Department of Mathematics Prof. Dr. Christian Herrmann Dipl.-Math. Frederick Magata Dr. Abdelhadi Es-Sarhir





22. Mai 2006

# Linear Algebra II (MCS), SS 2006, Exercise 6

### Mini-Quiz

- (1) If  $\phi: V \to V$  is an endomorphism and  $\lambda$  is an eigenvalue of  $\phi$ , then the eigenspace  $U_{\lambda}$  of  $\phi$  to the eigenvalue  $\lambda$  is...?
  - $\Box$  The set of all eigenvectors to the eigenvalue  $\lambda$ .
  - $\sqrt{}$  The set consisting of all eigenvectors to the eigenvalue  $\lambda$  and the zero vector.
  - $\Box \ker(\lambda \cdot \mathrm{id}).$
- (2) An endomorphism  $\phi$  of an *n*-dimensional vector space is diagonalizable if and only if...?
  - $\Box \phi$  has *n* distinct eigenvalues.
  - $\Box \phi$  has only one eigenvalue whose geometric multiplicity is equal to n.
  - $\sqrt{n}$  is equal to the sum of the geometric multiplicities of the distinct eigenvalues of  $\phi$ .
- (3) Suppose that A and B are  $n \times n$ -matrices and that there exists an invertible  $n \times n$ -matrix P such that  $A = PBP^{-1}$ . Then A and B have...?
  - $\checkmark$  The same eigenvalues.
  - $\Box$  The same eigenvectors.
  - $\Box$  The same eigenspaces.

# Groupwork

**G 23** Compute the eigenvalues and eigenvectors of the following matrices over  $\mathbb{R}$ , resp. over  $\mathbb{C}$ :

(i) 
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
, (ii)  $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ .

Also determine transformation matrices P, Q and their inverses  $P^{-1}, Q^{-1}$ , such that  $P^{-1}AP$ , resp.  $Q^{-1}BQ$  are diagonal matrices.

 ${
m G}\,{
m 24}\,$  Let

$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}.$$

Determine the eigenspaces. Can A be diagonalized?

Hint: Use that the characteristic polynomial of A is  $\chi_A(x) = -(x+2)^2(x-4)$ .

# **G 25** Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}.$$

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over  $\mathbb{C}$ , but not over  $\mathbb{R}$ . Find a *real* transformation matrix P, such that  $P^{-1}AP$  is of the form  $\begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}$ , where  $\lambda \in \mathbb{R}$  and B is a real  $2 \times 2$  square matrix.

 ${
m G}\,26~{
m Let}$ 

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -1 & -1 \end{pmatrix}.$$

- (i) Show that for  $p(x) = x^3 x$  we have p(A) = 0.
- (ii) Compute  $A^{200\hat{6}}$ .

Remark: -p(x) is the characteristic polynomial of A.

**G 27** Let V be an n-dimensional vector space and  $U, W \subset V$  complementary subspaces. I.e. V = U + W and  $U \cap W = \{0\}$ . Give a geometric interpretation of the real eigenvalues and eigenvectors of the following endomorphisms: Reflection of V on U along W, Projection of V onto U along W, Central scaling of V, Scaling of V in n linearly independent directions.

Hint: The first step to the solution of this exercise is to write down the correct definition of each endomorphism. Thinking of n = 2 or n = 3 may help your imagination.

## Homework

H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diagonalize the matrix over  $\mathbb{R}$  or  $\mathbb{C}$ , if possible:

$$(i) \quad \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 2 \end{pmatrix}, \qquad (ii) \quad \begin{pmatrix} -4 & 4 & 4 & -1 \\ -3 & 4 & 3 & -1 \\ -5 & 4 & 5 & -1 \\ -5 & 4 & 5 & -1 \end{pmatrix}$$

**H18** The elements of the sequence  $u_1, u_2, \ldots$  given by the initial values  $u_1 = u_2 = 1$  and the recurrence relation

$$u_{n+1} = u_{n-1} + u_n$$

are called *Fibonacci numbers*. The first 14 Fibonacci numbers were produced for the first time in 1228 in the manuscripts of LEONARDO OF PISA (FIBONACCI).

