Linear Algebra II (MCS), SS 2006, Exercise 13

Mini-Quiz

(1) Let ϕ be an endomorphism. The algebraic multiplicity of an eigenvalue λ of ϕ is...? The number of eigenvectors equal to zero. The multiplicity of $(x-\lambda)$ in the characteristic polynomial of ϕ.The dimension of $\operatorname{ker}(\phi-\lambda \cdot \mathrm{id})$.
(2) The eigenvalue 2 of the matrix $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ has geometric multiplicity...?
(3) Which of the following matrices is in Jordan normal form?

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \square\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right) \quad \square\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \square\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(4) Is the Jordan normal form of a real symmetric $n \times n$-matrix A always a diagonal matrix?Yes, because the principal axis transformation transforms A into diagonal form.No, because even a symmetric matrix can have less than n distinct eigenvalues. Since the set of all orthogonal matrices is different from the set of all invertible complex matrices, the above argumentation is not correct.The question makes no sense and therefore deserves no answer, because the theorem on the Jordan normal form deals with complex and not real matrices.

Groupwork

G 59 Determine the Jordan normal form and Jordan bases for the following matrices:

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccccccc}
-1 & 1 & 0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & -1 & 1 & 0 & 1
\end{array}\right) . \\
\text { Hint: } B^{2}=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & -1 & -1 & 0 & -1
\end{array}\right) \text { and } B^{3}=0 .
\end{gathered}
$$

G 60 Let A be the real 4×4-matrix which has 1 as its only real eigenvalue, of algebraic multiplicity 2 , and suppose that i is a complex eigenvalue of A and $A^{4} \neq I$. Determine the JNF of A.
G 61 What is the geometric interpretation of an endomorphism whose JNF is given by a $2 \times 2-\lambda$-Jordan block, resp. a $3 \times 3-\lambda$-Jordan block. Distinguish the cases $\lambda=0$ and $\lambda \neq 0$.
G 62 Let ϕ be an endomorphism of a finite dimensional vector space V and let $\lambda \in K$. Show:
(i) There is a maximal nontrivial, ϕ-invariant subspace W of V on which $\phi-\lambda \cdot$ id is nilpotent, if λ is an eigenvalue of ϕ.
(ii) $\phi-\lambda \cdot$ id is invertible if λ is not an eigenvalue of ϕ.

Homework

H50 Determine the Jordan normal form and Jordan bases for the following matrices:

$$
A=\left(\begin{array}{ccc}
6 & -6 & 5 \\
14 & -13 & 10 \\
7 & -6 & 4
\end{array}\right), \quad B=\left(\begin{array}{cccc}
3 & 1 & 1 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
1 & 0 & 2 & 2
\end{array}\right)
$$

H 51 We call two matrices A and B similar, if there is an invertible matrix S such that $S^{-1} A S=B$. Show:
(i) The Jordan block J_{k} is similar to its transpose $\left(J_{k}\right)^{t}$, for every $k \in \mathbb{N}$.
(ii) Every complex (or real and trigonalizable) matrix is similar to its transpose.

Remark: A matrix is called trigonalizable, if it is similar to an upper triangular matrix.
H52 Let V be a five dimensional real vector space and $\phi: V \rightarrow V$ an endomorphism which satisfies the following properties: 1 is an eigenvalue of algebraic multiplicity three and 2 is an eigenvalue of algebraic multiplicity two.
(i) Determine all possible Jordan normal forms of ϕ, up to permutation of the Jordan blocks.
(ii) If the eigenvalue 1 has geometric multiplicity two, which candidates remain?

H53 Show that a trigonalizable endomorphism ϕ of a finite dimensional vector space V over $K=\mathbb{R}$ or $K=\mathbb{C}$, which satisfies $\phi^{k}=\mathrm{id}$ for some $k \in \mathbb{N}^{>0}$ is in fact diagonalizable.
Remark: An endomorphism is called trigonalizable if it is represented by an upper triangular matrix w.r.t. a suitable basis.

H 54 Show that for every complex normal matrix A there is a polynomial p such that $A^{*}=p(A)$. Hint: Compare the normal forms of A and A^{*} and use exercises H12, H26.

