Linear Algebra II (MCS), SS 2006, Exercise 11

Mini-Quiz

(1) The adjoint ϕ^{*} of an endomorphism ϕ of an euclidean vector space V is defined by...?

$$
\begin{aligned}
& \square\left\langle\phi^{*}(v) \mid \phi^{*}(w)\right\rangle=\langle v \mid \phi(w)\rangle \\
& \sqrt{ }\langle v \mid \phi(w)\rangle=\left\langle\phi(v)^{*} \mid w\right\rangle \\
& \square\langle\phi(v) \mid w\rangle=\langle w \mid \phi(v)\rangle
\end{aligned}
$$

for all $v, w \in V$.
(2) An endomorphism ϕ of an euclidean vector space V is called self-adjoint, if...?
$\square\langle\phi(v) \mid \phi(w)\rangle=\langle v \mid w\rangle$
$\sqrt{ }\langle v \mid \phi(w)\rangle=\langle\phi(v) \mid w\rangle$
$\square\langle\phi(v) \mid w\rangle=\langle w \mid \phi(v)\rangle$
for all $v, w \in V$.
(3) If $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct eigenvalues of a selfadjoint endomorphism, v_{i}, resp. U_{i}, is an eigenvector, resp. the eigenspace, for $\lambda_{i}, i=1, \ldots, r$, then for $i \neq j$:
$\square \lambda_{i} \perp \lambda_{j}$.
$\sqrt{ } v_{i} \perp v_{j}$.
$\sqrt{ } U_{i} \perp U_{j}$.
(4) Is there a scalar product on \mathbb{R}^{2} such that the shearing associated with $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is self adjoint?Yes, put $\langle x, y\rangle:=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{2}$.Yes, the standard scalar product already has this property. $\sqrt{ }$ No, because A is not symmetric.

Groupwork

G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Do so just by thought, without lengthy computations.
Hint: What is the image of A ? What does A do to the elements of its image?
G 50 Let $A=\frac{1}{2}\left(\begin{array}{ccc}1 & -1 & -\sqrt{2} \\ -1 & 1 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0\end{array}\right)$. Show that A is orthogonal and determine its axis of rotation in \mathbb{R}^{3}, as well as the angle ω of rotation around this axis. What is the normal form of A ?
G 51 Let ϕ be an endomorphism of a vector space V with scalar product. Show:
(i) A linear subspace U of V is ϕ-invariant if and only if U^{\perp} is ϕ^{*}-invariant.
(ii) $\operatorname{ker} \phi=\left(\operatorname{im} \phi^{*}\right)^{\perp}$ and $\operatorname{im} \phi=\left(\operatorname{ker} \phi^{*}\right)^{\perp}$.
(iii) If ϕ is orthogonal (or unitary) and U is ϕ-invariant, then U^{\perp} is also ϕ-invariant.

G 52 Let ϕ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and $\lambda \in K$. Show:
(i) $\quad(\phi+\psi)^{*}=\phi^{*}+\psi^{*}$,
(ii) $(\phi \psi)^{*}=\psi^{*} \phi^{*}$,
(iii) $(\lambda \cdot \phi)^{*}=\bar{\lambda} \phi^{*}$,
(iv) $\left(\phi^{*}\right)^{*}=\phi$,
(v) $\quad \mathrm{id}^{*}=\mathrm{id}, 0^{*}=0$
(vi) $\left(\phi^{-1}\right)^{*}=\left(\phi^{*}\right)^{-1}$, if ϕ is invertible.

G 53 (i) Show that for every invertible complex $n \times n$ matrix A there are a uniquely determined positively definite hermitean matrix H and a unitary matrix S with $A=H S$. More precisely, $H=\sqrt{\left(A A^{*}\right)}$ (see ex. H 36) and $S=H^{-1} A$. If A is real then so are H and S. The above decomposition of A into H and S is called polar decomposition.
(ii) Determine the polar decomposition of the matrix $\left(\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2}\end{array}\right)$

Homework

H 40 Compute the pseudoinverse of $A=\left(\begin{array}{cc}1 & i \\ 0 & 0 \\ -1 & -i\end{array}\right)$ and use it to determine the best approximate solution of $A x=b$ with Corr.: $b=(1,1,1)^{t}$.
H41 Show that the following properties of an endomorphism $\phi: V \rightarrow V$ of a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ are equivalent:
(i) $\phi^{*}=\phi^{-1}$,
(ii) $\langle\phi(u) \mid \phi(v)\rangle=\langle u \mid v\rangle$ for all $u, v \in V$,
(iii) $\|\phi(u)\|=\|u\|$ for all $u \in V$.
(iv) $\|\phi(u)-\phi(v)\|=\|u-v\|$ for all $u, v \in V$.