- (i) Compute the first 8 Fibonacci numbers.
- (ii) We write the Fibonacci numbers as entries of a vector in the following way:

$$x_n := \left(\begin{array}{c} u_n \\ u_{n-1} \end{array}\right)$$

for  $n = 2, 3, \ldots$  Find a matrix A such that

$$Ax_n = x_{n+1}.$$

- Express  $x_n$  in terms of  $x_2$  and A. (iii) Derive  $u_n = \frac{1}{\sqrt{5}} \left( \left( \frac{1+\sqrt{5}}{2} \right)^n \left( \frac{1-\sqrt{5}}{2} \right)^n \right)$  (Binet's formula) by computing  $x_n$  with help of the above.
- **H 19** In exercise **G 25** the basis of the eigenspaces, and hence the matrix P, can be chosen such that B is a spiral  $\begin{pmatrix} r \cdot \cos \alpha & -r \cdot \sin \alpha \\ r \cdot \sin \alpha & r \cdot \cos \alpha \end{pmatrix}$ , with r > 0 and  $\alpha \in [0, 2\pi)$ . Determine such a P as well as r and  $\alpha$ .
- **H 20** Let T be the endomorphism  $D^2 + D + id$  on the vector space of polynomials of degree  $\leq n$  (c.f. exercise **G 20**). I.e. Tp(x) = p''(x) + p'(x) + p(x). Can T be diagonalized? (Corr.: We assume that  $K = \mathbb{R}$ or  $K = \mathbb{C}!$
- H 21 Compute the characteristic polynomial of

$$A := \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix},$$

with  $a_i \in K$  for i = 0, 1, ..., n - 1.

- **H 22** (i) Given a polynomial of degree *n* of the form **Corr.**:  $p(x) = (-1)^n (x^n + a_{n-1}x^{n-1} + \dots + a_0) \in K[x]$ , is there always an endomorphism  $\phi$  of an *n*-dimensional vector space V over K, such that p is the characteristic polynomial of  $\phi$ ?
  - (ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic polynomial.

(i) (Corr.:)  $p(x) = -(x^3 - 5x^2 + 6x + 8),$  (ii)  $q(x) = x^4 - 5x^3 + 7x + 4.$ 

Hint: Exercise **H 21** may be helpful for the solution.

## Linear Algebra II (MCS), SS 2006, Exercise 6, Solution

### Mini-Quiz

- (1) If  $\phi: V \to V$  is an endomorphism and  $\lambda$  is an eigenvalue of  $\phi$ , then the eigenspace  $U_{\lambda}$  of  $\phi$  to the eigenvalue  $\lambda$  is...?
  - $\Box$  The set of all eigenvectors to the eigenvalue  $\lambda$ .
  - $\sqrt{}$  The set consisting of all eigenvectors to the eigenvalue  $\lambda$  and the zero vector.
  - $\Box \ker(\lambda \cdot \mathrm{id}).$
- (2) An endomorphism  $\phi$  of an *n*-dimensional vector space is diagonalizable if and only if...?
  - $\Box \phi$  has *n* distinct eigenvalues.
  - $\Box \phi$  has only one eigenvalue whose geometric multiplicity is equal to n.
  - $\sqrt{n}$  is equal to the sum of the geometric multiplicities of the distinct eigenvalues of  $\phi$ .
- (3) Suppose that A and B are  $n \times n$ -matrices and that there exists an invertible  $n \times n$ -matrix P such that  $A = PBP^{-1}$ . Then A and B have...?
  - $\sqrt{}$  The same eigenvalues.
  - $\Box$  The same eigenvectors.
  - $\Box$  The same eigenspaces.

### Groupwork

**G 23** Compute the eigenvalues and eigenvectors of the following matrices over  $\mathbb{R}$ , resp. over  $\mathbb{C}$ :

(i) 
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
, (ii)  $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ .

Also determine transformation matrices P, Q and their inverses  $P^{-1}, Q^{-1}$ , such that  $P^{-1}AP$ , resp.  $Q^{-1}BQ$  are diagonal matrices.

To (i): The real (and thus also complex) eigenvalues are  $\lambda_1 = 5$  and  $\lambda_2 = -1$ . The corresponding eigenvectors are  $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and  $v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ . Hence,  $P = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$  and  $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$ .

To (ii): The (complex) eigenvalues are  $\lambda_1 = 1 - i$  and  $\lambda_2 = 1 + i$ . The corresponding eigenvectors are  $v_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$  and  $v_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ . Hence,  $Q = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$  and  $Q^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ .

