Prof. Dr. Christian Herrmann

Linear Algebra II (MCS), SS 2006, Exercise 12

Mini-Quiz

(1) A Jordan-block of size k is the matrix $A=\left(a_{i j}\right)$ with...?
$\square a_{i j}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { else }\end{cases}$$a_{i j}= \begin{cases}0 & \text { if } j=i+1 \\ 1 & \text { else }\end{cases}$
$\square a_{i j}= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { else }\end{cases}$
(2) An endomorphism ϕ is called nilpotent if...?$\phi^{n}=0$ for all $n \in \mathbb{N}$.$\phi^{n}=0$ for some $n \in \mathbb{N}$.$\phi\left(v^{n}\right)=0$ for some $n \in \mathbb{N}$ and $v \in V$.
(3) For a nilpotent endomorphism ϕ and a vector $v \in V$, the Jordan chain $J(v)$ consists of...?the head $\sigma(v)$ and the tail v.the vectors $0 \neq \phi^{k-1}(v), \ldots, \phi(v), v$ with $\phi^{k}(v)=0$.the number of Jordan bases of length exactly $\|v\|$.
(4) Given a nilpotent matrix A, there is an invertible matrix S, such that...?
$S^{-1} A S$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the algebraic multiplicity of the eigenvalue 0 .$S^{t} A S$ is diagonal with index of nilpotency equal to the number of Jordan blocks.$S^{-1} A S$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the geometric multiplicity of the eigenvalue 0 .

Groupwork

G 54 (i) Draw the diagram corresponding to the following nilpotent Jordan matrix:

$$
\left(\begin{array}{cccccccccc}
0 & 1 & & & & & & & & \\
& 0 & 1 & & & & & & & \\
& & 0 & 1 & & & & & & \\
& & & 0 & & & & & & \\
& & & & 0 & 1 & & & & \\
& & & & & & 0 & 1 & & \\
& & & & & & \\
& & & & & & 0 & & & \\
& & & & & & & 0 & 1 & \\
& & & & & & & & & 0
\end{array}\right)
$$

(ii) Determine the nilpotent Jordan matrix corresponding to the following diagram:

G 55 Determine bases for which the following nilpotent matrices are in Jordan normal form:
$A=\left(\begin{array}{ccccc}0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right), \quad B=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
Hint: $B^{2}=\left(\begin{array}{ccccccc}0 & 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), B^{3}=\left(\begin{array}{ccccccc}0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), B^{4}=0$.

G 56 Let ϕ and ψ be nilpotent endomorphisms of a vector space V which have nilpotency indices k, rep. l and which commute. I.e. $\phi \circ \psi=\psi \circ \phi$. Show that $(i) \phi+\psi$ and (ii) $\phi \circ \psi$ are also nilpotent. Give in each case also an estimate for the index of nilpotency in terms of k and l.
G 57 Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Note that A is already in Jordan-normal form. Put $v_{1}:=e_{1}+e_{3}, v_{3}:=e_{1}-e_{3}$.
(i) Show that $\left\{v_{1}, v_{3}\right\}$ is a basis of the eigenspace of A to the eigenvalue 0 (i.e. a basis of $\operatorname{ker} A$).
(ii) Show that there exists no vector v_{2} such that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a Jordan-basis for A.

Thus, in general, if one wants to determine the Jordan normal form of a matrix, it is the wrong idea to start with a basis of the eigenspaces!
G 58 (i) Suppose you are given a nilpotent $n \times n$-matrix A with nilpotency index m and you know the rank of each $A^{k}, k=1, \ldots, m$. How can you determine the Jordan normal form of A ?
(ii) In case that A is a 9×9-matrix with nilpotency index 5 and $\operatorname{rank} A=5, \operatorname{rank} A^{2}=3, \operatorname{rank} A^{3}=2$ and $\operatorname{rank} A^{4}=1$, determine the Jordan normal form of A.

