

6. Juli 2006

Linear Algebra II (MCS), SS 2006, Exercise 12

Mini-Quiz

(1) A Jordan-block of size k is the matrix $A = (a_{ij})$ with...?

$$\Box \ a_{ij} = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{else} \end{cases}$$
$$\Box \ a_{ij} = \begin{cases} 0 & \text{if } j = i + 1 \\ 1 & \text{else} \end{cases}$$
$$\Box \ a_{ij} = \begin{cases} 1 & \text{if } j = i + 1 \\ 0 & \text{else} \end{cases}$$

- (2) An endomorphism ϕ is called nilpotent if...?
 - $\Box \phi^n = 0 \text{ for all } n \in \mathbb{N}.$
 - $\Box \phi^n = 0$ for some $n \in \mathbb{N}$.
 - $\Box \phi(v^n) = 0$ for some $n \in \mathbb{N}$ and $v \in V$.
- (3) For a nilpotent endomorphism ϕ and a vector $v \in V$, the Jordan chain J(v) consists of...? \Box the head $\sigma(v)$ and the tail v.
 - $\square \text{ the vectors } 0 \neq \phi^{k-1}(v), \dots, \phi(v), v \text{ with } \phi^k(v) = 0.$
 - \Box the number of Jordan bases of length exactly ||v||.
- (4) Given a nilpotent matrix A, there is an invertible matrix S, such that...?
 - $\Box S^{-1}AS$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the algebraic multiplicity of the eigenvalue 0.
 - $\Box S^t A S$ is diagonal with index of nilpotency equal to the number of Jordan blocks.
 - $\Box S^{-1}AS$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the geometric multiplicity of the eigenvalue 0.

Groupwork

 ${f G}$ 54 (i) Draw the diagram corresponding to the following nilpotent Jordan matrix:

$$\begin{pmatrix} 0 & 1 & & & & & \\ & 0 & 1 & & & & & \\ & & 0 & 1 & & & & \\ & & & 0 & 1 & & & \\ & & & 0 & 1 & & & \\ & & & & 0 & 1 & & \\ & & & & & 0 & 1 & \\ & & & & & & 0 & 1 \\ & & & & & & & 0 \end{pmatrix}$$

(ii) Determine the nilpotent Jordan matrix corresponding to the following diagram:

G 55 Determine bases for which the following nilpotent matrices are in Jordan normal form:

	$(0 \ 1 \ 0 \ 0 \ 0 \ 1)$
	$(0 \ 1 \ 1 \ 0 \ 1)$ $(0 \ 0 \ 1 \ 0 \ 0 \ 2)$
	$A = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$
	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 & 0 & 0 & 0 & -1 \end{pmatrix}$
10	
$\int 0$	0 1 0 0 0 2 $(0 0 0 1 0 0 1)$
0	
0	
Hint: $B^2 = \begin{bmatrix} 0 \end{bmatrix}$	0 0 0 0 0 0 , $B^3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, $B^4 = 0$.
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	$0 -1 \ 0 \ 0 \ -2 \qquad 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ -1 \qquad 0 \qquad -1 \qquad 0 \qquad 0 \qquad -1 \qquad 0 \qquad 0 \qquad -1 \qquad 0 \qquad $
$\int 0$	

G 56 Let ϕ and ψ be nilpotent endomorphisms of a vector space V which have nilpotency indices k, rep. l and which commute. I.e. $\phi \circ \psi = \psi \circ \phi$. Show that (i) $\phi + \psi$ and (ii) $\phi \circ \psi$ are also nilpotent. Give in each case also an estimate for the index of nilpotency in terms of k and l.

G 57 Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Note that A is already in Jordan-normal form. Put $v_1 := e_1 + e_3, v_3 := e_1 - e_3$.

(i) Show that $\{v_1, v_3\}$ is a basis of the eigenspace of A to the eigenvalue 0 (i.e. a basis of ker A).

(ii) Show that there exists no vector v_2 such that $\{v_1, v_2, v_3\}$ is a Jordan-basis for A.

