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Linear Algebra II (MCS), SS 2006, Exercise 5
Groupwork
G 19 (i) Let φ be an endomorphism of the Euclidean plane which has, with respect to some fixed orthog-

onal basis β = {e1, e2}, the matrix representation

A =
(

cosα sinα
sinα − cosα

)
for some α ∈ [0, 2π).

Determine the (real) eigenvalues and eigenvectors of φ. What is their geometrical interpretation?
(ii) If in (i) we replace A by

Ã =
(

cosα − sinα
sinα cosα

)
,

does φ has real eigenvalues and eigenvectors?
(iii) Suppose now that ψ is a rotation in Euclidean 3-space. That means, ψ rotates space around a

certain axis through a certain angle. Are there any eigenvectors? To what eigenvalues?

G 20 Let Vn = Poln(K) be the vector space of polynomials of degree ≤ n over (Corr.:) K = R or K = C.
And let D : Vn → Vn be the differentiation, i.e. D(p) = p′.
Show that D does not have any eigenvectors with any nonzero eigenvalue λ. Furthermore, there is, up
to a scalar factor, only one eigenvector of D to eigenvalue 0. Which polynomials satisfy Dp = 0 · p?

G 21 Let φ be an endomorphism of some vector space V . Show:
(i) If λ is an eigenvalue of φ, then λ2 is an eigenvalue of φ2. How did you find the associated

eigenvector? What about higher powers of φ?
(ii) If u1 and u2 are eigenvectors of φ to two different eigenvalues λ1 and λ2, then u1 + u2 is not an

eigenvector of φ.
(iii) What is the relation between kerφ and the eigenvalues and eigenvectors of φ?

G 22 Let A be a square matrix.
(i) If A is a triangular matrix, can you immediately say what the eigenvalues are?
(ii) Show that A and At have the same set of eigenvalues.
(iii) Suppose that A is invertible. Show: If λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.

What can you say about the eigenvectors?

Homework
H 13 For each of the following matrices determine the eigenvalues, eigenvectors and a basis of each eigenspace.

(i)

1 −3 3
3 −5 3
6 −6 4

 , (ii)

−3 1 −1
−7 5 −1
−6 6 −2

 .

Which matrix can be diagonalized?

H 14 Let φ be an endomorphism of some vector space V over K. Show: If all vectors of V are eigenvectors
for φ (to a priori different eigenvalues), then φ is a homothety, i.e. φ = r · id for some r ∈ K.

H 15 Let φ be an endomorphism. Show: If φ2 + φ has an eigenvalue −1, then φ3 has an eigenvalue 1.

H 16 Let V be a vector space and let φ and ψ be endomorphisms of V .
(i) If v ∈ V is an eigenvector of φ◦ψ to the eigenvalue λ, and if ψ(v) 6= 0, then ψ(v) is an eigenvector

of ψ ◦ φ to the eigenvalue λ.
(ii) If V has finite dimension, then ψ ◦ φ and φ ◦ ψ have the same eigenvalues.
Note that neither φ nor ψ themselves are required to have any eigenvalues!

Please note that the next exercise groups will, instead of Thursday, take place on the
coming Monday 22.5.2006 3:20 pm-5:00 pm in room S2 15/201. Homework solutions
may also be submitted on Thursday, 1.6.2006.
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Groupwork
G 19 (i) Let φ be an endomorphism of the Euclidean plane which has, with respect to some fixed orthog-

onal basis β = {e1, e2}, the matrix representation

A =
(

cosα sinα
sinα − cosα

)
for some α ∈ [0, 2π).

Determine the (real) eigenvalues and eigenvectors of φ. What is their geometrical interpretation?
(ii) If in (i) we replace A by

Ã =
(

cosα − sinα
sinα cosα

)
,

does φ has real eigenvalues and eigenvectors?
(iii) Suppose now that ψ is a rotation in Euclidean 3-space. That means, ψ rotates space around a

certain axis through a certain angle. Are there any eigenvectors? To what eigenvalues?

