Linear Algebra II (MCS), SS 2006, Exercise 3

Groupwork

G 10 Compute the determinants of the following matrices:

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
2 & 2 & 2 & 4 \\
1 & 0 & 0 & 0 \\
4 & 1 & 3 & 1
\end{array}\right)
$$

G 11 Show that

$$
\operatorname{det}\left(\begin{array}{ccc}
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right)=(x-1)^{2}(x+2), \quad \operatorname{det}\left(\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
a c & b c & c^{2}+1
\end{array}\right)=a^{2}+b^{2}+c^{2}+1
$$

G 12 Show that for an orthogonal matrix $A \in M(n, \mathbb{R})$, we have $\operatorname{det}(A)= \pm 1$.
G 13 Show that for a block matrix of the kind $M:=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$, with A and C square matrices, we have: $\operatorname{det}(M)=\operatorname{det}(A) \cdot \operatorname{det}(C)$. Is the rule: $\operatorname{det}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\operatorname{det}(A) \cdot \operatorname{det}(D)-\operatorname{det}(B) \cdot \operatorname{det}(C)$ also true?

G 14 Show that for any matrix $A=\left(a_{i j}\right) \in M(n, K)$ we have: $\operatorname{det}\left(a_{i j}\right)=\operatorname{det}\left((-1)^{i+j} \cdot a_{i j}\right)$

Homework

H6 Show that:

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right)=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}
$$

(Hint: Look at $A \cdot A^{t}$ and use that the determinant of A is a continuous function of a, b, c and $d!$)
H 7 Prove by induction over n that

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n-1}
\end{array}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

(Remark: Recall that the empty product is defined as unity. I.e. $\prod_{i \in \emptyset} a_{i}:=1$.)
H 8 Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the Leibniz formula.
(i) Determine the number of multiplications and additions required to compute the determinant of the square matrix $A=\left(a_{i j}\right) \in M(n, K)$
(a) by the Leibniz formula.
(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal entries.
(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an estimate of the maximal value of n in case you want to compute the determinant of A within 48 hours of computation time using method (a), resp. method (b).

Linear Algebra II (MCS), SS 2006, Exercise 3, Solution

Groupwork

G 10 Compute the determinants of the following matrices:

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
2 & 2 & 2 & 4 \\
1 & 0 & 0 & 0 \\
4 & 1 & 3 & 1
\end{array}\right)
$$

Using the Gaussian algorithm, resp. Laplace expansion we get:

$$
\operatorname{det}\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)=4, \quad \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 2 & 2 & 4 \\
1 & 0 & 0 & 0 \\
4 & 1 & 3 & 1
\end{array}\right)=2
$$

G 11 Show that

$$
\operatorname{det}\left(\begin{array}{lll}
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right)=(x-1)^{2}(x+2), \quad \operatorname{det}\left(\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
a c & b c & c^{2}+1
\end{array}\right)=a^{2}+b^{2}+c^{2}+1
$$

Use, for instance, Sarrus rule in both cases to verify the identities. E.g. the first identity computes as follows:

$$
\operatorname{det}\left(\begin{array}{lll}
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right)=x^{3}+1+1-x-x-x=x^{3}-3 x+2=(x-1)^{2}(x+2)
$$

G 12 Show that for an orthogonal matrix $A \in M(n, \mathbb{R})$, we have $\operatorname{det}(A)= \pm 1$.
Since $A \cdot A^{t}=I$ and using that det is multiplicative as well as $\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right)$, we have

$$
1=\operatorname{det} I=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)^{2}
$$

Hence, $\operatorname{det}(A)= \pm 1$
G 13 Show that for a block matrix of the kind $M:=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$, with A and C square matrices, we have: $\operatorname{det}(M)=\operatorname{det}(A) \cdot \operatorname{det}(C)$. Is the rule: $\operatorname{det}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\operatorname{det}(A) \cdot \operatorname{det}(D)-\operatorname{det}(B) \cdot \operatorname{det}(C)$ also true?

First proof: Let $S_{i}, i=1,2$ be the transformation matrix which transforms A, resp. B into echelon form, i.e. $S_{1} A S_{1}^{-1}=T_{1}$ and $S_{2} A S_{2}^{-1}=T_{2}$, for some trigonal matrices T_{1} and T_{2}. Then $S:=\left(\begin{array}{cc}S_{1} & 0 \\ 0 & S_{2}\end{array}\right)$ is a transformation matrix with inverse $S^{-1}:=\left(\begin{array}{cc}S_{1}^{-1} & 0 \\ 0 & S_{2}^{-1}\end{array}\right)$, which transforms M into echelon form:

$$
S M S^{-1}=\left(\begin{array}{cc}
S_{1} A S_{1}^{-1} & S_{1} B S_{2}^{-1} \\
0 & S_{2} C S_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
T_{1} & S_{1} B S_{2}^{-1} \\
0 & T_{2}
\end{array}\right) .
$$