Thus, in general, if one wants to determine the Jordan normal form of a matrix, it is the wrong idea to start with a basis of the eigenspaces!

- **G 58** (i) Suppose you are given a nilpotent $n \times n$ -matrix A with nilpotency index m and you know the rank of each $A^k, k = 1, \ldots, m$. How can you determine the Jordan normal form of A?
 - (ii) In case that A is a 9×9-matrix with nilpotency index 5 and rank A = 5, rank $A^2 = 3$, rank $A^3 = 2$ and rank $A^4 = 1$, determine the Jordan normal form of A.

Homework

- **H 45** Let ϕ be a nilpotent endomorphism of an *n*-dimensional vector space V. Suppose that there exists a $v \in V$ such that $\phi^{n-1}(v) \neq 0$. Show that for every $0 \leq k \leq n$ there is a k-dimensional ϕ -invariant subspace W_k of V. For which k does there exist a n - k-dimensional ϕ -invariant complement of W_k ? Determine the normal form of ϕ .
- **H 46** Show that the elements of a Jordan chain $J(v), v \neq 0$ form a linear independent set.
- **H 47** Let V be a finite dimensional vector space and let ϕ be a nilpotent endomorphism. Suppose that $V = W_1 \oplus \cdots \oplus W_k$ is a direct decomposition of V into ϕ -invariant subspaces, such that each W_i contains a Jordan-chain of length dim W_i . Show that dim(ker ϕ) = k and rank $\phi = n - k$.
- **H 48** Let V be a n-dimensional vector space and $\phi: V \to V$ be nilpotent with index of nilpotency n. Show that there exist no endomorphism ψ of V satisfying $\psi^2 = \phi$.
- **H 49** Let N be a nilpotent matrix. Show that I + N is invertible and determine its inverse. Hint: Geometric series and telescope sums!

Mini-Quiz

(1) A Jordan-block of size k is the matrix $A = (a_{ij})$ with...?

$$\Box a_{ij} = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{else} \end{cases}$$
$$\Box a_{ij} = \begin{cases} 0 & \text{if } j = i + 1 \\ 1 & \text{else} \end{cases}$$
$$\Box a_{ij} = \begin{cases} 1 & \text{if } j = i + 1 \\ 0 & \text{else} \end{cases}$$

- (2) An endomorphism ϕ is called nilpotent if...?
 - $\Box \ \phi^n = 0 \text{ for all } n \in \mathbb{N}.$
 - $\Box \ \phi^n = 0 \text{ for some } n \in \mathbb{N}.$
 - $\Box \phi(v^n) = 0$ for some $n \in \mathbb{N}$ and $v \in V$.
- (3) For a nilpotent endomorphism ϕ and a vector $v \in V$, the Jordan chain J(v) consists of...?
 - \Box the head $\sigma(v)$ and the tail v.
 - $\square \text{ the vectors } 0 \neq \phi^{k-1}(v), \dots, \phi(v), v \text{ with } \phi^k(v) = 0.$
 - \Box the number of Jordan bases of length exactly ||v||.
- (4) Given a nilpotent matrix A, there is an invertible matrix S, such that...?
 - $\Box S^{-1}AS$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the algebraic multiplicity of the eigenvalue 0.
 - \Box S^tAS is diagonal with index of nilpotency equal to the number of Jordan blocks.
 - $\Box S^{-1}AS$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the geometric multiplicity of the eigenvalue 0.

Groupwork

G 54 (i) Draw the diagram corresponding to the following nilpotent Jordan matrix:

$$\begin{pmatrix} 0 & 1 & & & & & \\ & 0 & 1 & & & & & \\ & & 0 & 1 & & & & \\ & & & 0 & 1 & & & \\ & & & 0 & 1 & & \\ & & & & 0 & 1 & \\ & & & & & 0 & 1 \\ & & & & & & 0 & 1 \\ & & & & & & & 0 \end{pmatrix}$$

(ii) Determine the nilpotent Jordan matrix corresponding to the following diagram:

To (i):