Remark: If V is euclidean, a ϕ with the above properties is called orthogonal. If V is unitary, then such a ϕ is called unitary.
H42 Let V be a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and ϕ an endomorphism of V. Show that each of the following conditions imply that $\phi=0$:
(i) $\langle\phi(u) \mid v\rangle=0$ for all $u, v \in V$.
(ii) V is unitary and $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$.
(iii) ϕ is selfadjoint and $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$.

Give an example of an endomorphism $\phi \neq 0$ on an euclidean space V with $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$. Hint: In some cases it may be helpful to polarize the quadratic form $\langle\phi(u) \mid u\rangle$ (i.e. what is $\langle\phi(u) \mid v\rangle$?). In (ii), what happens if you substitute u with $i u$?
H43 Let V be a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and let $\alpha=\left\{e_{1}, \ldots, e_{n}\right\}$ be any basis of V. Let further A denote the Gram-matrix of $\langle\cdot \mid \cdot\rangle$ w.r.t. α and let $\phi: V \rightarrow V$ be an endomorphism. Show that ϕ is selfadjoint if and only if Corr.: $A \cdot \phi^{\alpha}$ is a hermitean matrix.
H44 Let V be a finite dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and basis α.
(i) Suppose that ϕ is an endomorphism associated to a hermitean form Φ on V. Show that ϕ^{α} is a hermitean matrix, if α is an on-basis.
(ii) For $V=\mathbb{R}^{2}$ with the standard scalar product and $\alpha=\left\{(1,2)^{t},(0,-1)^{t}\right\}$ consider the endomor$\operatorname{phism} \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with matrix $\phi^{\alpha}=\left(\begin{array}{cc}0 & -1 \\ -9 & 2\end{array}\right)$. Show that ϕ is selfadjoint, i.e. $\phi=\phi^{*}$, and determine the symmetric bilinear form Φ associated with ϕ.

Linear Algebra II (MCS), SS 2006, Exercise 11, Solution

Mini-Quiz

(1) The adjoint ϕ^{*} of an endomorphism ϕ of an euclidean vector space V is defined by...?

```
\(\square\left\langle\phi^{*}(v) \mid \phi^{*}(w)\right\rangle=\langle v \mid \phi(w)\rangle\)
\(\sqrt{ }\langle v \mid \phi(w)\rangle=\left\langle\phi(v)^{*} \mid w\right\rangle\)
\(\square\langle\phi(v) \mid w\rangle=\langle w \mid \phi(v)\rangle\)
```

for all $v, w \in V$.
(2) An endomorphism ϕ of an euclidean vector space V is called self-adjoint, if...?
$\square\langle\phi(v) \mid \phi(w)\rangle=\langle v \mid w\rangle$
$\sqrt{ }\langle v \mid \phi(w)\rangle=\langle\phi(v) \mid w\rangle$
$\square\langle\phi(v) \mid w\rangle=\langle w \mid \phi(v)\rangle$
for all $v, w \in V$.
(3) If $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct eigenvalues of a selfadjoint endomorphism, v_{i}, resp. U_{i}, is an eigenvector, resp. the eigenspace, for $\lambda_{i}, i=1, \ldots, r$, then for $i \neq j$:

```
\lambdai}\perp\mp@subsup{\lambda}{j}{}
\sqrt{}{vi}\perp\mp@subsup{v}{j}{}.
\sqrt{}{*}\mp@subsup{U}{i}{}\perp\mp@subsup{U}{j}{}.
```

(4) Is there a scalar product on \mathbb{R}^{2} such that the shearing associated with $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is self adjoint?Yes, put $\langle x, y\rangle:=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{2}$.
\square Yes, the standard scalar product already has this property. $\sqrt{ }$ No, because A is not symmetric.

