the characteristic polynomial of A.

G 27 Let V be an n-dimensional vector space and U,W ⊂ V complementary subspaces. I.e. V = U + W
and U ∩ W = {0}. Give a geometric interpretation of the real eigenvalues and eigenvectors of the
following endomorphisms: Reflection of V on U along W , Projection of V onto U along W , Central
scaling of V, Scaling of V in n linearly independent directions.
Hint: The first step to the solution of this exercise is to write down the correct definition of each
endomorphism. Thinking of n = 2 or n = 3 may help your imagination.



Homework
H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diago-

nalize the matrix over R or C, if possible:

(i)

 2 0 1
−1 0 −1
1 2 2

 , (ii)


−4 4 4 −1
−3 4 3 −1
−5 4 5 −1
−5 4 5 −1


H 18 The elements of the sequence u1, u2, . . . given by the initial values u1 = u2 = 1 and the recurrence

relation
un+1 = un−1 + un

are called Fibonacci numbers. The first 14 Fibonacci numbers were produced for the first time in 1228
in the manuscripts of Leonardo of Pisa (Fibonacci).
(i) Compute the first 8 Fibonacci numbers.
(ii) We write the Fibonacci numbers as entries of a vector in the following way:

xn :=
(

un

un−1

)
for n = 2, 3, . . . . Find a matrix A such that

Axn = xn+1.

Express xn in terms of x2 and A.
(iii) Derive un = 1√

5

((
1+

√
5

2

)n
−
(

1−
√

5
2

)n)
(Binet’s formula) by computing xn with help of the

above.

H 19 In exercise G 25 the basis of the eigenspaces, and hence the matrix P , can be chosen such that B is

a spiral
(

r · cos α −r · sinα
r · sinα r · cos α

)
, with r > 0 and α ∈ [0, 2π). Determine such a P as well as r and α.

H 20 Let T be the endomorphism D2+D+id on the vector space of polynomials of degree ≤ n (c.f. exercise
G 20). I.e. Tp(x) = p′′(x) + p′(x) + p(x). Can T be diagonalized? (Corr.: We assume that K = R
or K = C!)

H 21 Compute the characteristic polynomial of

A :=


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

 ,

with ai ∈ K for i = 0, 1, . . . , n− 1.

H 22 (i) Given a polynomial of degree n of the form Corr.: p(x) = (−1)n(xn+an−1x
n−1+· · ·+a0) ∈ K[x],

is there always an endomorphism φ of an n-dimensional vector space V over K, such that p is
the characteristic polynomial of φ?

(ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic
polynomial.

(i) (Corr.:) p(x) = −(x3 − 5x2 + 6x + 8), (ii) q(x) = x4 − 5x3 + 7x + 4.

Hint: Exercise H 21 may be helpful for the solution.
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(1) If φ : V → V is an endomorphism and λ is an eigenvalue of φ, then the eigenspace Uλ of φ to the
eigenvalue λ is...?

� The set of all eigenvectors to the eigenvalue λ.√
The set consisting of all eigenvectors to the eigenvalue λ and the zero vector.

� ker(λ · id).
(2) An endomorphism φ of an n-dimensional vector space is diagonalizable if and only if...?

� φ has n distinct eigenvalues.
� φ has only one eigenvalue whose geometric multiplicity is equal to n.√

n is equal to the sum of the geometric multiplicities of the distinct eigenvalues of φ.
(3) Suppose that A and B are n × n-matrices and that there exists an invertible n × n-matrix P such

that A = PBP−1. Then A and B have...?√
The same eigenvalues.

� The same eigenvectors.
� The same eigenspaces.

Groupwork
G 23 Compute the eigenvalues and eigenvectors of the following matrices over R, resp. over C:

(i) A =
(

1 4
2 3

)
, (ii) B =

(
1 −1
1 1

)
.

Also determine transformation matrices P,Q and their inverses P−1, Q−1, such that P−1AP , resp.
Q−1BQ are diagonal matrices.

To (i): The real (and thus also complex) eigenvalues are λ1 = 5 and λ2 = −1. The corresponding

eigenvectors are v1 =
(

1
1

)
and v2 =

(
2
−1

)
. Hence, P =

(
1 2
1 −1

)
and P−1 = 1

3

(
1 2
1 −1

)
.

