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Linear Algebra IT (MCS), SS 2006, Exercise 3
Groupwork
G 10 Compute the determinants of the following matrices:
01 1 11 1010
1 01 11
2 2 2 4
1101 1],
10 00
1 1101 41 3 1
1 1 1 10
G 11 Show that
z 1 1 a?+1 ab ac
det |1 z 1| =(@-1%x+2), det| ab b +1 be =a’+ b2+ 241
1 1 =z ac be  A+1

G 12 Show that for an orthogonal matrix A € M(n,R), we have det(A) = £1.

G 13 Show that for a block matrix of the kind M := (61 g), with A and C square matrices, we have:
det(M) = det(A) - det(C'). Is the rule: det <é ?)) = det(A) - det(D) — det(B) - det(C) also true?

G 14 Show that for any matrix A = (a;;) € M(n, K) we have: det(a;;) = det((—1)""7 - a;;)
Homework

H6 Show that:

a b c d

b a —-d c .2 2 2 242
det e d a —b =(a“+b"+c*+d°)

—d —c b a

(Hint: Look at A - A® and use that the determinant of A is a continuous function of a,b, c and d!)

H7 Prove by induction over n that

det [ : o= I ()

1 z, ... zn1 1<i<j<n
(Remark: Recall that the empty product is defined as unity. Le. [], cp @i = 1.)

H8 Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the
Leibniz formula.

(i) Determine the number of multiplications and additions required to compute the determinant of
the square matrix A = (a;;) € M(n, K)
(a) by the Leibniz formula.
(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal

entries.

(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an
estimate of the maximal value of n in case you want to compute the determinant of A within 48
hours of computation time using method (a), resp. method (b).
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Groupwork

G 10 Compute the determinants of the following matrices:

G11

G12

G13

011 11 101 0
101 11
2 2 2 4
1101 1],
1 000
111 01 41 3 1
11110
Using the Gaussian algorithm, resp. Laplace expansion we get:
01111 101 0
101 11 5 9 9 4
det |1 1 0 1 1| =4, det = 2.
1 000
111 01 41 3 1
11110
Show that
z 1 1 a’+1 ab ac
det (1 =z 1|=(@-1D*x+2), det| ab VP’ +1 b =a?+b*+ 2+ 1.
11 ac be  A+1

Use, for instance, Sarrus rule in both cases to verify the identities. E.g. the first identity computes
as follows:

det

— =8

1 1
z 1| =4+14+41-z—z-z=2-32c+2=(z-1)%*(z+2)
1 =z

Show that for an orthogonal matrix A € M (n,R), we have det(A) = £1.
Since A - A' = I and using that det is multiplicative as well as det(A) = det(A?), we have
1 =detI = det(A) - det(A") = det(A)>.

Hence, det(A) = £1

Show that for a block matrix of the kind M := (61 g), with A and C square matrices, we have:
det(M) = det(A) - det(C). Is the rule: det <é g) = det(A) - det(D) — det(B) - det(C) also true?

First proof: Let S;, i = 1,2 be the transformation matrix which transforms A, resp. B into echelon
form, i.e. SlASfl =T and SQAS;l =T, for some trigonal matrices T1 andT>. Then S := <S(;1 ; )
2
sttooo

0 Sl)’ which transforms M into echelon form:
2

is a transformation matrix with inverse S—! := <

M1 — <51As;1 SlBS;1> _ <T1 513521>

0 S8yt 0 Ty
Therefore, using that det is multiplicative, we have

det(M) = det(SMS™1) = det(T1) - det(T3) = det(A) - det(C).
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Second proof: Let A € M(nxn,K) andC € M(mxm,K). Then M = (a;;) € M((n+m)x(n+m), K)
and by the Leibniz formula we have

det(M) = Z sign(o) "A1o(1) " Gno(n) T Antlo(ntl) - Antmao(ntm)-
UESn+m

Since a;; =0 forn+1 <i<n+m,1<j < m, we see that only those o € Sy 4, contribute to the
sum which map {1,...,n} to itself and hence also {n+1,...,n+m} to itself. That is, c = T ov with

T € Sp, v € S, (we assume here, that S,, permutes the elements of {n +1,...,n+m}). Then
det<M) - Z Sign(a) “A10(1) - Ano(n) T Antlo(ntl) C - Qndbmoo(ndm)
Uesn+m
= Z sign(7) - sign(v) - a1 71y -+ Anr(n) * Onplwndl) - -+ Onpmop(ndm)
TESn,VGSm
= ( Z Sign(T) CA (1) e an,7(n)> ) (Z Sigl’l(l/) “Anply(ntl) e an+m,u(n+m))
TESM veS,

= det(A) - det(C)

A B
C D
the second matrix of exercise G10 or the matrix in H6. of course, the formula does not even make
sense in case that A, B,C and D are not square matrices.