Therefore, using that det is multiplicative, we have

$$
\operatorname{det}(M)=\operatorname{det}\left(S M S^{-1}\right)=\operatorname{det}\left(T_{1}\right) \cdot \operatorname{det}\left(T_{2}\right)=\operatorname{det}(A) \cdot \operatorname{det}(C) .
$$

Second proof: Let $A \in M(n \times n, K)$ and $C \in M(m \times m, K)$. Then $M=\left(a_{i j}\right) \in M((n+m) \times(n+m), K)$ and by the Leibniz formula we have

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n+m}} \operatorname{sign}(\sigma) \cdot a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)} \cdot a_{n+1, \sigma(n+1)} \cdot \ldots \cdot a_{n+m, \sigma(n+m)}
$$

Since $a_{i j}=0$ for $n+1 \leq i \leq n+m, 1 \leq j \leq m$, we see that only those $\sigma \in S_{n+m}$ contribute to the sum which map $\{1, \ldots, n\}$ to itself and hence also $\{n+1, \ldots, n+m\}$ to itself. That is, $\sigma=\tau \circ \nu$ with $\tau \in S_{n}, \nu \in S_{m}$ (we assume here, that S_{m} permutes the elements of $\{n+1, \ldots, n+m\}$). Then

$$
\begin{aligned}
\operatorname{det}(M) & =\sum_{\sigma \in S_{n+m}} \operatorname{sign}(\sigma) \cdot a_{1, \sigma(1)} \cdot \ldots \cdot a_{n, \sigma(n)} \cdot a_{n+1, \sigma(n+1)} \cdot \ldots \cdot a_{n+m, \sigma(n+m)} \\
& =\sum_{\tau \in S_{n}, \nu \in S_{m}} \operatorname{sign}(\tau) \cdot \operatorname{sign}(\nu) \cdot a_{1, \tau(1)} \cdot \ldots \cdot a_{n, \tau(n)} \cdot a_{n+1, \nu(n+1)} \cdot \ldots \cdot a_{n+m, \nu(n+m)} \\
& =\left(\sum_{\tau \in S_{m}} \operatorname{sign}(\tau) \cdot a_{1, \tau(1)} \cdot \ldots \cdot a_{n, \tau(n)}\right) \cdot\left(\sum_{\nu \in S_{n}} \operatorname{sign}(\nu) \cdot a_{n+1, \nu(n+1)} \cdot \ldots \cdot a_{n+m, \nu(n+m)}\right) \\
& =\operatorname{det}(A) \cdot \operatorname{det}(C)
\end{aligned}
$$

Counterexamples for the formula $\operatorname{det}\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)=\operatorname{det}(A) \cdot \operatorname{det}(D)-\operatorname{det}(B) \cdot \operatorname{det}(C)$ are, for instance, the second matrix of exercise G10 or the matrix in H6. of course, the formula does not even make sense in case that A, B, C and D are not square matrices.

G 14 Show that for any matrix $A=\left(a_{i j}\right) \in M(n, K)$ we have: $\operatorname{det}\left(a_{i j}\right)=\operatorname{det}\left((-1)^{i+j} \cdot a_{i j}\right)$
Using the Leibniz formula we have

$$
\begin{aligned}
\operatorname{det}\left((-1)^{i+j} \cdot a_{i j}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot(-1)^{\sigma(1)+1} \cdot a_{\sigma(1), 1} \cdot \ldots \cdot(-1)^{\sigma(n)+n} \cdot a_{\sigma(n), n} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \cdot(-1)^{\sum_{k=1}^{n} \sigma(k)+k} \cdot a_{\sigma(1), 1} \cdot \ldots \cdot a_{\sigma(n), n}
\end{aligned}
$$

Now $\sum_{k=1}^{n} \sigma(k)+k=2 \cdot \frac{n(n+1)}{2}=n(n+1)$ which is an even number for every $n \in \mathbb{N}$. Hence, $(-1)^{\sum_{k=1}^{n} \sigma(k)+k}=1$ for every $n \in \mathbb{N}$ and using the Leibniz formula again in the above equation, we have shown that $\operatorname{det}\left(a_{i j}\right)=\operatorname{det}\left((-1)^{i+j} \cdot a_{i j}\right)$.

Homework

H 6 Show that:

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right)=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}
$$

(Hint: Look at $A \cdot A^{t}$ and use that the determinant of A is a continuous function of a, b, c and $d!$)
Let $A:=\left(\begin{array}{cccc}a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a\end{array}\right)$.
Then $A \cdot A^{t}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right) \cdot I_{4}$ and we obtain
$\operatorname{det}(A)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{4}$. From this we deduce that $|\operatorname{det}(A)|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}$. However, putting $a=1, b=c=d=0$ we see that $\operatorname{det}(A)=1>0$, thus, by continuity, the non-negative root is the right one.