(i) We first compute that the characteristic polynomial of A is χA(x) = det(A − x · I) = x2 − 1.
From this we read of that A has two different eigenvalues x1 = 1 and x2 = −1. The eigenvectors
in representation w.r.t. the given basis can now be computed as the nontrivial solutions of
the homogenous system (A − xi · I) · v = 0. If α 6= 0, then v = (− sinα, cosα − 1)t and
w = (cosα− 1, sinα)t are eigenvectors to x1, resp. x2. If α = 0, then v = (1, 0)t and w = (0, 1)t

do. Geometrically, φ is an (orthogonal) reflection of the plane in the line through v1e1 + v2e2
alongside the line through w1e1 + w2e2.

(ii) Proceeding as before, we obtain that φ has real eigenvalues if and only if α = 0 or α = π. That
is, φ is either the identity or the multiplication by minus one. In both cases, the eigenvectors are
v = (1, 0)t and w = (0, 1)t. Geometrically, φ is a rotation around the origin through the angle α.

(iii) φ now being a rotation means, that it leaves its axis of rotation pointwise fixed and the orthogonal
complement to the axis invariant. That means, the elements of the axis, except for the origin, are
each eigenvectors for the eigenvalue 1 and the complement of the axis is an Euclidean plane E, on
which φ|E acts as a rotation around the origin. Hence, we are in the situation of (ii) concerning
the remaining eigenvalues and eigenvectors of φ (if any).

G 20 Let Vn = Poln(K) be the vector space of polynomials of degree ≤ n over (Corr.:) K = R or K = C.
And let D : Vn → Vn be the differentiation, i.e. D(p) = p′.
Show that D does not have any eigenvectors with any nonzero eigenvalue λ. Furthermore, there is, up
to a scalar factor, only one eigenvector of D to eigenvalue 0. Which polynomials satisfy Dp = 0 · p?

If p is not constant, then D reduces the degree of p by one. Hence, there can only be constant
polynomials which satisfy Dp = λ · p. However, Dp = 0 in that case and since we assume λ 6= 0, we
conclude that p = 0 in contradiction to p 6= 0, as it is assumed an eigenvector.

From this we also conclude, that the only eigenvectors of D which correspond to the eigenvalue 0
are the constant polynomials, which differ from each other by a scalar multiple.

G 21 Let φ be an endomorphism of some vector space V . Show:
(i) If λ is an eigenvalue of φ, then λ2 is an eigenvalue of φ2. How did you find the associated

eigenvector? What about higher powers of φ?
(ii) If u1 and u2 are eigenvectors of φ to two different eigenvalues λ1 and λ2, then u1 + u2 is not an

eigenvector of φ.
(iii) What is the relation between kerφ and the eigenvalues and eigenvectors of φ?

(i) Let v ∈ V be a an eigenvector corresponding to λ. Then

φ2(v) = φ(φ(v)) = φ(λ · v) = λ · φ(v) = λ2 · v.

Certainly, we may replace 2 by any positive integer k and then, by following the same line of
arguments inductively, obtain that φk(v) = λk · v. So λk is an eigenvalue of φk with eigenvector
v.

(ii) We claim that u1 and u2 are linearly independent. In fact, suppose that α · u1 = u2 for some
α 6= 0. Now A · u2 = λ2 · u2 implies

λ2ku1 = λ2u2 = A · u2 = kA · u1 = kλ1u1.

Therefore, λ2ku1 = kλ1u1 or equivalently (λ2−λ1) ·u1 = 0, which is a contradiction since neither
u1 = 0, nor λ2 = λ1.
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Now suppose that u1 + u2 is an eigenvector again, say for the eigenvalue ν. Then ν · (u1 + u2) =
A · (u1 + u2) = A · u1 + A · u2 = λ1 · u1 + λ2 · u2. Then λ1 − ν = 0 and λ2 − ν = 0 by linear
independence of u1 and u2. But λ1 6= λ2, by assumption, which is a contradiction.

