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Linear Algebra II (MCS), SS 2006, Exercise 13
Mini-Quiz

(1) Let φ be an endomorphism. The algebraic multiplicity of an eigenvalue λ of φ is...?
� The number of eigenvectors equal to zero.
� The multiplicity of (x− λ) in the characteristic polynomial of φ.
� The dimension of ker(φ− λ · id).

(2) The eigenvalue 2 of the matrix

2 1 0
0 2 0
0 0 2

 has geometric multiplicity...?

� 0 � 1 � 2 � 3

(3) Which of the following matrices is in Jordan normal form?

�

0 0 0
0 0 1
0 0 0

 �

0 0 0
0 0 1
0 0 2

 �

0 1 1
0 0 1
0 0 0

 �

0 1 0
0 0 1
0 0 0


(4) Is the Jordan normal form of a real symmetric n× n-matrix A always a diagonal matrix?

� Yes, because the principal axis transformation transforms A into diagonal form.
� No, because even a symmetric matrix can have less than n distinct eigenvalues. Since the set

of all orthogonal matrices is different from the set of all invertible complex matrices, the above
argumentation is not correct.

� The question makes no sense and therefore deserves no answer, because the theorem on the
Jordan normal form deals with complex and not real matrices.

Groupwork
G 59 Determine the Jordan normal form and Jordan bases for the following matrices:

A =


0 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 , B =



−1 1 0 1 −1 0 −1
0 0 1 1 0 0 0
−1 0 0 0 −1 0 −1
1 0 0 0 1 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 −1 0 −1 1 0 1


.

Hint: B2 =



1 0 1 1 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 −1 −1 −1 0 −1


and B3 = 0.

G 60 Let A be the real 4× 4-matrix which has 1 as its only real eigenvalue, of algebraic multiplicity 2, and
suppose that i is a complex eigenvalue of A and A4 6= I. Determine the JNF of A.

G 61 What is the geometric interpretation of an endomorphism whose JNF is given by a 2× 2− λ-Jordan
block, resp. a 3× 3− λ-Jordan block. Distinguish the cases λ = 0 and λ 6= 0.

G 62 Let φ be an endomorphism of a finite dimensional vector space V and let λ ∈ K. Show:
(i) There is a maximal nontrivial, φ-invariant subspace W of V on which φ− λ · id is nilpotent, if λ

is an eigenvalue of φ.
(ii) φ− λ · id is invertible if λ is not an eigenvalue of φ.



Homework
H 50 Determine the Jordan normal form and Jordan bases for the following matrices:

A =

 6 −6 5
14 −13 10
7 −6 4

 , B =


3 1 1 0
0 3 0 0
0 0 3 0
1 0 2 2

 .

H 51 We call two matrices A and B similar, if there is an invertible matrix S such that S−1AS = B. Show:
(i) The Jordan block Jk is similar to its transpose (Jk)t, for every k ∈ N.
(ii) Every complex (or real and trigonalizable) matrix is similar to its transpose.
Remark: A matrix is called trigonalizable, if it is similar to an upper triangular matrix.

H 52 Let V be a five dimensional real vector space and φ : V → V an endomorphism which satisfies
the following properties: 1 is an eigenvalue of algebraic multiplicity three and 2 is an eigenvalue of
algebraic multiplicity two.
(i) Determine all possible Jordan normal forms of φ, up to permutation of the Jordan blocks.
(ii) If the eigenvalue 1 has geometric multiplicity two, which candidates remain?

H 53 Show that a trigonalizable endomorphism φ of a finite dimensional vector space V over K = R or
K = C, which satisfies φk = id for some k ∈ N>0 is in fact diagonalizable.
Remark: An endomorphism is called trigonalizable if it is represented by an upper triangular matrix
w.r.t. a suitable basis.

H 54 Show that for every complex normal matrix A there is a polynomial p such that A∗ = p(A).
Hint: Compare the normal forms of A and A∗ and use exercises H12, H26.
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(1) Let φ be an endomorphism. The algebraic multiplicity of an eigenvalue λ of φ is...?
� The number of eigenvectors equal to zero.
� The multiplicity of (x− λ) in the characteristic polynomial of φ.
� The dimension of ker(φ− λ · id).

