Department of Mathematics Prof. Dr. Christian Herrmann Dipl.-Math. Frederick Magata Dr. Abdelhadi Es-Sarhir

TECHNISCHE UNIVERSITÄT DARMSTADT

11. Mai 2006

Linear Algebra II (MCS), SS 2006, Exercise 4

Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the following complex numbers:

$$1+i\,,\quad \sqrt{3}-i\,,\quad \frac{1+i}{1-i}\,,\quad \left(1+\sqrt{-3}\right)^2\,,\\ \frac{(1-i)^3}{(1+i)^5}\,,\quad \sum_{k=1}^{17}\,i^k\,,\quad \left(\frac{24-7i}{20+15i}\right).$$

- (ii) Show that for all $t \in \mathbb{R}$ we have $\left|\frac{1+it}{1-it}\right| = 1$.
- (iii) Determine all roots of $z^3 = 2 + 2i$ and write them in the form z = a + ib with $a, b \in \mathbb{R}$.
- **G 16** (i) Decompose the following polynomial into linear factors over \mathbb{C} , resp. into linear and quadratic factors over \mathbb{R} , by 'guessing' zeros and long division:

$$p = x^6 + 5x^4 + 3x^2 - 9.$$

- (ii) Let $f = 2x^4 + x^3 + 4x^2 + 3x + 1$ and $g = x^2 + 1$. Find the unique polynomials q and r, such that $f = q \cdot g + r$ and $\deg(r) < \deg(g)$.
- **G 17** Let K be an arbitrary finite field. Give an example of a polynomial $p \in K[x]$ such that p is not uniquely determined by its polynomial function $x \mapsto p(x)$. What happens if K has infinitely many elements?
- **G 18** (i) Show that the set C_n of *n*-th roots of unity, i.e. the set of complex solutions of $z^n = 1$, form a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$. Give an isomorphism of C_n onto \mathbb{Z}_n .
 - (ii) Divide $x^n 1$ by x 1 and conclude that $\sum_{\zeta \in C_n} \zeta = 0$.

Homework

- **H 9** Let $f = x^5 + (a+1)x^4 + (a+1)x^3 + (a-1)x^2 + (a^2-2)x + a 2$ and $g = x^2 + x + 1$. Determine all values of a such that long division of f by g has remainder zero.
- **H10** Let A be a $n \times n$ square matrix with integer coefficients and let $y = (y_1, \ldots, y_n)^t$ be a vector with integer entries. Show that $A \cdot x = y$ has a unique solution x with integer entries, if det $(A) = \pm 1$.
- **H11** Prove the second part of Theorem **29.4**, i.e. every real polynomial $p = a_n x^n + \cdots + a_1 x + a_0$ with $a_0, \ldots, a_n \in \mathbb{R}, a_n \neq 0, n \geq 1$ can, up to order, be uniquely decomposed as a product

$$p = a_n(x - \lambda_1) \cdot \ldots \cdot (x - \lambda_r) \cdot (x^2 + \alpha_1 x + \beta_1) \cdot \ldots \cdot (x^2 + \alpha_m x + \beta_m),$$

with $\lambda_1, \ldots, \lambda_r, \alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m \in \mathbb{R}$ and $\alpha_i^2 - 4\beta_i < 0$ for $i = 1, \ldots, m$. In particular, n = 2m + r and every real polynomial of odd degree has a real zero.

(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division! If λ is a complex zero of p, what can one say about $\overline{\lambda}$? What kind of polynomial is $x^2 - (\lambda + \overline{\lambda})x + \lambda\overline{\lambda}$?)

H12 Let K be a field and $x_0, \ldots, x_n, y_0, \ldots, y_n \in K$ with $x_i \neq x_j$ for all $i \neq j$. Show that there is one and only one polynomial $f \in K[x]$ of degree $\leq n$, such that $f(x_i) = y_i$ for $i = 0, \ldots, n$. Why is this statement not in contradiction to exercise **G 17**?