Groupwork

G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Do so just by thought, without lengthy computations.
Hint: What is the image of A ? What does A do to the elements of its image?
We see at a glance that A has rank equal to one. The image is the span of the vector $v=(1,1,1,1,1)^{t}$. Accordingly, the kernel is 4-dimensional. If we apply A to its image, then $A v=(5,5,5,5,5)^{t}=$ $5 \cdot(1,1,1,1,1)^{t}$ wherefore v is an eigenvector to the eigenvalue 5 . We conclude that the normal form of A is $\left(\begin{array}{ccccc}5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
G 50 Let $A=\frac{1}{2}\left(\begin{array}{ccc}1 & -1 & -\sqrt{2} \\ -1 & 1 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0\end{array}\right)$. Show that A is orthogonal and determine its axis of rotation in \mathbb{R}^{3}, as well as the angle ω of rotation around this axis. What is the normal form of A ?
It is an easy calculation that $A A^{t}=A^{t} A=I$. Hence, A is orthogonal. Since $A \neq A^{t}$, the axis of rotation can be calculated as the kernel of $A-A^{t}=\left(\begin{array}{ccc}0 & 0 & -\sqrt{2} \\ 0 & 0 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0\end{array}\right)$. This yields $v_{1}=\frac{1}{\sqrt{2}}(1,-1,0)^{t}$, which is obviously an eigenvector to the eigenvalues 1. The angle of rotation is determined by $\cos \omega=$ $\frac{1}{2}(\operatorname{tr} A-\operatorname{det} A)=\frac{1}{2}(1-1)=0$. Hence, $\omega=\frac{\pi}{2}$. The normal form is given by $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$.
G 51 Let ϕ be an endomorphism of a vector space V with scalar product. Show:
(i) A linear subspace U of V is ϕ-invariant if and only if U^{\perp} is ϕ^{*}-invariant.
(ii) $\operatorname{ker} \phi=\left(\operatorname{im} \phi^{*}\right)^{\perp}$ and $\operatorname{im} \phi=\left(\operatorname{ker} \phi^{*}\right)^{\perp}$.
(iii) If ϕ is orthogonal (or unitary) and U is ϕ-invariant, then U^{\perp} is also ϕ-invariant.

To (i): Suppose that U is ϕ-invariant and let $v \in U^{\perp}$ be arbitrary. Then for all $u \in U$ we have

$$
\left\langle\phi^{*}(v) \mid u\right\rangle=\langle v \mid \phi(u)\rangle=0
$$

Therefore U^{\perp} is ϕ^{*}-invariant. For the other implication we interchange the rôles of ϕ and ϕ^{*} and U and U^{\perp} and use that $\left(\phi^{*}\right)^{*}=\phi$ and $\left(U^{\perp}\right)^{\perp}=U$.
To (ii): Let $v \in \operatorname{ker} \phi$ be arbitrary. Then for all $\phi^{*}(w) \in \operatorname{im} \phi^{*}$ we have $\left\langle v \mid \phi^{*}(w)\right\rangle=\langle\phi(v) \mid w\rangle=0$. Hence, $\operatorname{ker} \phi \subset\left(\operatorname{im} \phi^{*}\right)^{\perp}$. Conversely, if $v \in\left(\operatorname{im} \phi^{*}\right)^{\perp}$, then for all $w \in V$ we have $0=\left\langle v \mid \phi^{*}(w)\right\rangle=$ $\langle\phi(v) \mid w\rangle$. So we also have $\operatorname{ker} \phi \supset\left(\operatorname{im} \phi^{*}\right)^{\perp}$ and thus in fact equality. Again, interchanging the roles of ϕ and ϕ^{*} and using $\left(U^{\perp}\right)^{\perp}=U$ we obtain the second equality.
To (iii): By (i) we have that U^{\perp} is ϕ^{*}-invariant. Since in particular, $\phi^{*}=\phi^{-1}$ is bijective, we have $\phi^{*}\left(U^{\perp}\right)=U^{\perp}$. If we apply ϕ on both sides of this equation, we end up, using $\phi \circ \phi^{*}=\mathrm{id}$, with $U^{\perp}=\phi\left(U^{\perp}\right)$ which shows that U^{\perp} is ϕ-invariant.
G52 Let ϕ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and $\lambda \in K$. Show:

$$
\begin{array}{llll}
(i) & (\phi+\psi)^{*}=\phi^{*}+\psi^{*}, & (i i) & (\phi \psi)^{*}=\psi^{*} \phi^{*} \\
(i i i) & (\lambda \cdot \phi)^{*}=\bar{\lambda} \phi^{*}, & (i v) & \left(\phi^{*}\right)^{*}=\phi, \\
(v) & \mathrm{id}^{*}=\mathrm{id}, 0^{*}=0 & (v i) & \left(\phi^{-1}\right)^{*}=\left(\phi^{*}\right)^{-1}, \text { if } \phi \text { is invertible. }
\end{array}
$$

