Linear Algebra II (MCS), SS 2006, Exercise 4

Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:

$$
1+i, \quad \sqrt{3}-i, \quad \frac{1+i}{1-i}, \quad(1+\sqrt{-3})^{2}, \frac{(1-i)^{3}}{(1+i)^{5}}, \quad \sum_{k=1}^{17} i^{k}, \quad\left(\frac{24-7 i}{20+15 i}\right)
$$

(ii) Show that for all $t \in \mathbb{R}$ we have $\left|\frac{1+i t}{1-i t}\right|=1$.
(iii) Determine all roots of $z^{3}=2+2 i$ and write them in the form $z=a+i b$ with $a, b \in \mathbb{R}$.

G 16 (i) Decompose the following polynomial into linear factors over \mathbb{C}, resp. into linear and quadratic factors over \mathbb{R}, by 'guessing' zeros and long division:

$$
p=x^{6}+5 x^{4}+3 x^{2}-9
$$

(ii) Let $f=2 x^{4}+x^{3}+4 x^{2}+3 x+1$ and $g=x^{2}+1$. Find the unique polynomials q and r, such that $f=q \cdot g+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.
G 17 Let K be an arbitrary finite field. Give an example of a polynomial $p \in K[x]$ such that p is not uniquely determined by its polynomial function $x \mapsto p(x)$. What happens if K has infinitely many elements?

G 18 (i) Show that the set C_{n} of n-th roots of unity, i.e. the set of complex solutions of $z^{n}=1$, form a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$. Give an isomorphism of C_{n} onto \mathbb{Z}_{n}.
(ii) Divide $x^{n}-1$ by $x-1$ and conclude that $\sum_{\zeta \in C_{n}} \zeta=0$.

Homework

H9 Let $f=x^{5}+(a+1) x^{4}+(a+1) x^{3}+(a-1) x^{2}+\left(a^{2}-2\right) x+a-2$ and $g=x^{2}+x+1$. Determine all values of a such that long division of f by g has remainder zero.

H10 Let A be a $n \times n$ square matrix with integer coefficients and let $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ be a vector with integer entries. Show that $A \cdot x=y$ has a unique solution x with integer entries, if $\operatorname{det}(A)= \pm 1$.
H11 Prove the second part of Theorem 29.4, i.e. every real polynomial $p=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0, n \geq 1$ can, up to order, be uniquely decomposed as a product

$$
p=a_{n}\left(x-\lambda_{1}\right) \cdot \ldots \cdot\left(x-\lambda_{r}\right) \cdot\left(x^{2}+\alpha_{1} x+\beta_{1}\right) \cdot \ldots \cdot\left(x^{2}+\alpha_{m} x+\beta_{m}\right),
$$

with $\lambda_{1}, \ldots, \lambda_{r}, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$ and $\alpha_{i}^{2}-4 \beta_{i}<0$ for $i=1, \ldots, m$. In particular, $n=2 m+r$ and every real polynomial of odd degree has a real zero.
(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division! If λ is a complex zero of p, what can one say about $\bar{\lambda}$? What kind of polynomial is $x^{2}-(\lambda+\bar{\lambda}) x+\lambda \bar{\lambda}$?)
H12 Let K be a field and $x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n} \in K$ with $x_{i} \neq x_{j}$ for all $i \neq j$. Show that there is one and only one polynomial $f \in K[x]$ of degree $\leq n$, such that $f\left(x_{i}\right)=y_{i}$ for $i=0, \ldots, n$. Why is this statement not in contradiction to exercise G17?
(Hint: Either construct polynomials $g_{j} \in K[x]$ of degree $\leq n$, such that

$$
g_{j}\left(x_{i}\right)=\left\{\begin{array}{lll}
1 & \text { for } & i=j \\
0 & \text { for } & i \neq j
\end{array},\right.
$$

or, more systematically, formulate the problem as a system of linear equations $M \cdot a=y$, with $a=\left(a_{0}, \ldots, a_{n}\right)^{t}$ as the coefficients of the desired polynomial f and $y=\left(y_{0}, \ldots, y_{n}\right)^{t}$. What is the matrix M ? How can you solve this system of linear equations?

