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Linear Algebra II (MCS), SS 2006, Exercise 3
Groupwork

G 10 Compute the determinants of the following matrices:
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 ,


1 0 1 0
2 2 2 4
1 0 0 0
4 1 3 1


G 11 Show that

det

x 1 1
1 x 1
1 1 x

 = (x− 1)2(x + 2), det

a2 + 1 ab ac
ab b2 + 1 bc
ac bc c2 + 1

 = a2 + b2 + c2 + 1.

G 12 Show that for an orthogonal matrix A ∈ M(n, R), we have det(A) = ±1.

G 13 Show that for a block matrix of the kind M :=
(

A B
0 C

)
, with A and C square matrices, we have:

det(M) = det(A) · det(C). Is the rule: det
(

A B
C D

)
= det(A) · det(D)− det(B) · det(C) also true?

G 14 Show that for any matrix A = (aij) ∈ M(n, K) we have: det(aij) = det((−1)i+j · aij)

Homework

H 6 Show that:

det


a b c d
−b a −d c
−c d a −b
−d −c b a

 = (a2 + b2 + c2 + d2)2

(Hint: Look at A ·At and use that the determinant of A is a continuous function of a, b, c and d!)

H 7 Prove by induction over n that

det

1 x1 . . . xn−1
1

...
...

...
1 xn . . . xn−1

n

 =
∏

1≤i<j≤n

(xj − xi)

(Remark: Recall that the empty product is defined as unity. I.e.
∏

i∈∅ ai := 1.)

H 8 Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the
Leibniz formula.

(i) Determine the number of multiplications and additions required to compute the determinant of
the square matrix A = (aij) ∈ M(n, K)
(a) by the Leibniz formula.
(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal

entries.
(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an

estimate of the maximal value of n in case you want to compute the determinant of A within 48
hours of computation time using method (a), resp. method (b).
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Groupwork

G 10 Compute the determinants of the following matrices:
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 ,


1 0 1 0
2 2 2 4
1 0 0 0
4 1 3 1



Using the Gaussian algorithm, resp. Laplace expansion we get:

det


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 = 4, det


1 0 1 0
2 2 2 4
1 0 0 0
4 1 3 1

 = 2.

G 11 Show that

det

x 1 1
1 x 1
1 1 x

 = (x− 1)2(x + 2), det

a2 + 1 ab ac
ab b2 + 1 bc
ac bc c2 + 1

 = a2 + b2 + c2 + 1.

Use, for instance, Sarrus rule in both cases to verify the identities. E.g. the first identity computes
as follows:

det

x 1 1
1 x 1
1 1 x

 = x3 + 1 + 1− x− x− x = x3 − 3x + 2 = (x− 1)2(x + 2)

G 12 Show that for an orthogonal matrix A ∈ M(n, R), we have det(A) = ±1.

Since A ·At = I and using that det is multiplicative as well as det(A) = det(At), we have

1 = det I = det(A) · det(At) = det(A)2.

Hence, det(A) = ±1

G 13 Show that for a block matrix of the kind M :=
(

A B
0 C

)
, with A and C square matrices, we have:

det(M) = det(A) · det(C). Is the rule: det
(

A B
C D

)
= det(A) · det(D)− det(B) · det(C) also true?

First proof: Let Si, i = 1, 2 be the transformation matrix which transforms A, resp. B into echelon

form, i.e. S1AS−1
1 = T1 and S2AS−1

2 = T2, for some trigonal matrices T1 and T2. Then S :=
(

S1 0
0 S2

)
is a transformation matrix with inverse S−1 :=

(
S−1

1 0
0 S−1

2

)
, which transforms M into echelon form:

SMS−1 =
(

S1AS−1
1 S1BS−1

2

0 S2CS−1
2

)
=
(

T1 S1BS−1
2

0 T2

)
.

Therefore, using that det is multiplicative, we have

det(M) = det(SMS−1) = det(T1) · det(T2) = det(A) · det(C).
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Second proof: Let A ∈ M(n×n, K) and C ∈ M(m×m,K). Then M = (aij) ∈ M((n+m)×(n+m),K)
and by the Leibniz formula we have

det(M) =
∑

σ∈Sn+m

sign(σ) · a1,σ(1) · . . . · an,σ(n) · an+1,σ(n+1) · . . . · an+m,σ(n+m).

Since aij = 0 for n + 1 ≤ i ≤ n + m, 1 ≤ j ≤ m, we see that only those σ ∈ Sn+m contribute to the
sum which map {1, . . . , n} to itself and hence also {n+1, . . . , n+m} to itself. That is, σ = τ ◦ ν with
τ ∈ Sn, ν ∈ Sm (we assume here, that Sm permutes the elements of {n + 1, . . . , n + m}). Then

det(M) =
∑

σ∈Sn+m

sign(σ) · a1,σ(1) · . . . · an,σ(n) · an+1,σ(n+1) · . . . · an+m,σ(n+m)

=
∑

τ∈Sn,ν∈Sm

sign(τ) · sign(ν) · a1,τ(1) · . . . · an,τ(n) · an+1,ν(n+1) · . . . · an+m,ν(n+m)

=

(∑
τ∈Sm

sign(τ) · a1,τ(1) · . . . · an,τ(n)

)
·

(∑
ν∈Sn

sign(ν) · an+1,ν(n+1) · . . . · an+m,ν(n+m)

)
= det(A) · det(C)

Counterexamples for the formula det
(

A B
C D

)
= det(A) · det(D) − det(B) · det(C) are, for instance,

the second matrix of exercise G10 or the matrix in H6. of course, the formula does not even make
sense in case that A,B, C and D are not square matrices.