 ${f G}\, {f 24}\,$  Let

$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}.$$

Determine the eigenspaces. Can A be diagonalized?

Hint: Use that the characteristic polynomial of A is  $\chi_A(x) = -(x+2)^2(x-4)$ .

The eigenspace to the eigenvalue  $\lambda_1 = -2$  is  $\mathbb{R} \cdot (1, 1, 0)^t$ . The eigenspace to the eigenvalue  $\mu = 4$  is  $\mathbb{R} \cdot (0, 1, 1)^t$ . The geometric multiplicity of  $\lambda$  is therefore less than its algebraic multiplicity and A is not diagonalizable.

**G 25** Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}.$$

Determine the eigenvalues and eigenspaces of A and show that A can be diagonalized over  $\mathbb{C}$ , but not over  $\mathbb{R}$ . Find a *real* transformation matrix P, such that  $P^{-1}AP$  is of the form  $\begin{pmatrix} \lambda & 0 \\ 0 & B \end{pmatrix}$ , where  $\lambda \in \mathbb{R}$  and B is a real  $2 \times 2$  square matrix.

The characteristic polynomial of A is  $\chi_A(x) = -x(x^2+3) = -x(x-i\sqrt{3})(x+i\sqrt{3})$ . Therefore A has one real eigenvalue  $\lambda_1 = 0$  and two imaginary eigenvalues  $\lambda_2 = i\sqrt{3}$  and  $\lambda_3 = -i\sqrt{3}$ , which are complex conjugated to each other. The corresponding complex eigenvectors are  $v_1 = (1, 1, -1)^t$ ,  $v_2 = (1-i\sqrt{3}, 1+i\sqrt{3}, 2)^t$  and  $v_3 = (1+i\sqrt{3}, 1-i\sqrt{3}, 2)^t$ . Note that  $\overline{v_2} = v_3$ .

Since there are three different eigenvalues over  $\mathbb{C}$ , we conclude that A is diagonalizable over  $\mathbb{C}$ . However, A is not diagonalizable over  $\mathbb{R}$ . From chapter 32 we know that with respect to the basis  $w_1 = v_1, w_2 = \Im(v_2)$  and  $w_3 = \Re(v_2)$  our matrix A gets transformed to a block-matrix as claimed. In fact, put  $P = \begin{pmatrix} 1 & -\sqrt{3} & 1 \\ 1 & \sqrt{3} & 1 \\ -1 & 0 & 2 \end{pmatrix}$ . Then  $P^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 2 & -2 \\ -\sqrt{3} & \sqrt{3} & 0 \\ 1 & 1 & 2 \end{pmatrix}$  and  $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\sqrt{3} \\ 0 & \sqrt{3} & 0 \end{pmatrix}$ . **G 26** Let

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -1 & -1 \end{pmatrix}.$$

(i) Show that for  $p(x) = x^3 - x$  we have p(A) = 0.

(ii) Compute  $A^{200\overline{6}}$ .

Remark: -p(x) is the characteristic polynomial of A.

We have  $A^2 = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$  and  $A^3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -1 & -1 \end{pmatrix} = A$ . Hence,  $p(A) = A^3 - A = 0$  and it follows that  $A^{2k-1} = A$  and  $A^{2k} = A^2$  for all  $k \in \mathbb{N} \setminus \{0\}$ . Thus,  $A^{2006} = A^2$ .

A more systematic approach would be to compute the eigenvalues of A, which are 0, -1 and 1 and then determine a transformation matrix P such that  $P^{-1}AP$  is the diagonal matrix  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ .

Then 
$$A^{2006} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}.$$

**G 27** Let V be an n-dimensional vector space and  $U, W \subset V$  complementary subspaces. I.e. V = U + Wand  $U \cap W = \{0\}$ . Give a geometric interpretation of the real eigenvalues and eigenvectors of the following endomorphisms: Reflection of V on U along W, Projection of V onto U along W, Central scaling of V. Scaling of V in n linearly independent directions.

Hint: The first step to the solution of this exercise is to write down the correct definition of each endomorphism. Thinking of n = 2 or n = 3 may help your imagination.