Linear Algebra II (MCS), SS 2006, Exercise 4, Solution

Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:

$$
1+i, \quad \sqrt{3}-i, \quad \frac{1+i}{1-i}, \quad(1+\sqrt{-3})^{2}, \frac{(1-i)^{3}}{(1+i)^{5}}, \quad \sum_{k=1}^{17} i^{k}, \quad\left(\frac{24-7 i}{20+15 i}\right) .
$$

(ii) Show that for all $t \in \mathbb{R}$ we have $\left|\frac{1+i t}{1-i t}\right|=1$.
(iii) Determine all roots of $z^{3}=2+2 i$ and write them in the form $z=a+i b$ with $a, b \in \mathbb{R}$.
(i) $1+i=\sqrt{2} \cdot e^{i \pi / 4}, \quad \sqrt{3}-i=2 \cdot e^{i \pi / 6}, \quad \frac{1+i}{1-i}=i=e^{i \pi / 2}, \quad(1+\sqrt{-3})^{2}=4 \cdot e^{i 2 \pi / 3}$, $\frac{(1-i)^{3}}{(1+i)^{5}}=\frac{1}{2}, \quad \sum_{k=1}^{17} i^{k}=1+i, \quad\left(\frac{24-7 i}{20+15 i}\right)=3 / 5-4 / 5 i=e^{i \arccos (3 / 5)}$
(ii) $\frac{1+i t}{1-i t}=\frac{(1+i t)^{2}}{1+t^{2}}=\frac{1-t^{2}+2 i t}{1+t^{2}}$, thus $\left|\frac{1+i t}{1-i t}\right|^{2}=\frac{\left(1-t^{2}\right)^{2}+4 t^{2}}{\left(1+t^{2}\right)^{2}}=\frac{\left(1+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}}=1$.
(iii) $2+2 i=\sqrt{8} \cdot e^{i \pi / 4}$ and therefore one solution of $z^{3}=2+2 i$ is $\xi:=\sqrt{2} \cdot e^{i \pi / 12}$ the other solutions can be obtained by multiplying ξ with the third roots of unity $\zeta_{3}^{k}=e^{2 \pi i k / 3}, k=1,2,3$. Hence, $\xi_{k}=\sqrt{2} \cdot e^{\pi i(8 k+1) / 12}=\sqrt{2} \cos (\pi(8 k+1) / 12)+\sqrt{2} \sin (\pi(8 k+1) / 12) i, k=1,2,3$ are the roots.

G 16 (i) Decompose the following polynomial into linear factors over \mathbb{C}, resp. into linear and quadratic factors over \mathbb{R}, by 'guessing' zeros and long division:

$$
p=x^{6}+5 x^{4}+3 x^{2}-9
$$

(ii) Let $f=2 x^{4}+x^{3}+4 x^{2}+3 x+1$ and $g=x^{2}+1$. Find the unique polynomials q and r, such that $f=q \cdot g+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.
(i) By guessing, we see that 1 and -1 are zeros and long division by $x^{2}-1$ yields $p=\left(x^{4}+6 x^{2}+\right.$ 9) $\left(x^{2}-1\right)$. The term $x^{4}+6 x^{2}+9=\left(x^{2}+3\right)^{2}$ is a bi-square. Thus the decomposition over the reals is $p=\left(x^{2}+3\right)^{2}(x+1)(x-1)$. Over \mathbb{C}, the factor $x^{2}+3$ can be further decomposed into $x^{2}+3=(x-\sqrt{3} i)(x+\sqrt{3} i)$ and therefore $p=(x-\sqrt{3} i)^{2}(x+\sqrt{3} i)^{2}(x+1)(x-1)$.
(ii) $q=2 x^{2}+x+2$ and $r=2 x-1$.

G 17 Let K be an arbitrary finite field. Give an example of a polynomial $p \in K[x]$ such that p is not uniquely determined by its polynomial function $x \mapsto p(x)$. What happens if K has infinitely many elements?