Homework

H 45 Let ϕ be a nilpotent endomorphism of an n-dimensional vector space V. Suppose that there exists a $v \in V$ such that $\phi^{n-1}(v) \neq 0$. Show that for every $0 \leq k \leq n$ there is a k-dimensional ϕ-invariant subspace W_{k} of V. For which k does there exist a n - k-dimensional ϕ-invariant complement of W_{k} ? Determine the normal form of ϕ.
H 46 Show that the elements of a Jordan chain $J(v), v \neq 0$ form a linear independent set.
H47 Let V be a finite dimensional vector space and let ϕ be a nilpotent endomorphism. Suppose that $V=W_{1} \oplus \cdots \oplus W_{k}$ is a direct decomposition of V into ϕ-invariant subspaces, such that each W_{i} contains a Jordan-chain of length $\operatorname{dim} W_{i}$. Show that $\operatorname{dim}(\operatorname{ker} \phi)=k$ and $\operatorname{rank} \phi=n-k$.
H48 Let V be a n-dimensional vector space and $\phi: V \rightarrow V$ be nilpotent with index of nilpotency n. Show that there exist no endomorphism ψ of V satisfying $\psi^{2}=\phi$.
H 49 Let N be a nilpotent matrix. Show that $I+N$ is invertible and determine its inverse. Hint: Geometric series and telescope sums!

Linear Algebra II (MCS), SS 2006, Exercise 12, Solution

Mini-Quiz

(1) A Jordan-block of size k is the matrix $A=\left(a_{i j}\right)$ with...?$a_{i j}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { else }\end{cases}$
$\square a_{i j}= \begin{cases}0 & \text { if } j=i+1 \\ 1 & \text { else }\end{cases}$$a_{i j}= \begin{cases}1 & \text { if } j=i+1 \\ 0 & \text { else }\end{cases}$
(2) An endomorphism ϕ is called nilpotent if...?
$\square \phi^{n}=0$ for all $n \in \mathbb{N}$.$\phi^{n}=0$ for some $n \in \mathbb{N}$.$\phi\left(v^{n}\right)=0$ for some $n \in \mathbb{N}$ and $v \in V$.
(3) For a nilpotent endomorphism ϕ and a vector $v \in V$, the Jordan chain $J(v)$ consists of...?
\square the head $\sigma(v)$ and the tail v.the vectors $0 \neq \phi^{k-1}(v), \ldots, \phi(v), v$ with $\phi^{k}(v)=0$.the number of Jordan bases of length exactly $\|v\|$.
(4) Given a nilpotent matrix A, there is an invertible matrix S, such that...?
$\square S^{-1} A S$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the algebraic multiplicity of the eigenvalue 0 .$S^{t} A S$ is diagonal with index of nilpotency equal to the number of Jordan blocks.$S^{-1} A S$ is a nilpotent Jordan matrix whose number of Jordan blocks equals the geometric multiplicity of the eigenvalue 0 .

Groupwork

G 54 (i) Draw the diagram corresponding to the following nilpotent Jordan matrix:

$$
\left(\begin{array}{ccccccccc}
0 & 1 & & & & & & & \\
& 0 & 1 & & & & & & \\
\\
& & 0 & 1 & & & & & \\
\\
& & & & 0 & & & & \\
& & \\
& & & & & 0 & 1 & & \\
& & \\
& & & & & & 0 & 1 & \\
& & & & \\
& & & & & & & 0 & \\
& & & & & & & & \\
& & & & & & & & 1 \\
\\
& & & & & & & & \\
0 & & 1 \\
\hline
\end{array}\right)
$$

(ii) Determine the nilpotent Jordan matrix corresponding to the following diagram:

To (i):

$\bullet \longleftarrow \bullet \longleftarrow \quad \longleftarrow$

$\bullet \longleftarrow \bullet \longleftarrow \bullet$

- $\longleftarrow \bullet \longleftarrow \bullet$

To (i): Let J_{k} denote the Jordan-block of size $k \times k$. Then the nilpotent Jordan matrix corresponding to the diagram is:

$$
\left(\begin{array}{ccccc}
J_{6} & & & & \\
& J_{6} & & & \\
& & J_{5} & & \\
& & & J_{3} & \\
& & & & J_{3}
\end{array}\right)
$$