To (i): Let J_k denote the Jordan-block of size $k \times k$. Then the nilpotent Jordan matrix corresponding to the diagram is:

$$egin{pmatrix} J_6 & & & & \ & J_6 & & & \ & & J_5 & & \ & & & J_3 & \ & & & & & J_3 \end{pmatrix}$$

G 55 Determine bases for which the following nilpotent matrices are in Jordan normal form:

According to the algorithm, we first determine the index of nilpotency of A:

The index of nilpotency is therefore 3. The image of A^2 is spanned by e_1 , which is the tail of the Jordan-chain $J(e_4) = \{e_1, e_2, e_4\}$. The next h < 3 with J(h) > 0 can be determined over the ranks of A^1 : The rank of A^2 is one and the rank of A is two. Hence, $J(2) = \operatorname{rank}(A^3) + \operatorname{rank}(A) - 2\operatorname{rank}(A^2) = 0 + 2 - 2 = 0$. Therefore h = 1 and indeed $J(1) = \operatorname{rank}(A^2) + 5 - 2\operatorname{rank}(A) = 1 + 5 - 4 = 2$. The kernel of A is ker $(A) = \operatorname{Span}\{(0, 1, -1, 1, 0)^t, (0, 0, 1, 0, -1)^t\}$. Thus $\{e_1, e_2, e_4, e_2 - e_3 + e_4, e_3 - e_5\}$ is $\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \end{pmatrix}$

For B the index of nilpotency is 4. The image of B^3 is spanned by $e_1 - e_6 = (1, 0, 0, 0, 0, -1, 0)^t$, which is the tail of $J(e_4) = \{e_1 - e_6, e_2, e_3, e_4\}$. We have rank $B^3 = 1$, rank $B^2 = 2$, rank B = 4. Thus J(3) = 0, J(2) = 1 and J(1) = 1. The next h < 4 with J(h) > 0 is therefore h = 2. The kernel of B^2 is spanned by $\{e_1, e_2, e_5, e_6, e_7 - 2e_3 - e_4\}$ and we see that $e_1 - e_6, e_2 \in J(e_4)$ are also elements of the kernel. Let $X := \{e_1, e_5, \}$, Then X together with $e_1 - e_6, e_2$ span the kernel and we are interested in the elements of X with J-rank h = 2. For instance, $J(e_1) = \{e_5, e_1\}$ fulfills this requirement and e_4, e_1 are J-independent. Furthermore, we do not have to look for other elements with J-rank 2, since this would violate J-independency. Next, we look for an h < 2 with J(h) > 1. This is necessarily h = 1and J(1) = 1, as computed above. The kernel of B is spanned by $\{e_5, e_1 - e_6, e_2 + 2e_3 + e_4 - 2e_1 - e_7\}$. The elements e_5 and $e_1 - e_6$ lie also in the J-span of e_4, e_1 . We therefore complete our J-basis to $\{e_4, e_1, e_2 + 2e_3 + e_4 - 2e_1 - e_7\}$. That is, $\{e_1 - e_6, e_2, e_3, e_4, e_5, e_1, e_2 + 2e_3 + e_4 - 2e_1 - e_7\}$ is a Jordan J(0, 1, 0, 0, 0, 0, 0)

	10	T	U	U	U	U	- U Y	
	0	0	1	0	0	0	0	
	0	0	0	1	0	0	0	
basis for B and the Jordan normal form is	0	0	0	0	0	0	0	
	0	0	0	0	0	1	0	
	0	0	0	0	0	0	0	
	$\left(0 \right)$	0	0	0	0	0	0/	
	`							

G 56 Let ϕ and ψ be nilpotent endomorphisms of a vector space V which have nilpotency indices k, rep. l and which commute. I.e. $\phi \circ \psi = \psi \circ \phi$. Show that (i) $\phi + \psi$ and (ii) $\phi \circ \psi$ are also nilpotent. Give in each case also an estimate for the index of nilpotency in terms of k and l.