(Hint: Either construct polynomials $g_j \in K[x]$ of degree $\leq n$, such that

$$g_j(x_i) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases},$$

or, more systematically, formulate the problem as a system of linear equations $M \cdot a = y$, with $a = (a_0, \ldots, a_n)^t$ as the coefficients of the desired polynomial f and $y = (y_0, \ldots, y_n)^t$. What is the matrix M? How can you solve this system of linear equations?

Linear Algebra II (MCS), SS 2006, Exercise 4, Solution

Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the following complex numbers:

$$1+i\,,\quad \sqrt{3}-i\,,\quad \frac{1+i}{1-i}\,,\quad \left(1+\sqrt{-3}\right)^2\,,\\ \frac{(1-i)^3}{(1+i)^5}\,,\quad \sum_{k=1}^{17}\,i^k\,,\quad \left(\frac{24-7i}{20+15i}\right)\,.$$

(ii) Show that for all $t \in \mathbb{R}$ we have $\left|\frac{1+it}{1-it}\right| = 1$.

- (iii) Determine all roots of $z^3 = 2 + 2i$ and write them in the form z = a + ib with $a, b \in \mathbb{R}$.
- (i) $1 + i = \sqrt{2} \cdot e^{i\pi/4}$, $\sqrt{3} i = 2 \cdot e^{i\pi/6}$, $\frac{1+i}{1-i} = i = e^{i\pi/2}$, $(1 + \sqrt{-3})^2 = 4 \cdot e^{i2\pi/3}$, $\frac{(1-i)^3}{(1+i)^5} = \frac{1}{2}$, $\sum_{k=1}^{17} i^k = 1 + i$, $\left(\frac{24-7i}{20+15i}\right) = 3/5 4/5i = e^{i\arccos(3/5)}$
- (ii) $\frac{1+it}{1-it} = \frac{(1+it)^2}{1+t^2} = \frac{1-t^2+2it}{1+t^2}$, thus $\left|\frac{1+it}{1-it}\right|^2 = \frac{(1-t^2)^2+4t^2}{(1+t^2)^2} = \frac{(1+t^2)^2}{(1+t^2)^2} = 1$.
- (iii) $2+2i = \sqrt{8} \cdot e^{i\pi/4}$ and therefore one solution of $z^3 = 2+2i$ is $\xi := \sqrt{2} \cdot e^{i\pi/12}$ the other solutions can be obtained by multiplying ξ with the third roots of unity $\zeta_3^k = e^{2\pi i k/3}$, k = 1, 2, 3. Hence, $\xi_k = \sqrt{2} \cdot e^{\pi i (8k+1)/12} = \sqrt{2} \cos(\pi (8k+1)/12) + \sqrt{2} \sin(\pi (8k+1)/12)i$, k = 1, 2, 3 are the roots.
- **G 16** (i) Decompose the following polynomial into linear factors over \mathbb{C} , resp. into linear and quadratic factors over \mathbb{R} , by 'guessing' zeros and long division:

$$p = x^6 + 5x^4 + 3x^2 - 9.$$

- (ii) Let $f = 2x^4 + x^3 + 4x^2 + 3x + 1$ and $g = x^2 + 1$. Find the unique polynomials q and r, such that $f = q \cdot g + r$ and $\deg(r) < \deg(g)$.
- (i) By guessing, we see that 1 and -1 are zeros and long division by $x^2 1$ yields $p = (x^4 + 6x^2 + 9)(x^2 1)$. The term $x^4 + 6x^2 + 9 = (x^2 + 3)^2$ is a bi-square. Thus the decomposition over the reals is $p = (x^2 + 3)^2(x + 1)(x 1)$. Over \mathbb{C} , the factor $x^2 + 3$ can be further decomposed into $x^2 + 3 = (x \sqrt{3}i)(x + \sqrt{3}i)$ and therefore $p = (x \sqrt{3}i)^2(x + \sqrt{3}i)^2(x + 1)(x 1)$.
- (ii) $q = 2x^2 + x + 2$ and r = 2x 1.
- **G 17** Let K be an arbitrary finite field. Give an example of a polynomial $p \in K[x]$ such that p is not uniquely determined by its polynomial function $x \mapsto p(x)$. What happens if K has infinitely many elements?