G 55 Determine bases for which the following nilpotent matrices are in Jordan normal form:
$A=\left(\begin{array}{ccccc}0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right), \quad B=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
Hint: $B^{2}=\left(\begin{array}{ccccccc}0 & 0 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), B^{3}=\left(\begin{array}{ccccccc}0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), B^{4}=0$.
According to the algorithm, we first determine the index of nilpotency of A :

$$
A^{2}=\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), A^{3}=0
$$

The index of nilpotency is therefore 3. The image of A^{2} is spanned by e_{1}, which is the tail of the Jordan-chain $J\left(e_{4}\right)=\left\{e_{1}, e_{2}, e_{4}\right\}$. The next $h<3$ with $J(h)>0$ can be determined over the ranks of A^{l} : The rank of A^{2} is one and the rank of A is two. Hence, $J(2)=\operatorname{rank}\left(A^{3}\right)+\operatorname{rank}(A)-2 \operatorname{rank}\left(A^{2}\right)=$ $0+2-2=0$. Therefore $h=1$ and indeed $J(1)=\operatorname{rank}\left(A^{2}\right)+5-2 \operatorname{rank}(A)=1+5-4=2$. The kernel of A is $\operatorname{ker}(A)=\operatorname{Span}\left\{(0,1,-1,1,0)^{t},(0,0,1,0,-1)^{t}\right\}$. Thus $\left\{e_{1}, e_{2}, e_{4}, e_{2}-e_{3}+e_{4}, e_{3}-e_{5}\right\}$ is
a Jordan-basis of A, and the corresponding normal form is

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For B the index of nilpotency is 4. The image of B^{3} is spanned by $e_{1}-e_{6}=(1,0,0,0,0,-1,0)^{t}$, which is the tail of $J\left(e_{4}\right)=\left\{e_{1}-e_{6}, e_{2}, e_{3}, e_{4}\right\}$. We have rank $B^{3}=1$, rank $B^{2}=2$, rank $B=4$. Thus $J(3)=0, J(2)=1$ and $J(1)=1$. The next $h<4$ with $J(h)>0$ is therefore $h=2$. The kernel of B^{2} is spanned by $\left\{e_{1}, e_{2}, e_{5}, e_{6}, e_{7}-2 e_{3}-e_{4}\right\}$ and we see that $e_{1}-e_{6}, e_{2} \in J\left(e_{4}\right)$ are also elements of the kernel. Let $X:=\left\{e_{1}, e_{5},\right\}$, Then X together with $e_{1}-e_{6}, e_{2}$ span the kernel and we are interested in the elements of X with J-rank $h=2$. For instance, $J\left(e_{1}\right)=\left\{e_{5}, e_{1}\right\}$ fulfills this requirement and e_{4}, e_{1} are J-independent. Furthermore, we do not have to look for other elements with J-rank 2, since this would violate J-independency. Next, we look for an $h<2$ with $J(h)>1$. This is necessarily $h=1$ and $J(1)=1$, as computed above. The kernel of B is spanned by $\left\{e_{5}, e_{1}-e_{6}, e_{2}+2 e_{3}+e_{4}-2 e_{1}-e_{7}\right\}$. The elements e_{5} and $e_{1}-e_{6}$ lie also in the J-span of e_{4}, e_{1}. We therefore complete our J-basis to $\left\{e_{4}, e_{1}, e_{2}+2 e_{3}+e_{4}-2 e_{1}-e_{7}\right\}$. That is, $\left\{e_{1}-e_{6}, e_{2}, e_{3}, e_{4}, e_{5}, e_{1}, e_{2}+2 e_{3}+e_{4}-2 e_{1}-e_{7}\right\}$ is a Jordan
basis for B and the Jordan normal form is

$$
\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

G56 Let ϕ and ψ be nilpotent endomorphisms of a vector space V which have nilpotency indices k, rep. l and which commute. I.e. $\phi \circ \psi=\psi \circ \phi$. Show that $(i) \quad \phi+\psi$ and (ii) $\phi \circ \psi$ are also nilpotent. Give in each case also an estimate for the index of nilpotency in terms of k and l.

Since ϕ and ψ commute as endomorphisms, the powers of $\phi+\psi$ satisfy the binomial formula $(\phi+\psi)^{n}=$ $\sum_{j=0}^{n}\binom{n}{j} \phi^{n-j} \circ \psi^{j}$. If we choose $n=k+l-1$, then $\phi^{n-j}=0$ for $j=0, \ldots, l$ and $\psi^{j}=0$ for $j=l+1, \ldots, n$. Hence, $\phi+\psi$ is nilpotent with index at most $\min \{k+l-1, \operatorname{dim} V\}$.