Since ϕ and ψ commute as endomorphisms, the powers of $\phi + \psi$ satisfy the binomial formula $(\phi + \psi)^n =$ $\sum_{j=0}^{n} \binom{n}{j} \phi^{n-j} \circ \psi^{j}$. If we choose n = k+l-1, then $\phi^{n-j} = 0$ for $j = 0, \ldots, l$ and $\psi^{j} = 0$ for $j = l + 1, \dots, n$. Hence, $\phi + \psi$ is nilpotent with index at most min $\{k + l - 1, \dim V\}$.

Concerning $\phi \circ \psi$, we have $(\phi \circ \psi)^n = \phi^n \circ \psi^n$, again due to the commutativity of ϕ with ψ . Hence, $\phi \circ \psi$ is nilpotent with index at most min $\{k, l\}$.

G 57 Let
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. Note that A is already in Jordan-normal form. Put $v_1 := e_1 + e_3, v_3 := e_1 - e_3$.

(i) Show that $\{v_1, v_3\}$ is a basis of the eigenspace of A to the eigenvalue 0 (i.e. a basis of ker A).

(ii) Show that there exists no vector v_2 such that $\{v_1, v_2, v_3\}$ is a Jordan-basis for A.

Thus, in general, if one wants to determine the Jordan normal form of a matrix, it is the wrong idea to start with a basis of the eigenspaces!

To (i): Since e_1, e_3 are obviously eigenvectors of A to EV 0, so are v_1 and v_3 , since they are linear combinations of the former. Furthermore, the kernel is two dimensional, hence $\{v_1, v_3\}$ is a basis of $\ker(A)$.

To (ii): Suppose that $v_2 = (a, b, c)^t$ is such a vector. The transition matrix is then given by S $\begin{pmatrix} 1 & a & 1 \\ 0 & b & 0 \\ 1 & c & -1 \end{pmatrix}$. Note that necessarily $b \neq 0$. The inverse of S is then $S^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{a+c}{2b} & \frac{1}{2} \\ 0 & \frac{1}{b} & 0 \\ \frac{1}{2} & \frac{c-a}{2b} & -\frac{1}{2} \end{pmatrix}$ and one computes $S^{-1}AS = \begin{pmatrix} 0 & \frac{b}{2} & 0 \\ 0 & 0 & 0 \\ 0 & \frac{b}{2} & 0 \end{pmatrix}$. This is unequal to A, regardless of the choice of $b \neq 0$.

- (i) Suppose you are given a nilpotent $n \times n$ -matrix A with nilpotency index m and you know the G 58 rank of each $A^k, k = 1, ..., m$. How can you determine the Jordan normal form of A?
 - (ii) In case that A is a 9×9-matrix with nilpotency index 5 and rank A = 5, rank $A^2 = 3$, rank $A^3 = 2$ and rank $A^4 = 1$, determine the Jordan normal form of A.
 - To (i): According to the script we have $J_{>}(h) = \operatorname{rank}(A^{k-1}) \operatorname{rank}(A^k)$ and by definition, $J_{>}(h)$ is the number of J-chains of length at least h in any Jordan basis. Furthermore, J(h), the number of J-chains of length at exactly h in any Jordan basis, is determined by $J_{>}(h)$ over $J(h) = J_{>}(h) - J_{>}(h+1)$. Together this yields $J(h) = \operatorname{rank}(A^{k-1}) + \operatorname{rank}(A^{k+1}) - 2\operatorname{rank}(A^{k})$. As the knowledge of J(h) for every h determines the JNF of A, we have shown that knowing the ranks of the powers of A determines the JNF of any nilpotent A.
 - To (ii): According to (i) we have J(1) = 2, J(2) = 1, J(3) = J(4) = 0 and J(5) = 1. Thus the Jordan J_5

normal form of A is
$$\begin{pmatrix} J_2 & \\ & J_1 \\ & & J_1 \end{pmatrix}$$
, where J_k denotes the Jordan block of size $k \times k$.

Homework

H45 Let ϕ be a nilpotent endomorphism of an *n*-dimensional vector space V. Suppose that there exists a $v \in V$ such that $\phi^{n-1}(v) \neq 0$. Show that for every $0 \leq k \leq n$ there is a k-dimensional ϕ -invariant subspace W_k of V. For which k does there exist a n - k-dimensional ϕ -invariant complement of W_k ? Determine the normal form of ϕ .