Let $K = \{a_1, \ldots, a_n\}$ and $p = (x - a_1) \cdot \ldots \cdot (x - a_n)$. Then p(x) = 0 for all $x \in K$, but p is not the zero polynomial. If K has infinitely many elements, then Corollary 30.7 tells us that every polynomial is uniquely determined by its associated polynomial function.

- **G 18** (i) Show that the set C_n of *n*-th roots of unity, i.e. the set of complex solutions of $z^n = 1$, form a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$. Give an isomorphism of C_n onto \mathbb{Z}_n .
 - (ii) Divide $x^n 1$ by x 1 and conclude that $\sum_{\zeta \in C_n} \zeta = 0$.
 - (i) Clearly, $1^n 1 = 0$ so $1 \in \mathbb{C}_n$. Furthermore, let $a, b \in C_n$ be arbitrary. Then $(ab^{-1})^n 1 = \frac{a^n}{b^n} 1 = \frac{1}{1} 1 = 0$. Hence, C_n is indeed a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$.
 - (ii) $x^n 1 : x 1 = \sum_{k=0}^{n-1} x^k$ (telescope sum). By (i), C_n is generated by some element ξ . I.e. ξ^k ranges through all elements of C_n as $k = 0, \ldots, n-1$. Since $\xi \neq 1$, it necessarily annihilates the factor $\sum_{k=0}^{n-1} x^k$ of $x^n 1$. Hence, $\sum_{\zeta \in C_n} \zeta = \sum_{k=0}^{n-1} \xi^k = 0$.

Homework

Linear Algebra II (MCS), SS 2006, Exercise 4, Solution

H9 Let $f = x^5 + (a+1)x^4 + (a+1)x^3 + (a-1)x^2 + (a^2-2)x + a - 2$ and $g = x^2 + x + 1$. Determine all values of a such that long division of f by g has remainder zero.

 $f = q \cdot g + r$ with $q = x^3 + ax^2 - 1$ and $r = (a^2 - 1)x + (a - 1)$. We have r = 0 if and only if a = 1.

H10 Let A be a $n \times n$ square matrix with integer coefficients and let $y = (y_1, \ldots, y_n)^t$ be a vector with integer entries. Show that $A \cdot x = y$ has a unique solution x with integer entries, if det $(A) = \pm 1$.

Using Cramers rule, we have the unique solution $x = (x_1, \ldots, x_n)^t$ with $x_i = \frac{\det(A_i)}{\det(A)} = \pm \det A_i$, $i = 1, \ldots, n$, where A_i is the matrix obtained from A by replacing its *i*-th column by y.

H11 Prove the second part of Theorem **29.4**, i.e. every real polynomial $p = a_n x^n + \cdots + a_1 x + a_0$ with $a_0, \ldots, a_n \in \mathbb{R}, a_n \neq 0, n \geq 1$ can, up to order, be uniquely decomposed as a product

$$p = a_n(x - \lambda_1) \cdot \ldots \cdot (x - \lambda_r) \cdot (x^2 + \alpha_1 x + \beta_1) \cdot \ldots \cdot (x^2 + \alpha_m x + \beta_m),$$

with $\lambda_1, \ldots, \lambda_r, \alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_m \in \mathbb{R}$ and $\alpha_i^2 - 4\beta_i < 0$ for $i = 1, \ldots, m$. In particular, n = 2m + r and every real polynomial of odd degree has a real zero.

(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division! If λ is a complex zero of p, what can one say about $\overline{\lambda}$? What kind of polynomial is $x^2 - (\lambda + \overline{\lambda})x + \lambda \overline{\lambda}$?)