Concerning $\phi \circ \psi$, we have $(\phi \circ \psi)^{n}=\phi^{n} \circ \psi^{n}$, again due to the commutativity of ϕ with ψ. Hence, $\phi \circ \psi$ is nilpotent with index at most $\min \{k, l\}$.

G 57 Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Note that A is already in Jordan-normal form. Put $v_{1}:=e_{1}+e_{3}, v_{3}:=e_{1}-e_{3}$.
(i) Show that $\left\{v_{1}, v_{3}\right\}$ is a basis of the eigenspace of A to the eigenvalue 0 (i.e. a basis of ker A).
(ii) Show that there exists no vector v_{2} such that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a Jordan-basis for A.

Thus, in general, if one wants to determine the Jordan normal form of a matrix, it is the wrong idea to start with a basis of the eigenspaces!
To (i): Since e_{1}, e_{3} are obviously eigenvectors of A to $E V 0$, so are v_{1} and v_{3}, since they are linear combinations of the former. Furthermore, the kernel is two dimensional, hence $\left\{v_{1}, v_{3}\right\}$ is a basis of $\operatorname{ker}(A)$.
To (ii): Suppose that $v_{2}=(a, b, c)^{t}$ is such a vector. The transition matrix is then given by $S=$ $\left(\begin{array}{ccc}1 & a & 1 \\ 0 & b & 0 \\ 1 & c & -1\end{array}\right)$. Note that necessarily $b \neq 0$. The inverse of S is then $S^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{a+c}{2 b} & \frac{1}{2} \\ 0 & \frac{1}{b} & 0 \\ \frac{1}{2} & \frac{c-a}{2 b} & -\frac{1}{2}\end{array}\right)$ and one computes $S^{-1} A S=\left(\begin{array}{ccc}0 & \frac{b}{2} & 0 \\ 0 & 0 & 0 \\ 0 & \frac{b}{2} & 0\end{array}\right)$. This is unequal to A, regardless of the choice of $b \neq 0$.
G 58 (i) Suppose you are given a nilpotent $n \times n$-matrix A with nilpotency index m and you know the rank of each $A^{k}, k=1, \ldots, m$. How can you determine the Jordan normal form of A ?
(ii) In case that A is a 9×9-matrix with nilpotency index 5 and $\operatorname{rank} A=5, \operatorname{rank} A^{2}=3, \operatorname{rank} A^{3}=2$ and $\operatorname{rank} A^{4}=1$, determine the Jordan normal form of A.
To (i): According to the script we have $J_{\geq}(h)=\operatorname{rank}\left(A^{k-1}\right)-\operatorname{rank}\left(A^{k}\right)$ and by definition, $J_{\geq}(h)$ is the number of J-chains of length at least h in any Jordan basis. Furthermore, $J(h)$, the number of J-chains of length at exactly h in any Jordan basis, is determined by $J_{\geq}(h)$ over $J(h)=J_{\geq}(h)-J_{\geq}(h+1)$. Together this yields $J(h)=\operatorname{rank}\left(A^{k-1}\right)+\operatorname{rank}\left(A^{k+1}\right)-2 \operatorname{rank}\left(A^{k}\right)$. As the knowledge of $J(h)$ for every h determines the JNF of A, we have shown that knowing the ranks of the powers of A determines the JNF of any nilpotent A.
To (ii): According to (i) we have $J(1)=2, J(2)=1, J(3)=J(4)=0$ and $J(5)=1$. Thus the Jordan normal form of A is $\left(\begin{array}{cccc}J_{5} & & & \\ & J_{2} & & \\ & & J_{1} & \\ & & & J_{1}\end{array}\right)$, where J_{k} denotes the Jordan block of size $k \times k$.