Let $K=\left\{a_{1}, \ldots, a_{n}\right\}$ and $p=\left(x-a_{1}\right) \cdot \ldots \cdot\left(x-a_{n}\right)$. Then $p(x)=0$ for all $x \in K$, but p is not the zero polynomial. If K has infinitely many elements, then Corollary 30.7 tells us that every polynomial is uniquely determined by its associated polynomial function.

G 18 (i) Show that the set C_{n} of n-th roots of unity, i.e. the set of complex solutions of $z^{n}=1$, form a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$. Give an isomorphism of C_{n} onto \mathbb{Z}_{n}.
(ii) Divide $x^{n}-1$ by $x-1$ and conclude that $\sum_{\zeta \in C_{n}} \zeta=0$.
(i) Clearly, $1^{n}-1=0$ so $1 \in \mathbb{C}_{n}$. Furthermore, let $a, b \in C_{n}$ be arbitrary. Then $\left(a b^{-1}\right)^{n}-1=$ $\frac{a^{n}}{b^{n}}-1=\frac{1}{1}-1=0$. Hence, C_{n} is indeed a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$.
(ii) $x^{n}-1: x-1=\sum_{k=0}^{n-1} x^{k}$ (telescope sum). By (i), C_{n} is generated by some element ξ. I.e. ξ^{k} ranges through all elements of C_{n} as $k=0, \ldots, n-1$. Since $\xi \neq 1$, it necessarily annihilates the factor $\sum_{k=0}^{n-1} x^{k}$ of $x^{n}-1$. Hence, $\sum_{\zeta \in C_{n}} \zeta=\sum_{k=0}^{n-1} \xi^{k}=0$.

Homework

H9 Let $f=x^{5}+(a+1) x^{4}+(a+1) x^{3}+(a-1) x^{2}+\left(a^{2}-2\right) x+a-2$ and $g=x^{2}+x+1$. Determine all values of a such that long division of f by g has remainder zero.
$f=q \cdot g+r$ with $q=x^{3}+a x^{2}-1$ and $r=\left(a^{2}-1\right) x+(a-1)$. We have $r=0$ if and only if $a=1$.
H 10 Let A be a $n \times n$ square matrix with integer coefficients and let $y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ be a vector with integer entries. Show that $A \cdot x=y$ has a unique solution x with integer entries, if $\operatorname{det}(A)= \pm 1$.

Using Cramers rule, we have the unique solution $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ with $x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}= \pm \operatorname{det} A_{i}, i=$ $1, \ldots, n$, where A_{i} is the matrix obtained from A by replacing its i-th column by y.

H 11 Prove the second part of Theorem 29.4, i.e. every real polynomial $p=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0, n \geq 1$ can, up to order, be uniquely decomposed as a product

$$
p=a_{n}\left(x-\lambda_{1}\right) \cdot \ldots \cdot\left(x-\lambda_{r}\right) \cdot\left(x^{2}+\alpha_{1} x+\beta_{1}\right) \cdot \ldots \cdot\left(x^{2}+\alpha_{m} x+\beta_{m}\right)
$$

with $\lambda_{1}, \ldots, \lambda_{r}, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$ and $\alpha_{i}^{2}-4 \beta_{i}<0$ for $i=1, \ldots, m$. In particular, $n=2 m+r$ and every real polynomial of odd degree has a real zero.
(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division! If λ is a complex zero of p, what can one say about $\bar{\lambda}$? What kind of polynomial is $x^{2}-(\lambda+\bar{\lambda}) x+\lambda \bar{\lambda}$?)