G 14 Show that for any matrix A = (aij) ∈ M(n, K) we have: det(aij) = det((−1)i+j · aij)

Using the Leibniz formula we have

det((−1)i+j · aij) =
∑
σ∈Sn

sign(σ) · (−1)σ(1)+1 · aσ(1),1 · . . . · (−1)σ(n)+n · aσ(n),n

=
∑
σ∈Sn

sign(σ) · (−1)
∑n

k=1 σ(k)+k · aσ(1),1 · . . . · aσ(n),n.

Now
∑n

k=1 σ(k) + k = 2 · n(n+1)
2 = n(n + 1) which is an even number for every n ∈ N. Hence,

(−1)
∑n

k=1 σ(k)+k = 1 for every n ∈ N and using the Leibniz formula again in the above equation, we
have shown that det(aij) = det((−1)i+j · aij).

Homework

H 6 Show that:

det


a b c d
−b a −d c
−c d a −b
−d −c b a

 = (a2 + b2 + c2 + d2)2

(Hint: Look at A ·At and use that the determinant of A is a continuous function of a, b, c and d!)

Let A :=


a b c d
−b a −d c
−c d a −b
−d −c b a

. Then A · At = (a2 + b2 + c2 + d2) · I4 and we obtain

det(A)2 = (a2 + b2 + c2 + d2)4. From this we deduce that |det(A)| = (a2 + b2 + c2 + d2)2. However,
putting a = 1, b = c = d = 0 we see that det(A) = 1 > 0, thus, by continuity, the non-negative root is
the right one.
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H 7 Prove by induction over n that

det

1 x1 . . . xn−1
1

...
...

...
1 xn . . . xn−1

n

 =
∏

1≤i<j≤n

(xj − xi)

(Remark: Recall that the empty product is defined as unity. I.e.
∏

i∈∅ ai := 1.)

For n = 1, we have det(1) = 1 =
∏

1≤i<j≤1(xj−xi) (compare with the remark!). Suppose now that we
have already proved the statement for n and every x1, . . . , xn ∈ K. Note that formally the matrix we
determine the determinant of is given by A(n) := (aij) := (xj−1

i ), i, j = 1, . . . , n with the convention
x0

i = 1. Hence, for each row, the elements satisfy the simple recursive identity ai,0 = 1, ai,j+1 = aij ·xi.
Motivated by this observation, we transform det(A(n + 1)) in the first n steps, by adding to the k-th
column the (k − 1)-st column multiplied by (−xn+1). We do so from right to left, i.e. we start with
the (n + 1)-st column and finish with the second column. This yields

det(A(n + 1)) = det


1 x1 − xn+1 . . . xn

1 − xn−1
1 xn+1

...
...

...
1 xn − xn+1 . . . xn

n − xn−1
n xn+1

1 0 . . . 0



= det


0 (x1 − xn+1) . . . xn−1

1 (x1 − xn+1)
...

...
...

0 (xn − xn+1) . . . xn−1
n (xn − xn+1)

1 0 . . . 0

 .

Where in the last equation, we have already eliminated the entries in the first column. We now move
the last row to the top by n row exchanges then extract the factor (xi−xn+1) out of every row, which
gives:

det(A(n + 1)) = (−1)n · (x1 − xn+1) · . . . · (xn − xn+1) · det

1 x1 . . . xn−1
1

...
...

...
1 xn . . . xn−1

n

 .

We may now use the induction hypothesis and conclude that det(A(n + 1)) =
∏

1≤i<j≤n+1(xj − xi).

H 8 Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the
Leibniz formula.

(i) Determine the number of multiplications and additions required to compute the determinant of
the square matrix A = (aij) ∈ M(n, K)

(a) by the Leibniz formula.
(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal

entries.

(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an
estimate of the maximal value of n in case you want to compute the determinant of A within 48
hours of computation time using method (a), resp. method (b).

(i) In the Leibniz formula we have n! summands, each of which consists of n + 1 factors. This gives
(n+1)·n! = (n+1)! multiplications and n! additions. So in total, we have (n+1)!+n! operations.
If we do not count the signum as a separate multiplication, which is a reasonable assumption,
then we would ‘just’have n · n! multiplications and a total of (n + 1)! operations.

For the Gaussian algorithm, we have n · (n− 1) multiplications and n · (n− 1) additions to clear
the first column. For the second column, we have (n− 1) · (n− 2) multiplications and additions



Linear Algebra II (MCS), SS 2006, Exercise 3, Solution 4

each, and so on, until in the n-th step we have achieved echelon form and just have to multiply

the n diagonal elements. Summarizing, we have n +
∑n−1

k=1 k(k + 1) = n(n2+2)
3 multiplications

and
∑n−1

k=1 k(k + 1) = n(n2−1)
3 additions, which makes a total of n(2n2+1)

3 operations.

For n = 2 the number of operations required is the same for both methods. For n = 3, the
difference is still not very large. From then on however, the Gaussian algorithm is clearly the
more efficient one.

(ii) 48 hours are 1.728 · 1011 micro seconds. By our assumption, this equals 8.64 · 1011 operations.
Hence, the maximal possible n for the Leibniz formula is n = 13, whereas the Gaussian algorithm
can tackle a n× n-matrix with n = 10902 in the same time period!