Homework

H 45 Let ϕ be a nilpotent endomorphism of an n-dimensional vector space V. Suppose that there exists a $v \in V$ such that $\phi^{n-1}(v) \neq 0$. Show that for every $0 \leq k \leq n$ there is a k-dimensional ϕ-invariant subspace W_{k} of V. For which k does there exist a $n-k$-dimensional ϕ-invariant complement of W_{k} ? Determine the normal form of ϕ.
By assumption, ϕ is nilpotent of index n and $J(v)=\left\{\phi^{n-1}(v), \ldots, \phi(v), v\right\}$ is a maximal Jordan chain of length n. Let $W_{k}:=\operatorname{Span}\left\{\phi^{n-1}(v), \ldots, \phi^{n-k}(v)\right\}$. Then $\operatorname{dim} W_{k}=k, W_{k} \subset W_{k+1}$ and $\phi\left(W_{k}\right) \subset W_{k-1} \subset W_{k}$. In fact, this is true because $J(v)$ forms a basis of V and $\phi\left(\phi^{k}(v)\right)=\phi^{k+1}(v)$ for $k=0, \ldots, n-1$ and $\phi\left(\phi^{n-1}(v)\right)=0$. Since $J(v)$ forms a Jordan basis of V, the Jordan normal form of ϕ is obviously the $n \times n$-Jordan block. From this it follows that the only W_{k} 's which have ϕ-invariant complements are $W_{0}=\{0\}$ and $W_{n}=V$.

H 46 Show that the elements of a Jordan chain $J(v), v \neq 0$ form a linear independent set.
We have $J(v)=\left\{0 \neq \phi^{k-1}(v), \ldots, \phi(v), v\right\}$, where $\phi: V \rightarrow V$ is nilpotent. Suppose that we have numbers $a_{0}, \ldots, a_{k-1} \in K$ such that $a_{0} v+a_{1} \phi(v)+\ldots+a_{k-1} \phi^{k-1}(v)=0$. After applying ϕ^{k-1} to this equation, the only term that remains is $a_{0} \phi^{k-1}(v)=0$, the other terms are zero. Since $\phi^{k-1}(v)$ and also every other element of $J(v)$ is different from zero, it follows that $a_{0}=0$. Hence our former equation
becomes $a_{1} \phi(v)+\ldots+a_{k-1} \phi^{k-1}(v)=0$ and this time applying ϕ^{k-2} yields $a_{1}=0$. Continuing in this way, we end up with $a_{0}=\cdots=a_{k-1}=0$. Thus the elements of $J(v)$ are linearly independent.

H 47 Let V be a finite dimensional vector space and let ϕ be a nilpotent endomorphism. Suppose that $V=W_{1} \oplus \cdots \oplus W_{k}$ is a direct decomposition of V into ϕ-invariant subspaces, such that each W_{i} contains a Jordan-chain of length $\operatorname{dim} W_{i}$. Show that $\operatorname{dim}(\operatorname{ker} \phi)=k$ and $\operatorname{rank} \phi=n-k$.
Obviously, we obtain a Jordan basis by concatenating the maximal Jordan chains of each subspace W_{i}. The JNF of ϕ is then a block diagonal with k Jordan blocks, their sizes running through dim $W_{i}, i=$ $1, \ldots, k$. The rank, resp. dimension of the kernel of ϕ is then the sum of the ranks, resp. dimensions of the kernels of the Jordan blocks. Each Jordan block has a one-dimensional kernel and rank equal to $\operatorname{dim} W_{i}-1$. This yields the stated formulas.

H 48 Let V be a n-dimensional vector space and $\phi: V \rightarrow V$ be nilpotent with index of nilpotency n. Show that there exist no endomorphism ψ of V satisfying $\psi^{2}=\phi$.
Suppose that ψ would exist. By assumption, ψ were also nilpotent (of index at most $2 \cdot k$ if k is the index of ϕ). However, it is easy to see that the ranks of the powers of a nilpotent endomorphism are strictly decreasing. Since ϕ has by definition rank equal to $n-1, \psi$ would necessarily have rank equal to n. However, this would contradict the nilpotency of ψ.
H 49 Let N be a nilpotent matrix. Show that $I+N$ is invertible and determine its inverse.
Hint: Geometric series and telescope sums!
Let n denote the index of nilpotency of N. We claim that $A:=\sum_{k=0}^{n-1}(-1)^{k} N^{k}$ is the inverse of $I+N$. In fact,

$$
(I+N) \cdot A=\sum_{k=0}^{n-1}(-1)^{k} N^{k}+N \cdot \sum_{k=0}^{n-1}(-1)^{k} N^{k}=\sum_{k=0}^{n-1}(-1)^{k} N^{k}-\sum_{k=1}^{n-1}(-1)^{k} N^{k}+(-1)^{n} N^{n}=I
$$

