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Linear Algebra II (MCS), SS 2006, Exercise 4
Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:

1 + i ,
√

3− i ,
1 + i

1− i
,

(
1 +

√
−3

)2
,
(1− i)3

(1 + i)5
,

17∑
k=1

ik ,

(
24− 7i

20 + 15i

)
.

(ii) Show that for all t ∈ R we have
∣∣∣1+it
1−it

∣∣∣ = 1.

(iii) Determine all roots of z3 = 2 + 2i and write them in the form z = a + ib with a, b ∈ R.

G 16 (i) Decompose the following polynomial into linear factors over C, resp. into linear and quadratic
factors over R, by ‘guessing’ zeros and long division:

p = x6 + 5x4 + 3x2 − 9.

(ii) Let f = 2x4 + x3 + 4x2 + 3x + 1 and g = x2 + 1. Find the unique polynomials q and r, such that
f = q · g + r and deg(r) < deg(g).

G 17 Let K be an arbitrary finite field. Give an example of a polynomial p ∈ K[x] such that p is not
uniquely determined by its polynomial function x 7→ p(x). What happens if K has infinitely many
elements?

G 18 (i) Show that the set Cn of n-th roots of unity, i.e. the set of complex solutions of zn = 1, form a
multiplicative subgroup of C \ {0}. Give an isomorphism of Cn onto Zn.

(ii) Divide xn − 1 by x− 1 and conclude that
∑

ζ∈Cn
ζ = 0.

Homework

H 9 Let f = x5 + (a + 1)x4 + (a + 1)x3 + (a− 1)x2 + (a2 − 2)x + a− 2 and g = x2 + x + 1. Determine all
values of a such that long division of f by g has remainder zero.

H 10 Let A be a n × n square matrix with integer coefficients and let y = (y1, . . . , yn)t be a vector with
integer entries. Show that A · x = y has a unique solution x with integer entries, if det(A) = ±1.

H 11 Prove the second part of Theorem 29.4, i.e. every real polynomial p = anxn + · · · + a1x + a0 with
a0, . . . , an ∈ R, an 6= 0, n ≥ 1 can, up to order, be uniquely decomposed as a product

p = an(x− λ1) · . . . · (x− λr) · (x2 + α1x + β1) · . . . · (x2 + αmx + βm),

with λ1, . . . , λr, α1, . . . , αm, β1, . . . , βm ∈ R and α2
i−4βi < 0 for i = 1, . . . ,m. In particular, n = 2m+r

and every real polynomial of odd degree has a real zero.
(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division!
If λ is a complex zero of p, what can one say about λ̄? What kind of polynomial is x2−(λ+ λ̄)x+λλ̄?)

H 12 Let K be a field and x0, . . . , xn, y0, . . . , yn ∈ K with xi 6= xj for all i 6= j. Show that there is one
and only one polynomial f ∈ K[x] of degree ≤ n, such that f(xi) = yi for i = 0, . . . , n. Why is this
statement not in contradiction to exercise G 17?
(Hint: Either construct polynomials gj ∈ K[x] of degree ≤ n, such that

gj(xi) =
{

1 for i = j
0 for i 6= j

,

or, more systematically, formulate the problem as a system of linear equations M · a = y, with
a = (a0, . . . , an)t as the coefficients of the desired polynomial f and y = (y0, . . . , yn)t. What is the
matrix M? How can you solve this system of linear equations?
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G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:

1 + i ,
√

3− i ,
1 + i

1− i
,

(
1 +

√
−3

)2
,
(1− i)3

(1 + i)5
,

17∑
k=1

ik ,

(
24− 7i

20 + 15i

)
.

(ii) Show that for all t ∈ R we have
∣∣∣1+it
1−it

∣∣∣ = 1.

(iii) Determine all roots of z3 = 2 + 2i and write them in the form z = a + ib with a, b ∈ R.