The reflection of V on U along W is the endomorphism  $\phi: V \to V$  which restricted to U is the identity and which restricted to W is minus the identity. I.e.  $\phi|_U = id_U$ , resp.  $\phi|_W = -id_W$ . It follows that  $\phi$  satisfies the identity  $\phi^2 = id$ , so if  $\lambda$  is an eigenvalue of  $\phi$  with eigenvector  $v \neq 0$ , then  $v = \phi^2 v = \lambda^2 \cdot v$ . Hence, the only possible eigenvalues are  $\lambda_1 = 1$  and  $\lambda_2 = -1$ . Obviously, U, the set of fixed points of  $\phi$ , is the eigenspace to  $\lambda_1 = 1$  and W is the eigenspace to  $\lambda_2 = -1$ . In geometric terms, U is the mirror plane and W is the direction of reflection. Since the geometric multiplicities, i.e. dim U and dim W add up to  $n = \dim V$ , it follows that the reflection  $\phi$  is diagonalizable.

The projection of V onto U along W is the map, which restricted to U is the identity and which restricted to W is the zero map. I.e.  $\phi|_U = \mathrm{id}_U$ , resp.  $\phi|_W = 0$ . It follows that  $\phi$  satisfies the identity  $\phi^2 = \phi$ , so if  $\lambda$  is an eigenvalue of  $\phi$  with eigenvector  $v \neq 0$ , then  $\lambda \cdot v = \phi v = \phi^2 v = \lambda^2 \cdot v$ . Hence, the only possible eigenvalues are  $\lambda_1 = 1$  and  $\lambda_2 = 0$ . Obviously, U, the set of fixed points of  $\phi$ , is the eigenspace to  $\lambda_1 = 1$  and W is the eigenspace to  $\lambda_2 = 0$ . In geometric terms, U is the projection plane and W is the direction of projection. Since the geometric multiplicities, i.e.  $\dim U$  and  $\dim W$ add up to  $n = \dim V$ , it follows that the reflection  $\phi$  is diagonalizable.

The central scaling of V by some scaling factor  $\lambda$  is the map  $\phi(v) = \lambda \cdot v$  for all  $v \in V$ . Clearly,  $\phi$  is diagonalizable, since every nonzero vector  $v \in V$  is an eigenvector. In fact,  $\phi$  is diagonal in the sense, that w.r.t to any basis  $e_1, \ldots, e_n$ ,  $\phi$  is represented by the matrix  $A = \lambda \cdot id$ . It is not difficult to see, that this property characterizes a central scaling.

Scaling of V in n directions  $v_1, \ldots, v_n$ , with scaling factors  $\lambda_1, \ldots, \lambda_n$  is the endomorphism  $\phi$ , which is characterized by  $\phi v_i = \lambda_i v_i$ , for i = 1, ..., n. Hence the  $\lambda_i$  are the eigenvalues of  $\phi$  and each  $v_i$  is an eigenvector to  $\lambda_i$ . Since the eigenvectors form a basis of V, we have that  $\phi$  is diagonalizable.

### Homework

H 17 In each of the following cases compute the eigenvalues and eigenvectors of the given matrix. Diagonalize the matrix over  $\mathbb{R}$  or  $\mathbb{C}$ , if possible:

$$(i) \quad \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 2 \end{pmatrix}, \qquad (ii) \quad \begin{pmatrix} -4 & 4 & 4 & -1 \\ -3 & 4 & 3 & -1 \\ -5 & 4 & 5 & -1 \\ -5 & 4 & 5 & -1 \end{pmatrix}$$

 $\mathbf{2}$ 

To (i): The characteristic polynomial of  $A := \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & -1 \\ 1 & 2 & 2 \end{pmatrix}$  is  $\chi_A(x) = -(x-2)(x-1)^2$ . Therefore

the eigenvalues are  $\lambda_1 = 1$  with algebraic multiplicity 2 and  $\lambda_1 = 2$  with algebraic multiplicity 1. An eigenvector to  $\lambda_1$  is  $v_1 = (-1, 0, 1)^t$  and there is no second eigenvector to  $\lambda_1$  linearly independent to  $v_1$ . Hence, the geometric multiplicity of  $\lambda_1$  is 1 and we already know, that A is not diagonalizable. An eigenvector to  $\lambda_2$  is  $v_2 = (-2, 1, 0)^t$ .