(2) The eigenvalue 2 of the matrix

2 1 0
0 2 0
0 0 2

 has geometric multiplicity...?

� 0 � 1 � 2 � 3

(3) Which of the following matrices is in Jordan normal form?

�

0 0 0
0 0 1
0 0 0

 �

0 0 0
0 0 1
0 0 2

 �

0 1 1
0 0 1
0 0 0

 �

0 1 0
0 0 1
0 0 0


(4) Is the Jordan normal form of a real symmetric n× n-matrix A always a diagonal matrix?

� Yes, because the principal axis transformation transforms A into diagonal form.
� No, because even a symmetric matrix can have less than n distinct eigenvalues. Since the set

of all orthogonal matrices is different from the set of all invertible complex matrices, the above
argumentation is not correct.

� The question makes no sense and therefore deserves no answer, because the theorem on the
Jordan normal form deals with complex and not real matrices.

Groupwork

G 59 Determine the Jordan normal form and Jordan bases for the following matrices:

A =


0 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 , B =



−1 1 0 1 −1 0 −1
0 0 1 1 0 0 0
−1 0 0 0 −1 0 −1
1 0 0 0 1 0 1
0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 −1 0 −1 1 0 1


.

Hint: B2 =



1 0 1 1 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 −1 −1 −1 0 −1


and B3 = 0.

The eigenvalues of A are obviously λ1 = 0, with algebraic multiplicity one, and λ2 = 1 with algebraic
multiplicity 3. The generalized eigenspace V0 to λ1 = 0 is thus equal to the corresponding eigenspace,
which is Span{(1, 0, 0, 0)t}. For λ2 we compute the powers of A− λ2 · E:

(A− E) =


−1 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0

 , (A− E)2 =


1 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We have rank (A − E) = 2 and rank (A − E)2 = 1 and rank (A − E)k = 1 for k ≥ 2. A basis of the
kernel of (A− E)2 and thus the generalized eigenspace V1 for λ2 = 1, is given by e2, e1 + e3, e4. It is
easy to verify, that e2 and e1 + e3 are already annihilated by A−E, whereas e4 gives rise to a Jordan
chain of length two: (A − E)e4 = e1 + e2 + e3. A Jordan basis of V1 is therefore e2, e1 + e2 + e3, e4.

The JNF of A is thus


0 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 and the transition matrix is given by


1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1

.
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B is nilpotent with index 3. Looking at B2, we choose e3 as the head of a Jordan chain of length
three: e1 − e7, e2, e3. There is no other chain of length three. Calculating J(h) for h < 3, we see that
there are two chains of length two. Next, we determine a basis of ker B2:

ker B2 = Span{e2, e6, e1 − e3, e1 − e4, e1 − e5, e1 − e7}.
From this basis, only the elements X = {e6, e1 − e3, e1 − e4, e1 − e5} are independent from the
above Jordan chain. From these, we choose two elements, which produce chains of length two. For
instance B(e1 − e3) = −e1 − e2 − e3 + e4 + e6 + e7 and B(e1 − e5) = e6. Thus, w.r.t. the basis

{e1−e7, e2, e3, e6, e1−e5,−e1−e2−e3 +e4 +e6 +e7, e1−e3} the JNF of B is



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


.

G 60 Let A be the real 4× 4-matrix which has 1 as its only real eigenvalue, of algebraic multiplicity 2, and
suppose that i is a complex eigenvalue of A and A4 6= I. Determine the JNF of A.
Since a complex eigenvalue comes always with its complex conjugate for a real matrix, the given data

on the eigenvalues, leaves two possible JNF’s for A: J1 =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 and J2 =


1 1 0 0
0 1 0 0
0 0 i 0
0 0 0 −i


The condition A4 6= I rules out the first case, thus J2 is the normal form of A.