To (i): $\left\langle(\phi+\psi)^{*}(v) \mid w\right\rangle=\langle v \mid(\phi+\psi)(w)\rangle=\langle v \mid \phi(w)\rangle+\langle v \mid \psi(w)\rangle=\left\langle\phi^{*}(v) \mid w\right\rangle+\left\langle\psi^{*}(v) \mid w\right\rangle=\left\langle\left(\phi^{*}+\right.\right.$ $\left.\psi^{*}\right)(v)|w\rangle$.
To (ii): $\left\langle(\phi \circ \psi)^{*}(v) \mid w\right\rangle=\langle v \mid(\phi \circ \psi)(w)\rangle=\langle v \mid \phi(\psi(w))\rangle=\left\langle\phi^{*}(v) \mid \psi(w)\right\rangle=\left\langle\left(\psi^{*} \circ \phi^{*}\right)(v) \mid w\right\rangle$.
To (iii): $\left\langle(\lambda \phi)^{*}(v) \mid w\right\rangle=\langle v \mid(\lambda \phi)(w)\rangle=\lambda\langle v \mid \phi(w)\rangle=\lambda\left\langle\phi^{*}(v) \mid w\right\rangle=\left\langle\bar{\lambda} \phi^{*}(v) \mid w\right\rangle$.
To (iv): $\left\langle\left(\phi^{*}\right)^{*}(v) \mid w\right\rangle=\left\langle v \mid \phi^{*}(w)\right\rangle=\langle\phi(v) \mid w\rangle$.
To (v): $\left\langle\left(\operatorname{id}^{*}\right)(v) \mid w\right\rangle=\langle v \mid \operatorname{id}(w)\rangle=\langle\operatorname{id}(v) \mid w\rangle$ and $0^{*}=0$ by (iii) with $\lambda=0$.
To (vi): Since $\phi \circ \phi^{-1}=\mathrm{id}$ we can apply (ii) and (v) to obtain $\left(\phi^{-1}\right)^{*} \circ \phi^{*}=\mathrm{id}$, whence $\left(\phi^{-1}\right)^{*}=\left(\phi^{*}\right)^{-1}$.
G 53 (i) Show that for every invertible complex $n \times n$ matrix A there are a uniquely determined positively definite hermitean matrix H and a unitary matrix S with $A=H S$. More precisely, $H=\sqrt{\left(A A^{*}\right)}$ (see ex. H 36) and $S=H^{-1} A$. If A is real then so are H and S. The above decomposition of A into H and S is called polar decomposition.
(ii) Determine the polar decomposition of the matrix $\left(\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2}\end{array}\right)$

To (i): Since A is invertible, $A A^{*}$ is clearly positively definite, as it is congruent to the identity matrix. By exercise H 36 the square root $H=\sqrt{\left(A A^{*}\right)}$ is a well defined, unique and positively definite hermitean matrix. If we define $S=H^{-1} A$, then according to the rules of exercise $\mathbf{G} 52$, which clearly hold for matrices, too:

$$
S^{*} S=\left(H^{-1} A\right)^{*} H^{-1} A=A^{*}\left(H^{*}\right)^{-1} H^{-1} A=A^{*}\left(H^{2}\right)^{-1} A=A^{*}\left(A A^{*}\right)^{-1} A=I
$$

which shows that S is unitary. We furthermore have $H S=H H^{-1} A=A$, which completes the proof of existence for the decomposition. In order to prove the uniqueness of the decomposition, suppose that $A=H S$ as claimed. Then $H=A S^{*}$ and $H^{2}=H H^{*}=A S^{*} S A^{*}=A A^{*}$. Since the root of $A A^{*}$ is unique, we have $H=\sqrt{A A^{*}}$ and then $S=H^{-1} A$ is also uniquely determined.
To (ii): For $A=\left(\begin{array}{cc}\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2}\end{array}\right)$ we have $A A^{*}=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$, then $H=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $S=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$.

Homework

H 40 Compute the pseudoinverse of $A=\left(\begin{array}{cc}1 & i \\ 0 & 0 \\ -1 & -i\end{array}\right)$ and use it to determine the best approximate solution of $A x=b$ with Corr.: $b=(1,1,1)^{t}$.
In exercise $\mathbf{G 4 4}$ the singular value decomposition of A was computed as $U^{*} A V=\left(\begin{array}{cc}\Sigma & 0 \\ 0 & 0\end{array}\right)$, with $U=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right), V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ -i & -1\end{array}\right)$ and $\Sigma=(2)$. The pseudoinverse A^{+}of A is then $A^{+}=$ $V\left(\begin{array}{cc}\Sigma^{-1} & 0 \\ 0 & 0\end{array}\right) U^{*}=\frac{1}{4}\left(\begin{array}{ccc}1 & 0 & -1 \\ -i & 0 & i\end{array}\right)=\frac{1}{4} A^{*}$. Hence, the best approximate solution for $A x=b$ is $x=A^{+} b=0$.