To (ii): The characteristic polynomial of 
$$B := \begin{pmatrix} -4 & 4 & 4 & -1 \\ -3 & 4 & 3 & -1 \\ -5 & 4 & 5 & -1 \\ -5 & 4 & 5 & -1 \end{pmatrix}$$
 is  $\chi_B(x) = x^2(x-1)(x-3)$ . The

eigenvalues are thus  $\mu_1 = 0$  with alg. multiplicity 2,  $\mu_2 = 1$  with alg. multiplicity 1 and  $\mu_3 = 3$ with alg. multiplicity 1. Two linearly independent eigenvectors to  $\mu_1$  are  $w_1 = (1,0,1,0)^t$  and  $w_2 = (0,1,0,4)^t$ . For  $\mu_3$  an eigenvector is given by  $w_3 = (-1,1,-3,-3)^t$  and for  $\mu_4$  an eigenvector is given by  $w_4 = (1,1,1,1)^t$ . It follows that B is diagonlizable. A corresponding transformation matrix  $(1 \ 0 \ -1 \ 1)$ 

$$P \text{ with } P^{-1}BP \text{ diagonal is given by } P = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & -3 & 1 \\ 0 & 4 & -3 & 1 \end{pmatrix}.$$

**H 18** The elements of the sequence  $u_1, u_2, \ldots$  given by the initial values  $u_1 = u_2 = 1$  and the recurrence relation

$$u_{n+1} = u_{n-1} + u_n$$

are called *Fibonacci numbers*. The first 14 Fibonacci numbers were produced for the first time in 1228 in the manuscripts of LEONARDO OF PISA (FIBONACCI).

- (i) Compute the first 8 Fibonacci numbers.
- (ii) We write the Fibonacci numbers as entries of a vector in the following way:

$$x_n := \left(\begin{array}{c} u_n \\ u_{n-1} \end{array}\right)$$

for  $n = 2, 3, \ldots$  Find a matrix A such that

$$Ax_n = x_{n+1}.$$

Express  $x_n$  in terms of  $x_2$  and A. (iii) Derive  $u_n = \frac{1}{\sqrt{5}} \left( \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \right)$  (*Binet's formula*) by computing  $x_n$  with help of the above.

- (i) The first Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21.
- (ii) Put  $A := \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ . Then  $x_{n+1} = A \cdot x_n$  and further  $x_{n+1} = A^{n-1} \cdot x_2$ , as can be verified by induction.

# (iii) The eigenvalues of A are $\lambda_1 = \frac{1+\sqrt{5}}{2}$ and $\lambda_2 = \frac{1-\sqrt{5}}{2}$ . The corresponding eigenvectors are $v_1 = (\lambda_1, 1)^t$ and $v_2 = (\lambda_2, 1)^t$ . Put $P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}$ , then $P^{-1}AP$ is diagonal with $\lambda_1, \lambda_2$ as the diagonal entries. More precisely, $P^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{pmatrix}$ and then

$$A^{n-1} = P \begin{pmatrix} \lambda_1^{n-1} & 0\\ 0 & \lambda_2^{n-1} \end{pmatrix} P^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} \lambda_1^n - \lambda_2^n & -\lambda_2 \lambda_1^n + \lambda_1 \lambda_2^n\\ \lambda_1^{n-1} - \lambda_2^{n-1} & -\lambda_2 \lambda_1^{n-1} + \lambda_1 \lambda_2^{n-1} \end{pmatrix}$$

Multiplying this with  $x_2$ , we obtain for  $u_n$ , as the second component of the resulting vector,

$$u_n = \frac{1}{\sqrt{5}} \left( \lambda_1^{n-1} - \lambda_2^{n-1} - \lambda_2 \lambda_1^{n-1} + \lambda_1 \lambda_2^{n-1} \right) = \frac{1}{\sqrt{5}} \left( \lambda_1^{n-1} + \lambda_1^{n-2} - (\lambda_2^{n-1} + \lambda_2^{n-2}) \right).$$

Finally, using  $\lambda_i + 1 = \lambda_i^2$  for i = 1, 2 we obtain Binet's formula from the last equation.

**H 19** In exercise **G 25** the basis of the eigenspaces, and hence the matrix P, can be chosen such that B is a spiral  $\begin{pmatrix} r \cdot \cos \alpha & -r \cdot \sin \alpha \\ r \cdot \sin \alpha & r \cdot \cos \alpha \end{pmatrix}$ , with r > 0 and  $\alpha \in [0, 2\pi)$ . Determine such a P as well as r and  $\alpha$ .