The uniqueness being clear, we show the existence of the stated decomposition by induction over the degree n of p. If deg(p) = n = 1 then $p = a_1x + a_0 = a_1(x - (-\frac{a_0}{a_1}))$ and $\lambda_1 = -\frac{a_0}{a_1}$ is the unique real zero of p. If deg(p) = n = 2, then one argues similarly, that p possesses either two real zeros or has no real zero and is therefore of the form $a_2 \cdot (x^2 + \alpha x + \beta)$ with discriminant $\alpha^2 - 4\beta < 0$.

For $n \to n+1$, let λ be a (probably) complex zero of p. If λ is real, then $p:(x-\lambda)$ is a real polynomial of degree n which, by induction hypothesis, admits a unique factorization as stated. We conclude that p has such a factorization as well. If λ is not real, then $p(\overline{\lambda}) = \overline{p(\lambda)} = 0$, since p has real coefficients. Therefore $\overline{\lambda}$ is another zero of p, distinguished from λ . Forming $g = (x-\lambda)(x-\overline{\lambda}) = x^2 - (\lambda+\overline{\lambda})x + \lambda\overline{\lambda}$ yields a real polynomial (because $\lambda + \overline{\lambda} = 2\Re(\lambda)$ and $\lambda\overline{\lambda} = |\lambda|^2$) which divides p. Applying the induction hypothesis on the real polynomial p: g of degree n - 1, we obtain a unique factorization as stated. Observe that $(\lambda + \overline{\lambda})^2 - 4\lambda\overline{\lambda} = (\lambda - \overline{\lambda})^2 = -\Im(\lambda)^2 < 0$. Hence, g is a quadratic factor as in the statement and p admits the desired factorization.

H12 Let K be a field and $x_0, \ldots, x_n, y_0, \ldots, y_n \in K$ with $x_i \neq x_j$ for all $i \neq j$. Show that there is one and only one polynomial $f \in K[x]$ of degree $\leq n$, such that $f(x_i) = y_i$ for $i = 0, \ldots, n$. Why is this statement not in contradiction to exercise **G 17**?

(Hint: Either construct polynomials $g_j \in K[x]$ of degree $\leq n$, such that

$$g_j(x_i) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases},$$

or, more systematically, formulate the problem as a system of linear equations $M \cdot a = y$, with $a = (a_0, \ldots, a_n)^t$ as the coefficients of the desired polynomial f and $y = (y_0, \ldots, y_n)^t$. What is the matrix M? How can you solve this system of linear equations?

Either put $g_j(x) := \frac{\prod_{j \neq i=0}^n (x-x_i)}{\prod_{j \neq i=0}^n (x_j-x_i)}$, then $f = \sum_{j=0}^n y_j \cdot g_j$. Or alternatively we make the following Ansatz to determine the coefficients of the desired $f = \sum_{i=0}^n a_i x^i$. Consider the following system of linear equations:

$$f(x_0) = \sum_{i=0}^n a_i x_0^i = y_0$$
$$\vdots = \vdots$$
$$f(x_n) = \sum_{i=0}^n a_i x_n^i = y_n$$

which has the matrix form $M \cdot a = y$ with $M = \begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_0^n \end{pmatrix}$ and a and y as indicated in the hint. According to exercise **H7**, $\det(M) = \prod_{0 \le i < j \le n} (x_j - x_i)$ is a Vandermonde determinant. By assumption, it is not zero and we may compute coefficients $c = x_0$ by Course of the other tiles.

hint. According to exercise H7, $\det(M) = \prod_{0 \le i < j \le n} (x_j - x_i)$ is a Vandermonde determinant. By assumption, it is not zero and we may compute coefficients a_0, \ldots, a_n by Cramers rule, such that the associated polynomial f has the desired properties. Furthermore, if \tilde{f} is another polynomial which satisfies the same conditions as f and has degree $\le n$, then its coefficients must coincide by uniqueness of the solution of $M \cdot a = y$ with these of f. Hence $f = \tilde{f}$. The statement does not contradict G 17, since every polynomial constructed there has degree > n.