(iii) kerφ consists by definition of those v ∈ V , such that φ(v) = 0 = 0 · v. Hence, kerφ is the
eigenspace corresponding to the eigenvalue 0, in case this is an eigenvalue. Otherwise its just the
trivial vector space. In particular, we have that an endomorphism which has not the eigenvalue
0 must be injective.
In the same spirit, the set of fixed points of a given endomorphism is nothing but the set of
eigenvectors corresponding to the eigenvalue 1, if this is an eigenvalue of the endomorphism.

G 22 Let A be a square matrix.
(i) If A is a triangular matrix, can you immediately say what the eigenvalues are?
(ii) Show that A and At have the same set of eigenvalues.
(iii) Suppose that A is invertible. Show: If λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.

What can you say about the eigenvectors?

(i) The diagonal entries are the eigenvalues and the number of times each entry appears on the
diagonal corresponds to its multiplicity as an eigenvalue. The reason for this is the fact that
the determinant of a triangular matrix is the product of its diagonal entries. So this gives you
the characteristic polynomial complete and already in factorized form. You can even read of an
eigenvector corresponding to the first diagonal entry! It’s (1, 0, . . . , 0)t.
Please, do not make the foolish mistake some of your fellow students do in their exams, who
actually try to compute the eigenvalues of a triangular or even diagonal matrix by expanding an
already factored polynomial!

(ii) We have

χA(x) = det(A− x · I) = det((A− x · I)t) = .det(At − x · I) = χAt(x).

Hence not only the eigenvalues of A and At coincide, but also their characteristic polynomials.
(iii) Let v be an eigenvector of A corresponding to the eigenvalue λ 6= 0. By definition, A · v = λ · v.

Multiplying both sides by A−1 and dividing by λ, we obtain A−1 · v = 1
λ · v. Hence, λ−1 is an

eigenvalue for A−1 with eigenvector v.
Also note that in G 21 (i), we can now say that λk is an eigenvalue of Ak for any integer k.

Homework
H 13 For each of the following matrices determine the eigenvalues, eigenvectors and a basis of each eigenspace.

(i)

1 −3 3
3 −5 3
6 −6 4

 , (ii)

−3 1 −1
−7 5 −1
−6 6 −2

 .

Which matrix can be diagonalized?

To (i): For A =

1 −3 3
3 −5 3
6 −6 4

 we have the eigenvalues λ1 = 4, which has algebraic multiplicity one,

and λ2 = −2, which has algebraic multiplicity 2. An eigenvector for λ1 is v1 = (1, 1, 2)t and for λ2,
two linear independent eigenvectors are v2 = (1, 1, 0)t and v3 = (−1, 0, 1)t. Hence, the eigenspace
corresponding to λ1 is Uλ1 = {t · (1, 1, 2)t | t ∈ R} and the one corresponding to λ2 is Uλ2 =
{t · (1, 1, 0)t + s · (−1, 0, 1)t | t, s ∈ R}. It follows that A is diagonalizable.

To (ii): For B =

−3 1 −1
−7 5 −1
−6 6 −2

 we have the eigenvalues µ1 = 4, which has algebraic multiplicity one,

and µ2 = −2, which has algebraic multiplicity 2. An eigenvector for µ1 is w1 = (0, 1, 1)t and for µ2

an eigenvector is w2 = (1, 1, 0)t. There is no second eigenvector to µ2 which is linearly independent
from w2. Hence, the eigenspace corresponding to µ1 is Uµ1 = {t · (0, 1, 1)t | t ∈ R} and the one
corresponding to µ2 is Uµ2 = {t · (1, 1, 0)t | t ∈ R}. It follows that A is not diagonalizable, since the
geometric multiplicity of µ2 is strictly less than its algebraic multiplicity.