Counterexamples for the formula det = det(A) - det(D) — det(B) - det(C) are, for instance,

G 14 Show that for any matrix A = (a;;) € M(n, K) we have: det(a;;) = det((—1)""7 - a;;)
Using the Leibniz formula we have
det((_l)H_j : aij) = Z sign(a) : (_1)0(1)+1 “Qo(1),1 - (_1)0(n)+n *Qo(n),n
O'ESn
= Z sign(a) : (_1)2Z:1 olk)+k . ao(l),l Teent ao’(n),n-
O'ESn
Now Y p_jo(k)+k =2- % = n(n + 1) which is an even number for every n € N. Hence,
(—1)275:1 o(k)+k = 1 for every n € N and using the Leibniz formula again in the above equation, we
have shown that det(a;;) = det((—1)" - a;;).
Homework
H6 Show that:
a b ¢ d
det [ 700 T4 2y ya)y
—c d a —b
—d —c b a

(Hint: Look at A - A and use that the determinant of A is a continuous function of a, b, c and d!)

a b c d

—b a —d C t ) 2 9 ) .
Let A := e d a —l Then A - A" = (a® + b° + ¢ + d°) - Iy and we obtain

—d —c b a

det(A)? = (a® +b? + ¢® + d*)*. From this we deduce that |det(A)| = (a® + b + % + d?)2. However,
putting a = 1,b = ¢ = d = 0 we see that det(A) = 1 > 0, thus, by continuity, the non-negative root is
the right one.
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HT7 Prove by induction over n that

HS

det | : = H (zj — i)

1 z, ... a1 1<i<j<n
(Remark: Recall that the empty product is defined as unity. Le. [[;cqai :=1.)

Forn =1, we have det(1) = 1 =[], ; ;< (¥ —;) (compare with the remark!). Suppose now that we
have already proved the statement for n and every z1,...,z, € K. Note that formally the matrix we
determine the determinant of is given by A(n) := (a;j) := (l‘g_l), i,7 =1,...,n with the convention
a:? = 1. Hence, for each row, the elements satisfy the simple recursive identity a; o = 1, a; j+1 = aij-T;.
Motivated by this observation, we transform det(A(n + 1)) in the first n steps, by adding to the k-th
column the (k — 1)-st column multiplied by (—xn+1). We do so from right to left, i.e. we start with

the (n + 1)-st column and finish with the second column. This yields

1 z1—2pp1 ... 2} — x?ilxn_,_l
det(A(n+1)) = det| - -
1 zp—2py1 ... T} — ) Tpp
1 0 . 0
0 (z1—Tns1) .. 2V Nwp — 2pg1)
= det .
0 (zn—xpt1) --- a0 (Tn— Tpt1)

1 0 0

Where in the last equation, we have already eliminated the entries in the first column. We now move
the last row to the top by n row exchanges then extract the factor (x; — x,+1) out of every row, which
gives:

1 =z ... a:’ffl
det(A(n+1))=(—1)" (1 — Tpt1) + -+ - (T — Tpy1) - det :
1 2y ... a7t

We may now use the induction hypothesis and conclude that det(A(n +1)) = [[1 ;< j<pp1 (25 — 24).

Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the
Leibniz formula.

(i) Determine the number of multiplications and additions required to compute the determinant of
the square matrix A = (a;;) € M(n, K)

(a) by the Leibniz formula.

(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal
entries.

(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an
estimate of the maximal value of n in case you want to compute the determinant of A within 48
hours of computation time using method (a), resp. method (b).

(i) In the Leibniz formula we have n! summands, each of which consists of n + 1 factors. This gives
(n+1)-n! = (n+1)! multiplications and n! additions. So in total, we have (n+1)!4n! operations.
If we do not count the signum as a separate multiplication, which is a reasonable assumption,
then we would ‘just’have n - n! multiplications and a total of (n + 1)! operations.
For the Gaussian algorithm, we have n - (n — 1) multiplications and n - (n — 1) additions to clear
the first column. For the second column, we have (n — 1) - (n — 2) multiplications and additions
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(ii)

each, and so on, until in the n-th step we have achieved echelon form and just have to multiply
2

the n diagonal e]ements.2 Summarizing, we have n + ZZ;% k(k + 12) = w multiplications

and 071 k(k+1) = w additions, which makes a total of W operations.

For n = 2 the number of operations required is the same for both methods. For n = 3, the

difference is still not very large. From then on however, the Gaussian algorithm is clearly the

more efficient one.

48 hours are 1.728 - 10" micro seconds. By our assumption, this equals 8.64 - 10'! operations.

Hence, the maximal possible n for the Leibniz formula is n = 13, whereas the Gaussian algorithm

can tackle a n x n-matrix with n = 10902 in the same time period!