G 61 What is the geometric interpretation of an endomorphism whose JNF is given by a 2× 2− λ-Jordan
block, resp. a 3× 3− λ-Jordan block. Distinguish the cases λ = 0 and λ 6= 0.

In the two-dimensional case, if λ 6= 0 then

(
λ 1
0 λ

)
= λ ·

(
1 1/λ
0 1

)
is the composition of a dilation

by λ and a shearing by the factor 1/λ. Just draw a picture in the plane of how the unit cube gets
transformed to a stretched parallelogram. If λ = 0, then we have the projection of R2 → R onto the
second component, followed by the embedding of R into R2 as the line through (1, 0)t.

In the three-dimensional case, if λ 6= 0, then we also have a kind of shearing, even though it looks
more intricate than in the two-dimensional case. However, it also helps to visualize this map by
drawing a picture where the unit cube gets mapped to a stretched parallelotop. If λ = 0, then we get
again a projection, this time of R3 → R2 onto the x2, x3-plane, followed by an embedding into R3 on
the x1, x2-plane.

G 62 Let φ be an endomorphism of a finite dimensional vector space V and let λ ∈ K. Show:
(i) There is a maximal nontrivial, φ-invariant subspace W of V on which φ− λ · id is nilpotent, if λ

is an eigenvalue of φ.
(ii) φ− λ · id is invertible if λ is not an eigenvalue of φ.

To (i): If we take for W the generalized eigenspace corresponding to λ, then the statement is obviously
true.

To (ii): By definition of an eigenvalue, det(φ−λ·id) is zero if and only if λ is an eigenvalue of φ. Therefore,
det(φ − λ · id) 6= 0 if λ is not an eigenvalue of φ and φ − λ · id is invertible by the determinant
criterion.
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Homework
H 50 Determine the Jordan normal form and Jordan bases for the following matrices:

A =

 6 −6 5
14 −13 10
7 −6 4

 , B =


3 1 1 0
0 3 0 0
0 0 3 0
1 0 2 2

 .

The characteristic polynomial of A is (up to a sign) χA(x) = x3 + 3x2 + 3x + 1 = (x + 1)3. Therefore,
A has only −1 as single eigenvalue of algebraic multiplicity three. We compute the powers of A + E:

A + E =

 7 −6 5
14 −12 10
7 −6 5

 , (A + E)2 = 0.

Hence, there must be exactly one Jordan chain of length two and one of length one. For the two chain
we choose for instance 7e1 + 14e2 + 7e3, e1. The kernel of A + E is spanned by 6e1 + 7e2, 5e1 − 7e3.
Any of these vectors complete our two chain to a Jordan basis. We thus have as transition matrix:

S =

 7 1 6
14 0 7
7 0 0

.

The eigenvalues of B are 3 with algebraic multiplicity three and 2 with algebraic multiplicity one
(this can be read off from the matrix without computations). The vector e4 forms a basis of V2. It

remains to determine the generalized eigenspace for λ = 3. We have B − 3E =


0 1 1 0
0 0 0 0
0 0 0 0
1 0 2 −1

,

(B − 3E)2 =


0 0 0 0
0 0 0 0
0 0 0 0
−1 1 −1 1

 and the rank becomes stationary from there on. A basis of V3 is

given by a basis of ker(B − 3E)2, which is e1 + e2, e2 − e3, e1 + e4. We transform A with respect

to the transition matrix S =


1 1 1 0
1 0 0 0
0 −1 0 0
0 0 1 1

 and obtain S−1AS =


3 0 0 0
0 3 0 0
1 −1 3 0
0 0 0 2

. Since our

eyes are used to these pictures now, we read off that in our new basis, e3, e1 is a two chain, which
is complemented to Jordan basis of the 3-Jordan block by the element of the appropriate kernel:

e1 + e2. We thus get another transition matrix T =


0 1 1 0
0 0 1 0
1 0 0 0
0 0 0 1

. We then have achieved that

T−1S−1AST =


3 1 0 0
0 3 0 0
0 0 3 0
0 0 0 2

.