H7 Prove by induction over n that

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n-1}
\end{array}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

(Remark: Recall that the empty product is defined as unity. I.e. $\prod_{i \in \emptyset} a_{i}:=1$.)
For $n=1$, we have $\operatorname{det}(1)=1=\prod_{1 \leq i<j \leq 1}\left(x_{j}-x_{i}\right)$ (compare with the remark!). Suppose now that we have already proved the statement for n and every $x_{1}, \ldots, x_{n} \in K$. Note that formally the matrix we determine the determinant of is given by $A(n):=\left(a_{i j}\right):=\left(x_{i}^{j-1}\right), i, j=1, \ldots, n$ with the convention $x_{i}^{0}=1$. Hence, for each row, the elements satisfy the simple recursive identity $a_{i, 0}=1, a_{i, j+1}=a_{i j} \cdot x_{i}$. Motivated by this observation, we transform $\operatorname{det}(A(n+1))$ in the first n steps, by adding to the k-th column the $(k-1)$-st column multiplied by $\left(-x_{n+1}\right)$. We do so from right to left, i.e. we start with the $(n+1)$-st column and finish with the second column. This yields

$$
\begin{aligned}
\operatorname{det}(A(n+1)) & =\operatorname{det}\left(\begin{array}{cccc}
1 & x_{1}-x_{n+1} & \ldots & x_{1}^{n}-x_{1}^{n-1} x_{n+1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n}-x_{n+1} & \ldots & x_{n}^{n}-x_{n}^{n-1} x_{n+1} \\
1 & 0 & \ldots & 0
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
0 & \left(x_{1}-x_{n+1}\right) & \ldots & x_{1}^{n-1}\left(x_{1}-x_{n+1}\right) \\
\vdots & \vdots & & \vdots \\
0 & \left(x_{n}-x_{n+1}\right) & \ldots & x_{n}^{n-1}\left(x_{n}-x_{n+1}\right) \\
1 & 0 & \ldots & 0
\end{array}\right) .
\end{aligned}
$$

Where in the last equation, we have already eliminated the entries in the first column. We now move the last row to the top by n row exchanges then extract the factor $\left(x_{i}-x_{n+1}\right)$ out of every row, which gives:

$$
\operatorname{det}(A(n+1))=(-1)^{n} \cdot\left(x_{1}-x_{n+1}\right) \cdot \ldots \cdot\left(x_{n}-x_{n+1}\right) \cdot \operatorname{det}\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n-1}
\end{array}\right) .
$$

We may now use the induction hypothesis and conclude that $\operatorname{det}(A(n+1))=\prod_{1 \leq i<j \leq n+1}\left(x_{j}-x_{i}\right)$.
H 8 Compare the efforts of computing the determinant of a matrix with the Gaussian algorithm resp. the Leibniz formula.
(i) Determine the number of multiplications and additions required to compute the determinant of the square matrix $A=\left(a_{i j}\right) \in M(n, K)$
(a) by the Leibniz formula.
(b) by transforming A via Gaussian algorithm to echelon form and multiplying the diagonal entries.
(ii) Suppose a computer can perform addition and multiplication in 0.2 micro seconds. Give an estimate of the maximal value of n in case you want to compute the determinant of A within 48 hours of computation time using method (a), resp. method (b).
(i) In the Leibniz formula we have n ! summands, each of which consists of $n+1$ factors. This gives $(n+1) \cdot n!=(n+1)!$ multiplications and $n!$ additions. So in total, we have $(n+1)!+n!$ operations. If we do not count the signum as a separate multiplication, which is a reasonable assumption, then we would 'just'have $n \cdot n$! multiplications and a total of $(n+1)$! operations.
For the Gaussian algorithm, we have $n \cdot(n-1)$ multiplications and $n \cdot(n-1)$ additions to clear the first column. For the second column, we have $(n-1) \cdot(n-2)$ multiplications and additions
each, and so on, until in the n-th step we have achieved echelon form and just have to multiply the n diagonal elements. Summarizing, we have $n+\sum_{k=1}^{n-1} k(k+1)=\frac{n\left(n^{2}+2\right)}{3}$ multiplications and $\sum_{k=1}^{n-1} k(k+1)=\frac{n\left(n^{2}-1\right)}{3}$ additions, which makes a total of $\frac{n\left(2 n^{2}+1\right)}{3}$ operations.
For $n=2$ the number of operations required is the same for both methods. For $n=3$, the difference is still not very large. From then on however, the Gaussian algorithm is clearly the more efficient one.
(ii) 48 hours are $1.728 \cdot 10^{11}$ micro seconds. By our assumption, this equals $8.64 \cdot 10^{11}$ operations. Hence, the maximal possible n for the Leibniz formula is $n=13$, whereas the Gaussian algorithm can tackle a $n \times n$-matrix with $n=10902$ in the same time period!