To (ii): The (complex) eigenvalues are λ1 = 1− i and λ2 = 1 + i. The corresponding eigenvectors are

v1 =
(

1
i

)
and v2 =

(
1
−i

)
. Hence, Q =

(
1 1
i −i

)
and Q−1 = 1

2

(
1 −i
1 i

)
.

G 24 Let

A =

−3 1 −1
−7 5 −1
−6 6 −2

 .

Determine the eigenspaces. Can A be diagonalized?
Hint: Use that the characteristic polynomial of A is χA(x) = −(x + 2)2(x− 4).

The eigenspace to the eigenvalue λ1 = −2 is R · (1, 1, 0)t. The eigenspace to the eigenvalue µ = 4 is
R · (0, 1, 1)t. The geometric multiplicity of λ is therefore less than its algebraic multiplicity and A is
not diagonalizable.

G 25 Let

A =

 0 1 1
−1 0 −1
−1 1 0

 .

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over C, but not

over R. Find a real transformation matrix P , such that P−1AP is of the form
(

λ 0
0 B

)
, where λ ∈ R

and B is a real 2× 2 square matrix.

The characteristic polynomial of A is χA(x) = −x(x2 + 3) = −x(x − i
√

3)(x + i
√

3). Therefore A
has one real eigenvalue λ1 = 0 and two imaginary eigenvalues λ2 = i

√
3 and λ3 = −i

√
3, which are

complex conjugated to each other. The corresponding complex eigenvectors are v1 = (1, 1,−1)t, v2 =
(1− i

√
3, 1 + i

√
3, 2)t and v3 = (1 + i

√
3, 1− i

√
3, 2)t. Note that v2 = v3.

Since there are three different eigenvalues over C, we conclude that A is diagonalizable over C.
However, A is not diagonalizable over R. From chapter 32 we know that with respect to the basis
w1 = v1, w2 = =(v2) and w3 = <(v2) our matrix A gets transformed to a block-matrix as claimed. In

fact, put P =

 1 −
√

3 1
1

√
3 1

−1 0 2

. Then P−1 = 1
6

 2 2 −2
−
√

3
√

3 0
1 1 2

 and P−1AP =

0 0 0
0 0 −

√
3

0
√

3 0

.
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G 26 Let

A =

 1 1 0
1 0 1
−2 −1 −1

 .

(i) Show that for p(x) = x3 − x we have p(A) = 0.
(ii) Compute A2006.
Remark: −p(x) is the characteristic polynomial of A.

We have A2 =

 2 1 1
−1 0 −1
−1 −1 0

 and A3 =

 1 1 0
1 0 1
−2 −1 −1

 = A. Hence, p(A) = A3 − A = 0 and it

follows that A2k−1 = A and A2k = A2 for all k ∈ N \ {0}. Thus, A2006 = A2.
A more systematic approach would be to compute the eigenvalues of A, which are 0,−1 and 1 and

then determine a transformation matrix P such that P−1AP is the diagonal matrix

0 0 0
0 −1 0
0 0 1

.

Then A2006 = P

0 0 0
0 1 0
0 0 1

P−1.

G 27 Let V be an n-dimensional vector space and U,W ⊂ V complementary subspaces. I.e. V = U + W
and U ∩ W = {0}. Give a geometric interpretation of the real eigenvalues and eigenvectors of the
following endomorphisms: Reflection of V on U along W , Projection of V onto U along W , Central
scaling of V, Scaling of V in n linearly independent directions.
Hint: The first step to the solution of this exercise is to write down the correct definition of each
endomorphism. Thinking of n = 2 or n = 3 may help your imagination.

The reflection of V on U along W is the endomorphism φ : V → V which restricted to U is the
identity and which restricted to W is minus the identity. I.e. φ|U = idU , resp. φ|W = −idW . It
follows that φ satisfies the identity φ2 = id, so if λ is an eigenvalue of φ with eigenvector v 6= 0, then
v = φ2v = λ2 · v. Hence, the only possible eigenvalues are λ1 = 1 and λ2 = −1. Obviously, U , the set
of fixed points of φ, is the eigenspace to λ1 = 1 and W is the eigenspace to λ2 = −1. In geometric
terms, U is the mirror plane and W is the direction of reflection. Since the geometric multiplicities,
i.e. dim U and dim W add up to n = dim V , it follows that the reflection φ is diagonalizable.