By assumption, ϕ is nilpotent of index n and $J(v) = \{\phi^{n-1}(v), \ldots, \phi(v), v\}$ is a maximal Jordan chain of length n. Let $W_k := \text{Span}\{\phi^{n-1}(v), \ldots, \phi^{n-k}(v)\}$. Then dim $W_k = k, W_k \subset W_{k+1}$ and $\phi(W_k) \subset W_{k-1} \subset W_k$. In fact, this is true because J(v) forms a basis of V and $\phi(\phi^k(v)) = \phi^{k+1}(v)$ for k = 0, ..., n-1 and $\phi(\phi^{n-1}(v)) = 0$. Since J(v) forms a Jordan basis of V, the Jordan normal form of ϕ is obviously the $n \times n$ -Jordan block. From this it follows that the only W_k 's which have ϕ -invariant complements are $W_0 = \{0\}$ and $W_n = V$.

H46 Show that the elements of a Jordan chain $J(v), v \neq 0$ form a linear independent set.

We have $J(v) = \{0 \neq \phi^{k-1}(v), \dots, \phi(v), v\}$, where $\phi : V \to V$ is nilpotent. Suppose that we have numbers $a_0, \dots, a_{k-1} \in K$ such that $a_0v + a_1\phi(v) + \dots + a_{k-1}\phi^{k-1}(v) = 0$. After applying ϕ^{k-1} to this equation, the only term that remains is $a_0\phi^{k-1}(v) = 0$, the other terms are zero. Since $\phi^{k-1}(v)$ and also every other element of J(v) is different from zero, it follows that $a_0 = 0$. Hence our former equation

becomes $a_1\phi(v) + \ldots + a_{k-1}\phi^{k-1}(v) = 0$ and this time applying ϕ^{k-2} yields $a_1 = 0$. Continuing in this way, we end up with $a_0 = \cdots = a_{k-1} = 0$. Thus the elements of J(v) are linearly independent.

- **H 47** Let V be a finite dimensional vector space and let ϕ be a nilpotent endomorphism. Suppose that $V = W_1 \oplus \cdots \oplus W_k$ is a direct decomposition of V into ϕ -invariant subspaces, such that each W_i contains a Jordan-chain of length dim W_i . Show that dim(ker ϕ) = k and rank $\phi = n k$. Obviously, we obtain a Jordan basis by concatenating the maximal Jordan chains of each subspace W_i . The JNF of ϕ is then a block diagonal with k Jordan blocks, their sizes running through dim W_i , $i = 1, \ldots, k$. The rank, resp. dimension of the kernel of ϕ is then the sum of the ranks, resp. dimensions of the kernels of the Jordan blocks. Each Jordan block has a one-dimensional kernel and rank equal to dim $W_i - 1$. This yields the stated formulas.
- **H 48** Let V be a n-dimensional vector space and $\phi: V \to V$ be nilpotent with index of nilpotency n. Show that there exist no endomorphism ψ of V satisfying $\psi^2 = \phi$. Suppose that ψ would exist. By assumption, ψ were also nilpotent (of index at most $2 \cdot k$ if k is the index of ϕ). However, it is easy to see that the ranks of the powers of a nilpotent endomorphism are strictly decreasing. Since ϕ has by definition rank equal to n - 1, ψ would necessarily have rank equal to n. However, this would contradict the nilpotency of ψ .
- **H 49** Let N be a nilpotent matrix. Show that I + N is invertible and determine its inverse. Hint: Geometric series and telescope sums!

Let n denote the index of nilpotency of N. We claim that $A := \sum_{k=0}^{n-1} (-1)^k N^k$ is the inverse of I + N. In fact,

$$(I+N) \cdot A = \sum_{k=0}^{n-1} (-1)^k N^k + N \cdot \sum_{k=0}^{n-1} (-1)^k N^k = \sum_{k=0}^{n-1} (-1)^k N^k - \sum_{k=1}^{n-1} (-1)^k N^k + (-1)^n N^n = I$$