(i) 1 + i =
√

2 · eiπ/4,
√

3− i = 2 · eiπ/6, 1+i
1−i = i = eiπ/2,

(
1 +

√
−3

)2 = 4 · ei2π/3,
(1−i)3

(1+i)5
= 1

2 ,
∑17

k=1 ik = 1 + i,
(

24−7i
20+15i

)
= 3/5− 4/5i = ei arccos(3/5)

(ii) 1+it
1−it = (1+it)2

1+t2
= 1−t2+2it

1+t2
, thus

∣∣∣1+it
1−it

∣∣∣2 = (1−t2)2+4t2

(1+t2)2
= (1+t2)2

(1+t2)2
= 1.

(iii) 2 + 2i =
√

8 · eiπ/4 and therefore one solution of z3 = 2 + 2i is ξ :=
√

2 · eiπ/12 the other solutions
can be obtained by multiplying ξ with the third roots of unity ζk

3 = e2πik/3, k = 1, 2, 3. Hence,
ξk =

√
2 · eπi(8k+1)/12 =

√
2 cos(π(8k + 1)/12) +

√
2 sin(π(8k + 1)/12)i, k = 1, 2, 3 are the roots.

G 16 (i) Decompose the following polynomial into linear factors over C, resp. into linear and quadratic
factors over R, by ‘guessing’ zeros and long division:

p = x6 + 5x4 + 3x2 − 9.

(ii) Let f = 2x4 + x3 + 4x2 + 3x + 1 and g = x2 + 1. Find the unique polynomials q and r, such that
f = q · g + r and deg(r) < deg(g).

(i) By guessing, we see that 1 and −1 are zeros and long division by x2 − 1 yields p = (x4 + 6x2 +
9)(x2 − 1). The term x4 + 6x2 + 9 = (x2 + 3)2 is a bi-square. Thus the decomposition over the
reals is p = (x2 + 3)2(x + 1)(x − 1). Over C, the factor x2 + 3 can be further decomposed into
x2 + 3 = (x−

√
3i)(x +

√
3i) and therefore p = (x−

√
3i)2(x +

√
3i)2(x + 1)(x− 1).

(ii) q = 2x2 + x + 2 and r = 2x− 1.

G 17 Let K be an arbitrary finite field. Give an example of a polynomial p ∈ K[x] such that p is not
uniquely determined by its polynomial function x 7→ p(x). What happens if K has infinitely many
elements?

Let K = {a1, . . . , an} and p = (x−a1) · . . . ·(x−an). Then p(x) = 0 for all x ∈ K, but p is not the zero
polynomial. If K has infinitely many elements, then Corollary 30.7 tells us that every polynomial is
uniquely determined by its associated polynomial function.

G 18 (i) Show that the set Cn of n-th roots of unity, i.e. the set of complex solutions of zn = 1, form a
multiplicative subgroup of C \ {0}. Give an isomorphism of Cn onto Zn.

(ii) Divide xn − 1 by x− 1 and conclude that
∑

ζ∈Cn
ζ = 0.

(i) Clearly, 1n − 1 = 0 so 1 ∈ Cn. Furthermore, let a, b ∈ Cn be arbitrary. Then (ab−1)n − 1 =
an

bn − 1 = 1
1 − 1 = 0. Hence, Cn is indeed a multiplicative subgroup of C \ {0}.

(ii) xn − 1 : x − 1 =
∑n−1

k=0 xk (telescope sum). By (i), Cn is generated by some element ξ. I.e. ξk

ranges through all elements of Cn as k = 0, . . . , n− 1. Since ξ 6= 1, it necessarily annihilates the
factor

∑n−1
k=0 xk of xn − 1. Hence,

∑
ζ∈Cn

ζ =
∑n−1

k=0 ξk = 0.

Homework
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H 9 Let f = x5 + (a + 1)x4 + (a + 1)x3 + (a− 1)x2 + (a2 − 2)x + a− 2 and g = x2 + x + 1. Determine all
values of a such that long division of f by g has remainder zero.

f = q · g + r with q = x3 + ax2 − 1 and r = (a2 − 1)x + (a− 1). We have r = 0 if and only if a = 1.

H 10 Let A be a n × n square matrix with integer coefficients and let y = (y1, . . . , yn)t be a vector with
integer entries. Show that A · x = y has a unique solution x with integer entries, if det(A) = ±1.