The projection of V onto U along W is the map, which restricted to U is the identity and which
restricted to W is the zero map. I.e. φ|U = idU , resp. φ|W = 0. It follows that φ satisfies the identity
φ2 = φ, so if λ is an eigenvalue of φ with eigenvector v 6= 0, then λ · v = φv = φ2v = λ2 · v. Hence,
the only possible eigenvalues are λ1 = 1 and λ2 = 0. Obviously, U , the set of fixed points of φ, is
the eigenspace to λ1 = 1 and W is the eigenspace to λ2 = 0. In geometric terms, U is the projection
plane and W is the direction of projection. Since the geometric multiplicities, i.e. dim U and dim W
add up to n = dim V , it follows that the reflection φ is diagonalizable.

The central scaling of V by some scaling factor λ is the map φ(v) = λ · v for all v ∈ V . Clearly, φ is
diagonalizable, since every nonzero vector v ∈ V is an eigenvector. In fact, φ is diagonal in the sense,
that w.r.t to any basis e1, . . . , en, φ is represented by the matrix A = λ · id. It is not difficult to see,
that this property characterizes a central scaling.

Scaling of V in n directions v1, . . . , vn, with scaling factors λ1, . . . , λn is the endomorphism φ, which
is characterized by φvi = λivi, for i = 1, . . . , n. Hence the λi are the eigenvalues of φ and each vi is
an eigenvector to λi. Since the eigenvectors form a basis of V , we have that φ is diagonalizable.

Homework

H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diago-
nalize the matrix over R or C, if possible:

(i)

 2 0 1
−1 0 −1
1 2 2

 , (ii)


−4 4 4 −1
−3 4 3 −1
−5 4 5 −1
−5 4 5 −1


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To (i): The characteristic polynomial of A :=

 2 0 1
−1 0 −1
1 2 2

 is χA(x) = −(x− 2)(x− 1)2. Therefore

the eigenvalues are λ1 = 1 with algebraic multiplicity 2 and λ1 = 2 with algebraic multiplicity 1. An
eigenvector to λ1 is v1 = (−1, 0, 1)t and there is no second eigenvector to λ1 linearly independent to
v1. Hence, the geometric multiplicity of λ1 is 1 and we already know, that A is not diagonalizable.
An eigenvector to λ2 is v2 = (−2, 1, 0)t.

To (ii): The characteristic polynomial of B :=


−4 4 4 −1
−3 4 3 −1
−5 4 5 −1
−5 4 5 −1

 is χB(x) = x2(x − 1)(x − 3). The

eigenvalues are thus µ1 = 0 with alg. multiplicity 2, µ2 = 1 with alg. multiplicity 1 and µ3 = 3
with alg. multiplicity 1. Two linearly independent eigenvectors to µ1 are w1 = (1, 0, 1, 0)t and
w2 = (0, 1, 0, 4)t. For µ3 an eigenvector is given by w3 = (−1, 1,−3,−3)t and for µ4 an eigenvector is
given by w4 = (1, 1, 1, 1)t. It follows that B is diagonlizable. A corresponding transformation matrix

P with P−1BP diagonal is given by P =


1 0 −1 1
0 1 1 1
1 0 −3 1
0 4 −3 1

.

H 18 The elements of the sequence u1, u2, . . . given by the initial values u1 = u2 = 1 and the recurrence
relation

un+1 = un−1 + un

are called Fibonacci numbers. The first 14 Fibonacci numbers were produced for the first time in 1228
in the manuscripts of Leonardo of Pisa (Fibonacci).
(i) Compute the first 8 Fibonacci numbers.
(ii) We write the Fibonacci numbers as entries of a vector in the following way:

xn :=
(

un

un−1

)
for n = 2, 3, . . . . Find a matrix A such that

Axn = xn+1.

Express xn in terms of x2 and A.
(iii) Derive un = 1√

5

((
1+

√
5

2

)n
−
(

1−
√

5
2

)n)
(Binet’s formula) by computing xn with help of the

above.

(i) The first Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21.