Linear Algebra II (MCS), SS 2006, Exercise 13, Solution

Mini-Quiz

(1) Let ϕ be an endomorphism. The algebraic multiplicity of an eigenvalue λ of ϕ is...?
\square The number of eigenvectors equal to zero.
The multiplicity of $(x-\lambda)$ in the characteristic polynomial of ϕ.
\square The dimension of $\operatorname{ker}(\phi-\lambda \cdot \mathrm{id})$.
(2) The eigenvalue 2 of the matrix $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ has geometric multiplicity...?
(3) Which of the following matrices is in Jordan normal form?

$$
\square\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \square\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right) \quad \square\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \square\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(4) Is the Jordan normal form of a real symmetric $n \times n$-matrix A always a diagonal matrix?
\square Yes, because the principal axis transformation transforms A into diagonal form.No, because even a symmetric matrix can have less than n distinct eigenvalues. Since the set of all orthogonal matrices is different from the set of all invertible complex matrices, the above argumentation is not correct.The question makes no sense and therefore deserves no answer, because the theorem on the Jordan normal form deals with complex and not real matrices.

Groupwork

G59 Determine the Jordan normal form and Jordan bases for the following matrices:

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccccccc}
-1 & 1 & 0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & -1 & 1 & 0 & 1
\end{array}\right) . \\
& \text { Hint: } B^{2}=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & -1 & -1 & 0 & -1
\end{array}\right) \text { and } B^{3}=0 .
\end{aligned}
$$

The eigenvalues of A are obviously $\lambda_{1}=0$, with algebraic multiplicity one, and $\lambda_{2}=1$ with algebraic multiplicity 3. The generalized eigenspace V_{0} to $\lambda_{1}=0$ is thus equal to the corresponding eigenspace, which is $\operatorname{Span}\left\{(1,0,0,0)^{t}\right\}$. For λ_{2} we compute the powers of $A-\lambda_{2} \cdot E$:

$$
(A-E)=\left(\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),(A-E)^{2}=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

We have $\operatorname{rank}(A-E)=2$ and $\operatorname{rank}(A-E)^{2}=1$ and $\operatorname{rank}(A-E)^{k}=1$ for $k \geq 2$. A basis of the kernel of $(A-E)^{2}$ and thus the generalized eigenspace V_{1} for $\lambda_{2}=1$, is given by $e_{2}, e_{1}+e_{3}, e_{4}$. It is easy to verify, that e_{2} and $e_{1}+e_{3}$ are already annihilated by $A-E$, whereas e_{4} gives rise to a Jordan chain of length two: $(A-E) e_{4}=e_{1}+e_{2}+e_{3}$. A Jordan basis of V_{1} is therefore $e_{2}, e_{1}+e_{2}+e_{3}, e_{4}$. The JNF of A is thus $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$ and the transition matrix is given by $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
B is nilpotent with index 3. Looking at B^{2}, we choose e_{3} as the head of a Jordan chain of length three: $e_{1}-e_{7}, e_{2}, e_{3}$. There is no other chain of length three. Calculating $J(h)$ for $h<3$, we see that there are two chains of length two. Next, we determine a basis of ker B^{2} :

$$
\operatorname{ker} B^{2}=\operatorname{Span}\left\{e_{2}, e_{6}, e_{1}-e_{3}, e_{1}-e_{4}, e_{1}-e_{5}, e_{1}-e_{7}\right\}
$$

From this basis, only the elements $X=\left\{e_{6}, e_{1}-e_{3}, e_{1}-e_{4}, e_{1}-e_{5}\right\}$ are independent from the above Jordan chain. From these, we choose two elements, which produce chains of length two. For instance $B\left(e_{1}-e_{3}\right)=-e_{1}-e_{2}-e_{3}+e_{4}+e_{6}+e_{7}$ and $B\left(e_{1}-e_{5}\right)=e_{6}$. Thus, w.r.t. the basis $\left\{e_{1}-e_{7}, e_{2}, e_{3}, e_{6}, e_{1}-e_{5},-e_{1}-e_{2}-e_{3}+e_{4}+e_{6}+e_{7}, e_{1}-e_{3}\right\}$ the $J N F$ of B is $\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
G60 Let A be the real 4×4-matrix which has 1 as its only real eigenvalue, of algebraic multiplicity 2 , and suppose that i is a complex eigenvalue of A and $A^{4} \neq I$. Determine the JNF of A.
Since a complex eigenvalue comes always with its complex conjugate for a real matrix, the given data on the eigenvalues, leaves two possible JNF's for A : $J_{1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i\end{array}\right)$ and $J_{2}=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i\end{array}\right)$ The condition $A^{4} \neq I$ rules out the first case, thus J_{2} is the normal form of A.