Using Cramers rule, we have the unique solution x = (x1, . . . , xn)t with xi = det(Ai)
det(A) = ±det Ai, i =

1, . . . , n, where Ai is the matrix obtained from A by replacing its i-th column by y.

H 11 Prove the second part of Theorem 29.4, i.e. every real polynomial p = anxn + · · · + a1x + a0 with
a0, . . . , an ∈ R, an 6= 0, n ≥ 1 can, up to order, be uniquely decomposed as a product

p = an(x− λ1) · . . . · (x− λr) · (x2 + α1x + β1) · . . . · (x2 + αmx + βm),

with λ1, . . . , λr, α1, . . . , αm, β1, . . . , βm ∈ R and α2
i−4βi < 0 for i = 1, . . . ,m. In particular, n = 2m+r

and every real polynomial of odd degree has a real zero.
(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division!
If λ is a complex zero of p, what can one say about λ̄? What kind of polynomial is x2−(λ+ λ̄)x+λλ̄?)

The uniqueness being clear, we show the existence of the stated decomposition by induction over the
degree n of p. If deg(p) = n = 1 then p = a1x + a0 = a1(x− (−a0

a1
)) and λ1 = −a0

a1
is the unique real

zero of p. If deg(p) = n = 2, then one argues similarly, that p posseses either two real zeros or has no
real zero and is therefore of the form a2 · (x2 + αx + β) with discriminant α2 − 4β < 0.

For n → n+1, let λ be a (probably) complex zero of p. If λ is real, then p : (x−λ) is a real polynomial
of degree n which, by induction hypothesis, admits a unique factorization as stated. We conclude that
p has such a factorization as well. If λ is not real, then p(λ̄) = p(λ) = 0, since p has real coefficients.
Therefore λ̄ is another zero of p, distinguished from λ. Forming g = (x−λ)(x− λ̄) = x2−(λ+ λ̄)x+λλ̄
yields a real polynomial (because λ + λ̄ = 2<(λ) and λλ̄ = |λ|2) which divides p. Applying the
induction hypothesis on the real polynomial p : g of degree n− 1, we obtain a unique factorization as
stated. Observe that (λ + λ̄)2 − 4λλ̄ = (λ − λ̄)2 = −=(λ)2 < 0. Hence, g is a quadratic factor as in
the statement and p admits the desired factorization.

H 12 Let K be a field and x0, . . . , xn, y0, . . . , yn ∈ K with xi 6= xj for all i 6= j. Show that there is one
and only one polynomial f ∈ K[x] of degree ≤ n, such that f(xi) = yi for i = 0, . . . , n. Why is this
statement not in contradiction to exercise G 17?
(Hint: Either construct polynomials gj ∈ K[x] of degree ≤ n, such that

gj(xi) =
{

1 for i = j
0 for i 6= j

,

or, more systematically, formulate the problem as a system of linear equations M · a = y, with
a = (a0, . . . , an)t as the coefficients of the desired polynomial f and y = (y0, . . . , yn)t. What is the
matrix M? How can you solve this system of linear equations?

Either put gj(x) :=
∏n

j 6=i=0(x−xi)∏n
j 6=i=0(xj−xi)

, then f =
∑n

j=0 yj · gj . Or alternatively we make the following

Ansatz to determine the coefficients of the desired f =
∑n

i=0 aix
i. Consider the following system of

linear equations:

f(x0) =
n∑

i=0

aix
i
0 = y0

... =
...

f(xn) =
n∑

i=0

aix
i
n = yn,
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which has the matrix form M · a = y with M =

1 x0 . . . xn
0

...
...

...
1 xn . . . xn

0

 and a and y as indicated in the

hint. According to exercise H7, det(M) =
∏

0≤i<j≤n(xj − xi) is a Vandermonde determinant. By
assumption, it is not zero and we may compute coefficients a0, . . . , an by Cramers rule, such that the
associated polynomial f has the desired properties. Furthermore, if f̃ is another polynomial which
satisfies the same conditions as f and has degree ≤ n, then its coefficients must coincide by uniqueness
of the solution of M · a = y with these of f . Hence f = f̃ . The statement does not contradict G 17,
since every polynomial constructed there has degree > n.


