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Linear Algebra IT (MCS), SS 2006, Exercise 4

Groupwork

G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:

] . 17 ;

. o L4 2 (1—ip - AT
1 - Y 20+15i )
+i, V3—i, o, (1+V=3) (i) ;Z’ 20 + 15i

= 1.

(ii) Show that for all ¢ € R we have ‘ o

(iii) Determine all roots of 23 = 2 + 2i and write them in the form z = a + ib with a,b € R.

G 16 (i) Decompose the following polynomial into linear factors over C, resp. into linear and quadratic
factors over R, by ‘guessing’ zeros and long division:

p=2a%+52* + 322 —0.
(i) Let f = 2z* + 23 + 422 + 32+ 1 and g = 22 + 1. Find the unique polynomials ¢ and r, such that
f=q-g+rand deg(r) < deg(g).

G 17 Let K be an arbitrary finite field. Give an example of a polynomial p € KJz| such that p is not
uniquely determined by its polynomial function x +— p(z). What happens if K has infinitely many
elements?

G 18 (i) Show that the set C,, of n-th roots of unity, i.e. the set of complex solutions of 2" = 1, form a
multiplicative subgroup of C\ {0}. Give an isomorphism of C,, onto Z,.

(ii) Divide 2" — 1 by 2 — 1 and conclude that > .. ¢ =0.
Homework
H9 Let f=2"+(a+1)z* + (a+1)2° + (a—1)a* + (a* — 2)x + a — 2 and g = 2? + 2 + 1. Determine all

values of a such that long division of f by g has remainder zero.

H 10 Let A be a n x n square matrix with integer coefficients and let y = (y1,...,9n)" be a vector with
integer entries. Show that A - x = y has a unique solution z with integer entries, if det(A) = +1.

H 11 Prove the second part of Theorem 29.4, i.e. every real polynomial p = a,z™ + -+ + a1z + ag with

ag,---,0, € R, a, #0,n > 1 can, up to order, be uniquely decomposed as a product
p=an(@x—A)-...-(x=XN)- (2 +arx+61) ... (@2 + amz+ Bn),
with A1, ..., A\r, a1, ..., am, B1, - - -, B € Rand a?—4ﬁi < 0fori=1,...,m. In particular, n = 2m+r

and every real polynomial of odd degree has a real zero.

(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division!
If X is a complex zero of p, what can one say about A? What kind of polynomial is 22 — (A+ )z + AA?)

H12 Let K be a field and xo,...,Zn,Y0,-..,yn € K with x; # x; for all ¢ # j. Show that there is one
and only one polynomial f € K|z| of degree < n, such that f(z;) = y; for i = 0,...,n. Why is this
statement not in contradiction to exercise G 177

(Hint: Either construct polynomials g; € K|x] of degree < n, such that

|1 for 1=
gﬂ(xl)_{o for i#j

or, more systematically, formulate the problem as a system of linear equations M - a = y, with
a = (ag,...,a,)" as the coefficients of the desired polynomial f and y = (yo,--.,yn)!. What is the
matrix M? How can you solve this system of linear equations?
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Groupwork
G 15 (i) Determine the polar representation, real and imaginary part of the follwing complex numbers:
17
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=1.

(ii) Show that for all ¢ € R we have ‘ %J_rzi

(iii) Determine all roots of 23 = 2 + 2i and write them in the form z = a + ib with a,b € R.

() 14+i=+2-e* /3—i=2.¢7/6 % =i =¢"/2 (1+\/f3)2 — 4. ¢27/3,
1-i)3 17 . . o , .
E1+35 = %, Zk:1 k=1 + 1, (%) = 3/5 — 4/51 — etarccos(3/5)

2

(1=t2)2 4482 (1432 1
I+ — @22 —
(iii) 2+ 2i = /8- ¢"™/* and therefore one solution of 2> = 2 + 2i is & := /2 ¢™/12 the other solutions
can be obtained by multiplying & with the third roots of unity (§ = ?™k/3 |k = 1,2, 3. Hence,
& = V2 - emERHD/12 — /9 cos(m(8k 4 1)/12) + V/2sin(m(8k + 1)/12)i, k = 1,2,3 are the roots.

14t (12 1-4242it 14it
(i) 5 = T = e o thus |15

G 16 (i) Decompose the following polynomial into linear factors over C, resp. into linear and quadratic
factors over R, by ‘guessing’ zeros and long division:

p=a%+5z* + 322 —0.

(i) Let f = 22* + 23 + 422+ 32+ 1 and g = 22 + 1. Find the unique polynomials ¢ and r, such that
f=gq-g+rand deg(r) < deg(g).

(i) By guessing, we see that 1 and —1 are zeros and long division by z? — 1 yields p = (2* + 622 +
9)(x2 — 1). The term 2* + 622 + 9 = (2% + 3)? is a bi-square. Thus the decomposition over the
reals is p = (22 + 3)%(z + 1)(x — 1). Over C, the factor x2 + 3 can be further decomposed into
22 43 = (z — V/3i)(z + V/3i) and therefore p = (x — /3i)?(x + V/3i)?(x + 1) (x — 1).

(i) g =222 +x+2 and r = 2z — 1.

G 17 Let K be an arbitrary finite field. Give an example of a polynomial p € Klz| such that p is not
uniquely determined by its polynomial function  — p(z). What happens if K has infinitely many
elements?