If we take P as in the solution of exercise **G 25**, we obtain  $B = \begin{pmatrix} 0 & -\sqrt{3} \\ \sqrt{3} & 0 \end{pmatrix}$ , wherefore  $r = \sqrt{3}$  and  $\alpha = \pi/2$ .

**H 20** Let T be the endomorphism  $D^2 + D + id$  on the vector space of polynomials of degree  $\leq n$  (c.f. exercise **G 20**). I.e. Tp(x) = p''(x) + p'(x) + p(x). Can T be diagonalized? (**Corr.:** We assume that  $K = \mathbb{R}$  or  $K = \mathbb{C}!$ )

Suppose that  $p \neq 0$  is an eigenvector of T for the eigenvalue  $\lambda$  and further suppose that  $\deg(p) = k$ . Then  $\lambda \cdot p = Tp = D^2p + Dp + p$  and substracting p on both sides yields  $D^2p + Dp = (\lambda - 1) \cdot p$ . On the left hand side is a polynomial of degree  $\langle k \rangle$ , whereas on the right hand side we have a polynomial of degree k, unless  $\lambda = 1$ . Thus, necessarily  $\lambda = 1$  and  $D^2p + Dp = 0$ . Another comparison of the degrees of the summands yields that p has degree zero and is hence a constant. In fact, p = c for some  $c \in K \setminus \{0\}$  is an eigenvector and every eigenvector is of this form. Hence, the geometric multiplicity of  $\lambda = 1$  is 1 and T is not diagonalizable.

H 21 Compute the characteristic polynomial of

$$A := \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix},$$

with  $a_i \in K$  for i = 0, 1, ..., n - 1.

We claim that

$$\chi_A(x) = \det(A - x \cdot \mathrm{id}) = (-1)^n \left( x^n + \sum_{k=0}^{n-1} a_k x^k \right) = (-1)^n (x^n + a_{n-1} x^{n-1} + \dots + a_0).$$

The proof goes by induction over n. For this purpose we index A by n, for reasons of bookeeping i.e.  $A = A_n$ . For n = 1 we have  $A_1 = (-a_0)$  and  $\chi_{A_1}(x) = -x - a_0$ , as in the formula. For  $n \to n+1$ , we develop the matrix by the last row and obtain

$$det(A_{n+1} - x \cdot id) = (-1)^{n+n-1} det(A_n - x \cdot id) + (-a_n - x)(-x)^n$$
  
=  $(-1)^{n+1}(x^{n+1} + a_nx^n) - det(A_n - x \cdot id)$   
=  $(-1)^{n+1}(x^{n+1} + a_nx^n) - (-1)^n \left(x^n + \sum_{k=0}^{n-1} a_kx^k\right)$   
=  $(-1)^{n+1} \left(x^{n+1} + a_nx^n + x^n + \sum_{k=0}^{n-1} a_kx^k\right)$   
=  $(-1)^{n+1} \left(x^{n+1} + \sum_{k=0}^n a_kx^k\right).$ 

We applyied the induction hypothese in the third equation.

- **H 22** (i) Given a polynomial of degree *n* of the form **Corr.**:  $p(x) = (-1)^n (x^n + a_{n-1}x^{n-1} + \dots + a_0) \in K[x]$ , is there always an endomorphism  $\phi$  of an *n*-dimensional vector space *V* over *K*, such that *p* is the characteristic polynomial of  $\phi$ ?
  - (ii) For each of the following polynomials p, q, give a matrix which has p, resp. q as its characteristic polynomial.

(*i*) (Corr.:) 
$$p(x) = -(x^3 - 5x^2 + 6x + 8),$$
 (*ii*)  $q(x) = x^4 - 5x^3 + 7x + 4.$ 

Hint: Exercise **H 21** may be helpful for the solution.

To (i): Take some basis ov V and define  $\phi$  with respect to this basis by a matrix A as in exercise **H21**. Then obviously, the answer is positive.

$$To(ii): Using (i), we put P := \begin{pmatrix} 0 & 0 & -8 \\ 1 & 0 & -6 \\ 0 & 1 & -5 \end{pmatrix} and Q := \begin{pmatrix} 0 & 0 & 0 & -4 \\ 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}. Then \chi_P(x) = p(x) and \chi_Q(x) = q(x).$$