G 61 What is the geometric interpretation of andomorphism whose JNF is given by a $2 \times 2-\lambda$-Jordan block, resp. a $3 \times 3-\lambda$-Jordan block. Distinguish the cases $\lambda=0$ and $\lambda \neq 0$.
In the two-dimensional case, if $\lambda \neq 0$ then $\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)=\lambda \cdot\left(\begin{array}{cc}1 & 1 / \lambda \\ 0 & 1\end{array}\right)$ is the composition of a dilation by λ and a shearing by the factor $1 / \lambda$. Just draw a picture in the plane of how the unit cube gets transformed to a stretched parallelogram. If $\lambda=0$, then we have the projection of $\mathbb{R}^{2} \rightarrow \mathbb{R}$ onto the second component, followed by the embedding of \mathbb{R} into \mathbb{R}^{2} as the line through $(1,0)^{t}$.

In the three-dimensional case, if $\lambda \neq 0$, then we also have a kind of shearing, even though it looks more intricate than in the two-dimensional case. However, it also helps to visualize this map by drawing a picture where the unit cube gets mapped to a stretched parallelotop. If $\lambda=0$, then we get again a projection, this time of $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ onto the x_{2}, x_{3}-plane, followed by an embedding into \mathbb{R}^{3} on the x_{1}, x_{2}-plane.
G 62 Let ϕ be an endomorphism of a finite dimensional vector space V and let $\lambda \in K$. Show:
(i) There is a maximal nontrivial, ϕ-invariant subspace W of V on which $\phi-\lambda \cdot$ id is nilpotent, if λ is an eigenvalue of ϕ.
(ii) $\phi-\lambda \cdot$ id is invertible if λ is not an eigenvalue of ϕ.

To (i): If we take for W the generalized eigenspace corresponding to λ, then the statement is obviously true.
To (ii): By definition of an eigenvalue, $\operatorname{det}(\phi-\lambda \cdot \mathrm{id})$ is zero if and only if λ is an eigenvalue of ϕ. Therefore, $\operatorname{det}(\phi-\lambda \cdot \mathrm{id}) \neq 0$ if λ is not an eigenvalue of ϕ and $\phi-\lambda \cdot \mathrm{id}$ is invertible by the determinant criterion.

Homework

H 50 Determine the Jordan normal form and Jordan bases for the following matrices:

$$
A=\left(\begin{array}{ccc}
6 & -6 & 5 \\
14 & -13 & 10 \\
7 & -6 & 4
\end{array}\right), \quad B=\left(\begin{array}{llll}
3 & 1 & 1 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
1 & 0 & 2 & 2
\end{array}\right) .
$$

The characteristic polynomial of A is (up to a sign) $\chi_{A}(x)=x^{3}+3 x^{2}+3 x+1=(x+1)^{3}$. Therefore, A has only -1 as single eigenvalue of algebraic multiplicity three. We compute the powers of $A+E$:

$$
A+E=\left(\begin{array}{ccc}
7 & -6 & 5 \\
14 & -12 & 10 \\
7 & -6 & 5
\end{array}\right),(A+E)^{2}=0
$$

Hence, there must be exactly one Jordan chain of length two and one of length one. For the two chain we choose for instance $7 e_{1}+14 e_{2}+7 e_{3}, e_{1}$. The kernel of $A+E$ is spanned by $6 e_{1}+7 e_{2}, 5 e_{1}-7 e_{3}$. Any of these vectors complete our two chain to a Jordan basis. We thus have as transition matrix: $S=\left(\begin{array}{ccc}7 & 1 & 6 \\ 14 & 0 & 7 \\ 7 & 0 & 0\end{array}\right)$.

The eigenvalues of B are 3 with algebraic multiplicity three and 2 with algebraic multiplicity one (this can be read off from the matrix without computations). The vector e_{4} forms a basis of V_{2}. It remains to determine the generalized eigenspace for $\lambda=3$. We have $B-3 E=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & -1\end{array}\right)$, $(B-3 E)^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 1 & -1 & 1\end{array}\right)$ and the rank becomes stationary from there on. A basis of V_{3} is given by a basis of $\operatorname{ker}(B-3 E)^{2}$, which is $e_{1}+e_{2}, e_{2}-e_{3}, e_{1}+e_{4}$. We transform A with respect to the transition matrix $S=\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$ and obtain $S^{-1} A S=\left(\begin{array}{cccc}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 1 & -1 & 3 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$. Since our eyes are used to these pictures now, we read off that in our new basis, e_{3}, e_{1} is a two chain, which is complemented to Jordan basis of the 3-Jordan block by the element of the appropriate kernel: $e_{1}+e_{2}$. We thus get another transition matrix $T=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$. We then have achieved that $T^{-1} S^{-1} A S T=\left(\begin{array}{cccc}3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.
H 51 We call two matrices A and B similar, if there is an invertible matrix S such that $S^{-1} A S=B$. Show:
(i) The Jordan block J_{k} is similar to its transpose $\left(J_{k}\right)^{t}$, for every $k \in \mathbb{N}$.
(ii) Every complex (or real and trigonalizable) matrix is similar to its transpose.