Let K ={a1,...,an} andp = (x—ay)-...-(x—ay). Then p(z) =0 for all x € K, but p is not the zero
polynomial. If K has infinitely many elements, then Corollary 30.7 tells us that every polynomial is
uniquely determined by its associated polynomial function.

G 18 (i) Show that the set C), of n-th roots of unity, i.e. the set of complex solutions of z"” = 1, form a
multiplicative subgroup of C \ {0}. Give an isomorphism of C,, onto Z,.

(ii) Divide 2™ —1 by z — 1 and conclude that } .., ¢ = 0.

(i) Clearly, 1" —1 = 0 so 1 € C,. Furthermore, let a,b € C, be arbitrary. Then (ab™')" — 1 =
‘g—: —-1= % —1=0. Hence, C,, is indeed a multiplicative subgroup of C \ {0}.

(ii) 2" —1:2x—1= ZZ;(I) z¥ (telescope sum). By (i), C,, is generated by some element ¢. Le. &F
ranges through all elements of C,, as k =0,...,n — 1. Since £ # 1, it necessarily annihilates the
factor ZZ;(I) zF of ™ — 1. Hence, dcec, C= ZZ;& & =0.

Homework
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H9

H10

H11

H12

Let f=a2%+(a+1Dz* + (a+1)2®+ (a—1)2® + (a®> — 2)v +a— 2 and g = 22 + 2 + 1. Determine all
values of a such that long division of f by g has remainder zero.

f=q-g+rwithg=23+az?—1andr = (a®> — 1)z + (a — 1). We have r = 0 if and only ifa = 1.

Let A be a n x n square matrix with integer coefficients and let y = (y1,...,ys)! be a vector with
integer entries. Show that A - x = y has a unique solution = with integer entries, if det(A) = +1.

Using Cramers rule, we have the unique solution x = (x1,...,2,)! with z; = (ileett((%) = +det A;, 1 =
1,...,n, where A; is the matrix obtained from A by replacing its i-th column by y.

Prove the second part of Theorem 29.4, i.e. every real polynomial p = a,x™ + -+ 4+ a1z + ag with
ag,---,0, € R, a, #0,n > 1 can, up to order, be uniquely decomposed as a product

p=an(x—A)-...-(@=X\)- @+ a1z +61) ... (2% + amz + Bm),

with A1, ..o, Ay @y oy Gy By -+ -5 B € Rand a2 —43; < 0 for i = 1,...,m. In particular, n = 2m-+r
and every real polynomial of odd degree has a real zero.

(Hint: Use the first part of the fundamental theorem, induction over the degree of p and long division!
If X is a complex zero of p, what can one say about A? What kind of polynomial is 2% — (A+ )z + AA?)

The uniqueness being clear, we show the existence of the stated decomposition by induction over the
ag ag

degree n of p. If deg(p) =n =1 then p = a1z + ap = ar(z — (—32)) and Ay = —¢2 is the unique real
zero of p. If deg(p) = n = 2, then one argues similarly, that p posseses either two real zeros or has no

real zero and is therefore of the form ag - (v 4+ ax + 3) with discriminant o — 43 < 0.

Forn — n+1, let A be a (probably) complex zero of p. If X is real, then p : (x — \) is a real polynomial
of degree n which, by induction hypothesis, admits a unique factorization as stated. We conclude that
p has such a factorization as well. If X is not real, then p(\) = p(\) = 0, since p has real coefficients.
Therefore ) is another zero of p, distinguished from \. Forming g = (x—\)(z—\) = 22— (A+ )z + A\
yields a real polynomial (because A + A = 2R(\) and A\ = |A|?) which divides p. Applying the
induction hypothesis on the real polynomial p : g of degree n — 1, we obtain a unique factorization as
stated. Observe that (A + \)? —4A\ = (A — \)?2 = —$(A\)? < 0. Hence, g is a quadratic factor as in

the statement and p admits the desired factorization.

Let K be a field and zo,...,2n,%0,...,yn € K with x; # x; for all 7 # j. Show that there is one
and only one polynomial f € KJz| of degree < n, such that f(z;) = y; for i = 0,...,n. Why is this
statement not in contradiction to exercise G 177

(Hint: Either construct polynomials g; € K|x] of degree < n, such that

|1 for 1=
gf(xz)_{o for i#j

or, more systematically, formulate the problem as a system of linear equations M - a = y, with
a = (ag,...,a,)" as the coefficients of the desired polynomial f and y = (yo,...,yn)!. What is the
matrix M7 How can you solve this system of linear equations?

Either put g;(z) = 71_[;{;:0&:2)
Ansatz to determine the coefficients of the desired f = >, a;x'. Consider the following system of
linear equations:

, then f = Z?:o y; - gj. Or alternatively we make the following

n
flwo) = aiwy = wo
=0

n
flan) = Zaix; = Un,
=0
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1 =z ... af
which has the matrix form M -a =y with M = | : : | and a and y as indicated in the
1z, ... ag
hint. According to exercise H7, det(M) = [[o<;j<,(z; — ;) is a Vandermonde determinant. By
assumption, it is not zero and we may compute coefficients ay, . . . , Gy by Cramers rule, such that the

associated polynomial f has the desired properties. Furthermore, if f is another polynomial which
satisfies the same conditions as f and has degree < n, then its coefficients must coincide by uniqueness
of the solution of M - a = y with these of f. Hence f = f The statement does not contradict G 17,
since every polynomial constructed there has degree > n.