H 51 We call two matrices A and B similar, if there is an invertible matrix S such that S−1AS = B. Show:
(i) The Jordan block Jk is similar to its transpose (Jk)t, for every k ∈ N.
(ii) Every complex (or real and trigonalizable) matrix is similar to its transpose.
Remark: A matrix is called trigonalizable, if it is similar to an upper triangular matrix.

To (i): Since (J t
k)

m = (Jm
k )t it follows that Jk is nilpotent of index k. Hence, there is precisely one

Jordan chain of length k and by the JNF-theorem we have that (Jk)t is similar to Jk. We can
even determine explicitly a transition matrix S as follows. The k − 1-st power of (Jk)t is the
matrix whose only non-vanishing column is the first one. This column is equal to ek. Hence,
the maximum Jordan chain is ek ← · · · ← e1. The transition matrix S is therefore the identity

matrix mirrored at the horizontal middle axis: S =

 1
. . .

1

.
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To (ii): Let A denote a trigonalizable matrix. Thus, the JNF of A exists and we have an invertible matrix
S such that S−1AS = J , where J is a Jordan matrix consisting of λi-Jordan blocks, where λi

ranges through the eigenvalues of A. Each block can be written as λi · I + Kk for a suitable k.
Now apply a transition matrix as above to the block and we obtain its transpose. If we arrange
these transition matrices into a big block diagonal transition matrix, then it is easy to see that
A is similar to its transpose.

H 52 Let V be a five dimensional real vector space and φ : V → V an endomorphism which satisfies
the following properties: 1 is an eigenvalue of algebraic multiplicity three and 2 is an eigenvalue of
algebraic multiplicity two.
(i) Determine all possible Jordan normal forms of φ, up to permutation of the Jordan blocks.
(ii) If the eigenvalue 1 has geometric multiplicity two, which candidates remain?

To (i): by assumption, the only possible JNF’s of φ up to permutations of the blocks are
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2

 ,


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2

 .

To (ii): Under the additional requirement, there must be two 1-Jordan blocks and we only have the two
possibilities: 

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

 ,


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2

 .

H 53 Show that a trigonalizable endomorphism φ of a finite dimensional vector space V over K = R or
K = C, which satisfies φk = id for some k ∈ N>0 is in fact diagonalizable.
Remark: An endomorphism is called trigonalizable if it is represented by an upper triangular matrix
w.r.t. a suitable basis.
Being trigonalizable means that the characteristic polynomial decomposes into linear factors over the
ground field. Hence the theorem of the Jordan normal form can be applied to φ and there is a Jordan
matrix J representing φ w.r.t. a Jordan basis. Suppose now that there is at least one Jordan block
appearing in J of size greater than one. Then the assumption that φk = id implies that all eigenvalues
have absolute value equal to one (they are in fact k-th roots of unity) and we have Jk = E. From
this we conclude that all the off diagonal entries of Jk must necessarily vanish, however this is not the
case if there is a Jordan block whose size is greater than one (if arguable, you may explicitly compute
this for a k × k-λ-Jordan block). Hence, we have arrived at a contradiction and the maximal size of
a Jordan block must be equal to one.

H 54 Show that for every complex normal matrix A there is a polynomial p such that A∗ = p(A).
Hint: Compare the normal forms of A and A∗ and use exercises H12, H26.
According to the spectral theorem for normal matrices, A and A∗ are both unitary diagonalizable.
Since A commutes with A∗ by the very definition of normality, we can diagonalize both matrices
simultaneously. Let D be the diagonal matrix obtained from A in that fashion. Then D̄ is the
corresponding diagonal matrix for A∗. If we let p denote the unique complex polynomial of least
degree ≤ n which maps each diagonal entry λi onto λ̄i (the existence follows from exercise H12), then
obviously p(D) = D̄. Now note that p(SAS−1) = Sp(A)S−1 holds for all invertible matrices S and
all polynomials p. Hence, p(A) = A∗.