Remark: A matrix is called trigonalizable, if it is similar to an upper triangular matrix.
To (i): Since $\left(J_{k}^{t}\right)^{m}=\left(J_{k}^{m}\right)^{t}$ it follows that J_{k} is nilpotent of index k. Hence, there is precisely one Jordan chain of length k and by the JNF-theorem we have that $\left(J_{k}\right)^{t}$ is similar to J_{k}. We can even determine explicitly a transition matrix S as follows. The $k-1$-st power of $\left(J_{k}\right)^{t}$ is the matrix whose only non-vanishing column is the first one. This column is equal to e_{k}. Hence, the maximum Jordan chain is $e_{k} \leftarrow \cdots \leftarrow e_{1}$. The transition matrix S is therefore the identity matrix mirrored at the horizontal middle axis: $S=\left(\begin{array}{lll} & & 1 \\ & \ddots & \\ 1 & & \end{array}\right)$.

To (ii): Let A denote a trigonalizable matrix. Thus, the JNF of A exists and we have an invertible matrix S such that $S^{-1} A S=J$, where J is a Jordan matrix consisting of λ_{i}-Jordan blocks, where λ_{i} ranges through the eigenvalues of A. Each block can be written as $\lambda_{i} \cdot I+K_{k}$ for a suitable k. Now apply a transition matrix as above to the block and we obtain its transpose. If we arrange these transition matrices into a big block diagonal transition matrix, then it is easy to see that A is similar to its transpose.
H52 Let V be a five dimensional real vector space and $\phi: V \rightarrow V$ an endomorphism which satisfies the following properties: 1 is an eigenvalue of algebraic multiplicity three and 2 is an eigenvalue of algebraic multiplicity two.
(i) Determine all possible Jordan normal forms of ϕ, up to permutation of the Jordan blocks.
(ii) If the eigenvalue 1 has geometric multiplicity two, which candidates remain?

To (i): by assumption, the only possible JNF's of ϕ up to permutations of the blocks are

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right), \\
& \left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

To (ii): Under the additional requirement, there must be two 1-Jordan blocks and we only have the two possibilities:

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

H53 Show that a trigonalizable endomorphism ϕ of a finite dimensional vector space V over $K=\mathbb{R}$ or $K=\mathbb{C}$, which satisfies $\phi^{k}=\mathrm{id}$ for some $k \in \mathbb{N}^{>0}$ is in fact diagonalizable.
Remark: An endomorphism is called trigonalizable if it is represented by an upper triangular matrix w.r.t. a suitable basis.

Being trigonalizable means that the characteristic polynomial decomposes into linear factors over the ground field. Hence the theorem of the Jordan normal form can be applied to ϕ and there is a Jordan matrix J representing ϕ w.r.t. a Jordan basis. Suppose now that there is at least one Jordan block appearing in J of size greater than one. Then the assumption that $\phi^{k}=$ id implies that all eigenvalues have absolute value equal to one (they are in fact k-th roots of unity) and we have $J^{k}=E$. From this we conclude that all the off diagonal entries of J^{k} must necessarily vanish, however this is not the case if there is a Jordan block whose size is greater than one (if arguable, you may explicitly compute this for a $k \times k$ - λ-Jordan block). Hence, we have arrived at a contradiction and the maximal size of a Jordan block must be equal to one.
H 54 Show that for every complex normal matrix A there is a polynomial p such that $A^{*}=p(A)$.
Hint: Compare the normal forms of A and A^{*} and use exercises H12, H26.
According to the spectral theorem for normal matrices, A and A^{*} are both unitary diagonalizable. Since A commutes with A^{*} by the very definition of normality, we can diagonalize both matrices simultaneously. Let D be the diagonal matrix obtained from A in that fashion. Then \bar{D} is the corresponding diagonal matrix for A^{*}. If we let p denote the unique complex polynomial of least degree $\leq n$ which maps each diagonal entry λ_{i} onto $\bar{\lambda}_{i}$ (the existence follows from exercise $\mathbf{H 1 2}$), then obviously $p(D)=\bar{D}$. Now note that $p\left(S A S^{-1}\right)=S p(A) S^{-1}$ holds for all invertible matrices S and all polynomials p. Hence, $p(A)=A^{*}$.