The uniqueness being clear, we show the existence of the stated decomposition by induction over the degree n of p. If $\operatorname{deg}(p)=n=1$ then $p=a_{1} x+a_{0}=a_{1}\left(x-\left(-\frac{a_{0}}{a_{1}}\right)\right)$ and $\lambda_{1}=-\frac{a_{0}}{a_{1}}$ is the unique real zero of p. If $\operatorname{deg}(p)=n=2$, then one argues similarly, that p posseses either two real zeros or has no real zero and is therefore of the form $a_{2} \cdot\left(x^{2}+\alpha x+\beta\right)$ with discriminant $\alpha^{2}-4 \beta<0$.
For $n \rightarrow n+1$, let λ be a (probably) complex zero of p. If λ is real, then $p:(x-\lambda)$ is a real polynomial of degree n which, by induction hypothesis, admits a unique factorization as stated. We conclude that p has such a factorization as well. If λ is not real, then $p(\bar{\lambda})=\overline{p(\lambda)}=0$, since p has real coefficients. Therefore $\bar{\lambda}$ is another zero of p, distinguished from λ. Forming $g=(x-\lambda)(x-\bar{\lambda})=x^{2}-(\lambda+\bar{\lambda}) x+\lambda \bar{\lambda}$ yields a real polynomial (because $\lambda+\bar{\lambda}=2 \Re(\lambda)$ and $\lambda \bar{\lambda}=|\lambda|^{2}$) which divides p. Applying the induction hypothesis on the real polynomial $p: g$ of degree $n-1$, we obtain a unique factorization as stated. Observe that $(\lambda+\bar{\lambda})^{2}-4 \lambda \bar{\lambda}=(\lambda-\bar{\lambda})^{2}=-\Im(\lambda)^{2}<0$. Hence, g is a quadratic factor as in the statement and p admits the desired factorization.

H 12 Let K be a field and $x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n} \in K$ with $x_{i} \neq x_{j}$ for all $i \neq j$. Show that there is one and only one polynomial $f \in K[x]$ of degree $\leq n$, such that $f\left(x_{i}\right)=y_{i}$ for $i=0, \ldots, n$. Why is this statement not in contradiction to exercise G17?
(Hint: Either construct polynomials $g_{j} \in K[x]$ of degree $\leq n$, such that

$$
g_{j}\left(x_{i}\right)= \begin{cases}1 & \text { for } \quad i=j \\ 0 & \text { for } \quad i \neq j\end{cases}
$$

or, more systematically, formulate the problem as a system of linear equations $M \cdot a=y$, with $a=\left(a_{0}, \ldots, a_{n}\right)^{t}$ as the coefficients of the desired polynomial f and $y=\left(y_{0}, \ldots, y_{n}\right)^{t}$. What is the matrix M ? How can you solve this system of linear equations?

Either put $g_{j}(x):=\frac{\prod_{j \neq i=0}^{n}\left(x-x_{i}\right)}{\prod_{j \neq i=0}^{n}\left(x_{j}-x_{i}\right)}$, then $f=\sum_{j=0}^{n} y_{j} \cdot g_{j}$. Or alternatively we make the following Ansatz to determine the coefficients of the desired $f=\sum_{i=0}^{n} a_{i} x^{i}$. Consider the following system of linear equations:

$$
\begin{aligned}
f\left(x_{0}\right)=\sum_{i=0}^{n} a_{i} x_{0}^{i} & =y_{0} \\
\vdots & =\vdots \\
f\left(x_{n}\right)=\sum_{i=0}^{n} a_{i} x_{n}^{i} & =y_{n}
\end{aligned}
$$

which has the matrix form $M \cdot a=y$ with $M=\left(\begin{array}{cccc}1 & x_{0} & \ldots & x_{0}^{n} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n} & \ldots & x_{0}^{n}\end{array}\right)$ and a and y as indicated in the hint. According to exercise H7, $\operatorname{det}(M)=\prod_{0 \leq i<j \leq n}\left(x_{j}-x_{i}\right)$ is a Vandermonde determinant. By assumption, it is not zero and we may compute coefficients a_{0}, \ldots, a_{n} by Cramers rule, such that the associated polynomial f has the desired properties. Furthermore, if \tilde{f} is another polynomial which satisfies the same conditions as f and has degree $\leq n$, then its coefficients must coincide by uniqueness of the solution of $M \cdot a=y$ with these of f. Hence $f=\tilde{f}$. The statement does not contradict \mathbf{G} 17, since every polynomial constructed there has degree $>n$.