(ii) Put A :=
(

1 1
1 0

)
. Then xn+1 = A · xn and further xn+1 = An−1 · x2, as can be verified by

induction.
(iii) The eigenvalues of A are λ1 = 1+

√
5

2 and λ2 = 1−
√

5
2 . The correspnding eigenvectors are v1 =

(λ1, 1)t and v2 = (λ2, 1)t. Put P =
(

λ1 λ2

1 1

)
, then P−1AP is diagonal with λ1, λ2 as the

diagonal entries. More precisely, P−1 = 1√
5

(
1 −λ2

−1 λ1

)
and then

An−1 = P

(
λn−1

1 0
0 λn−1

2

)
P−1 =

1√
5

(
λn

1 − λn
2 −λ2λ

n
1 + λ1λ

n
2

λn−1
1 − λn−1

2 −λ2λ
n−1
1 + λ1λ

n−1
2

)
Multiplying this with x2, we obtain for un, as the second component of the resulting vector,

un =
1√
5

(
λn−1

1 − λn−1
2 − λ2λ

n−1
1 + λ1λ

n−1
2

)
=

1√
5

(
λn−1

1 + λn−2
1 − (λn−1

2 + λn−2
2 )

)
.

Finally, using λi + 1 = λ2
i for i = 1, 2 we obtain Binet’s formula from the last equation.

H 19 In exercise G 25 the basis of the eigenspaces, and hence the matrix P , can be chosen such that B is

a spiral
(

r · cos α −r · sinα
r · sinα r · cos α

)
, with r > 0 and α ∈ [0, 2π). Determine such a P as well as r and α.
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If we take P as in the solution of exercise G 25, we obtain B =
(

0 −
√

3√
3 0

)
, wherefore r =

√
3 and

α = π/2.

H 20 Let T be the endomorphism D2+D+id on the vector space of polynomials of degree ≤ n (c.f. exercise
G 20). I.e. Tp(x) = p′′(x) + p′(x) + p(x). Can T be diagonalized? (Corr.: We assume that K = R
or K = C!)

Suppose that p 6= 0 is an eigenvector of T for the eigenvalue λ and further suppose that deg(p) = k.
Then λ · p = Tp = D2p + Dp + p and substracting p on both sides yields D2p + Dp = (λ− 1) · p. On
the left hand side is a polynomial of degree < k, whereas on the right hand side we have a polynomial
of degree k, unless λ = 1. Thus, necessarily λ = 1 and D2p + Dp = 0. Another comparison of the
degrees of the summands yields that p has degree zero and is hence a constant. In fact, p = c for some
c ∈ K \ {0} is an eigenvector and every eigenvector is of this form. Hence, the geometric multiplicity
of λ = 1 is 1 and T is not diagonalizable.

H 21 Compute the characteristic polynomial of

A :=


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

 ,

with ai ∈ K for i = 0, 1, . . . , n− 1.

We claim that

χA(x) = det(A− x · id) = (−1)n

(
xn +

n−1∑
k=0

akx
k

)
= (−1)n(xn + an−1x

n−1 + · · ·+ a0).

The proof goes by induction over n. For this purpose we index A by n, for reasons of bookeeping i.e.
A = An. For n = 1 we have A1 = (−a0) and χA1(x) = −x− a0, as in the formula. For n → n + 1, we
develop the matrix by the last row and obtain

det(An+1 − x · id) = (−1)n+n−1 det(An − x · id) + (−an − x)(−x)n

= (−1)n+1(xn+1 + anxn)− det(An − x · id)

= (−1)n+1(xn+1 + anxn)− (−1)n

(
xn +

n−1∑
k=0

akx
k

)

= (−1)n+1

(
xn+1 + anxn + xn +

n−1∑
k=0

akx
k

)

= (−1)n+1

(
xn+1 +

n∑
k=0

akx
k

)
.

We applyied the induction hypothese in the third equation.

H 22 (i) Given a polynomial of degree n of the form Corr.: p(x) = (−1)n(xn+an−1x
n−1+· · ·+a0) ∈ K[x],

is there always an endomorphism φ of an n-dimensional vector space V over K, such that p is
the characteristic polynomial of φ?

(ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic
polynomial.

(i) (Corr.:) p(x) = −(x3 − 5x2 + 6x + 8), (ii) q(x) = x4 − 5x3 + 7x + 4.

Hint: Exercise H 21 may be helpful for the solution.

To (i): Take some basis ov V and define φ with respect to this basis by a matrix A as in exercise H 21.
Then obviously, the answer is positive.
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To(ii): Using (i), we put P :=

0 0 −8
1 0 −6
0 1 −5

 and Q :=


0 0 0 −4
1 0 0 −7
0 1 0 0
0 0 1 5

. Then χP (x) = p(x) and

χQ(x) = q(x).