H 14 Let φ be an endomorphism of some vector space V over K. Show: If all vectors of V are eigenvectors
for φ (to a priori different eigenvalues), then φ is a homothety, i.e. φ = r · id for some r ∈ K.
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Let vi, i ∈ I be some basis of V . By assumption, there is for every i ∈ I some λi ∈ K such that
φ(vi) = λi · vi. On the other hand, for any finite subset I ′ ⊂ I there is some µ ∈ K with φ(

∑
i∈I′ vi) =

µ ·
∑

i∈I′ vi. Comparing this with φ(
∑

i∈I′ vi) =
∑

i∈I′ λi · vi, we obtain that
∑

i∈I′(λi − µ) · vi = 0.
Since the vi are linearly independent, every coefficient must be zero and thus, λi = µ for every i ∈ I ′.
We can reason like above for any finite subset I ′ of I and therefore conclude, that λi = λj =: r for all
i, j ∈ I. It follows that φ = r · id.

H 15 Let φ be an endomorphism. Show: If φ2 + φ has an eigenvalue −1, then φ3 has an eigenvalue 1.

By assumption, there is some nonzero v ∈ V such that φ2(v) + φ(v) = −v . Applying φ on both sides
of this equation yields φ3(v) + φ2(v) = −φ(v). Solving for φ3(v) and using the above relation again,
we obtain φ3(v) = −(φ2(v) + φ(v)) = −(−v) = v. Hence φ3 has the eigenvalue +1.

H 16 Let V be a vector space and let φ and ψ be endomorphisms of V .
(i) If v ∈ V is an eigenvector of φ◦ψ to the eigenvalue λ, and if ψ(v) 6= 0, then ψ(v) is an eigenvector

of ψ ◦ φ to the eigenvalue λ.
(ii) If V has finite dimension, then ψ ◦ φ and φ ◦ ψ have the same eigenvalues.
Note that neither φ nor ψ themselves are required to have any eigenvalues!
To (i): By assumption we have φ ◦ ψ(v) = λ · v. From this it follows

ψ ◦ φ(ψ(v)) = ψ(φ ◦ ψ(v)) = ψ(λ · v) = λ · ψ(v).

Because ψ(v) 6= 0, we conclude that ψ(v) is an eigenvector of ψ ◦ φ to the eigenvalue λ.
To (ii): Let Λ := {λi | i = 1, . . . , r} be the set of distinct eigenvalues of φ ◦ ψ and let M := {µi |
i = 1, . . . , s} be the set of distinct eigenvalues of ψ ◦ φ. We claim that Λ = M . It obviously suffices
to show the inclusion Λ ⊂ M , because if we swich the roles of φ and ψ, we get the other inclusion
M ⊂ Λ.

So let λ ∈ Λ be arbitrary. Accordingly, there exists some nonzero v 6= 0 satisfying φ ◦ψ(v) = λv. If
ψ(v) 6= 0 we know by (i) that λ ∈M . So it remains to deal with the case that ψ(v) = 0. In that case,
ψ has non-trivial kernel ker(ψ) 6= {0} and the eigenvalue-equation above becomes 0 = λ · v. Since
v 6= 0, it follows that λ = 0 and we have to show that ψ ◦ φ has non-trivial kernel. If there is some
w ∈ V \ {0} such that φ(w) = v, then ψ ◦ φ(w) = ψ(v) = 0. This is always the case, if φ is surjective.
If φ is not surjective, then the finite dimensionality of V implies that φ is also not injective. Therefore,
there is a w ∈ V \ {0} such that φ(w) = 0. But then also ψ ◦ φ(w) = 0.

Please note that the next exercise groups will, instead of Thursday, take place on the
coming Monday 22.5.2006 3:20 pm-5:00 pm in room S2 15/201. Homework solutions
may also be submitted on Thursday, 1.6.2006.