H41 Show that the following properties of an endomorphism $\phi: V \rightarrow V$ of a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ are equivalent:
(i) $\phi^{*}=\phi^{-1}$,
(ii) $\langle\phi(u) \mid \phi(v)\rangle=\langle u \mid v\rangle$ for all $u, v \in V$,
(iii) $\|\phi(u)\|=\|u\|$ for all $u \in V$.
(iv) $\|\phi(u)-\phi(v)\|=\|u-v\|$ for all $u, v \in V$.

Remark: If V is euclidean, a ϕ with the above properties is called orthogonal. If V is unitary, then such a ϕ is called unitary.
(i) \Leftrightarrow (ii): $\langle u \mid v\rangle=\left\langle\phi^{*} \circ \phi(u) \mid v\right\rangle=\langle\phi(u) \mid \phi(v)\rangle$, for all $u, v \in V$. The other implication follows from $\langle u \mid v\rangle=$ $\langle\phi(u) \mid \phi(v)\rangle=\left\langle\phi^{*} \circ \phi(u) \mid v\right\rangle$, for all $u, v \in V$ and therefore $\phi^{*} \circ \phi(v)=v$ for all $v \in V$. This in turn implies $\phi^{*}=\phi$.
(ii) \Rightarrow (iii): In (ii), just take $v=u$ and take the square root from $\|\phi(u)\|^{2}=\langle\phi(u) \mid \phi(u)\rangle=\langle u \mid u\rangle=\|u\|^{2}$.
(iii) \Leftrightarrow (iv): (iv) follows from (iii) by substituting u with $u-v$ and conversely, if we put $v=0$, we obtain (iii) from (iv).
(iii) \Rightarrow (ii): The key is polarization: Since $\|\phi(u)\|=\|u\|$ for all $u \in V$, we also have $\|\phi(u+v)\|^{2}=\|u+v\|^{2}$ for all $u, v \in V$. By expansion of the expressions on both sides we obtain:

$$
\|\phi(u)\|^{2}+\|\phi(v)\|^{2}+2 \Re\langle\phi(u) \mid \phi(v)\rangle=\|u\|^{2}+\|v\|^{2}+2 \Re\langle u \mid v\rangle .
$$

This yields $\Re\langle\phi(u) \mid \phi(v)\rangle=\Re\langle u \mid v\rangle$, which concludes the proof of the euclidean case. In the unitary case, we have $\Im\langle u \mid v\rangle=\Re\langle i u \mid v\rangle$. This in combination with the former result yields $\Im\langle\phi(u) \mid \phi(v)\rangle=\Re\langle\phi(i u) \mid \phi(v)\rangle=\Re\langle i u \mid v\rangle=\Im\langle u \mid v\rangle$. Thus in total we have: $\langle\phi(u) \mid \phi(v)\rangle=\langle u \mid v\rangle$ for all $u, v \in V$.
H 42 Let V be a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and ϕ an endomorphism of V. Show that each of the following conditions imply that $\phi=0$:
(i) $\langle\phi(u) \mid v\rangle=0$ for all $u, v \in V$.
(ii) V is unitary and $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$.
(iii) ϕ is selfadjoint and $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$.

Give an example of an endomorphism $\phi \neq 0$ on an euclidean space V with $\langle\phi(u) \mid u\rangle=0$ for all $u \in V$.
Hint: In some cases it may be helpful to polarize the quadratic form $\langle\phi(u) \mid u\rangle$ (i.e. what is $\langle\phi(u) \mid v\rangle$?).
In (ii), what happens if you substitute u with $i u$?
To (i): This is clear, since a scalar product is non-degenerate. I.e. the only vector orthogonal to every other vector is the zero vector.
To (ii): We polarize $q(u):=\langle\phi(u) \mid u\rangle$. I.e. $0=q(u+v)=\langle\phi(u+v) \mid u+v\rangle=\langle\phi(u)+\phi(v) \mid u+v\rangle=$ $\langle\phi(u) \mid u\rangle+\langle\phi(u) \mid v\rangle+\langle\phi(v) \mid u\rangle+\langle\phi(v) \mid v\rangle=q(u)+q(v)+\langle\phi(v) \mid u\rangle+\langle\phi(u) \mid v\rangle=\langle\phi(v) \mid u\rangle+\langle\phi(u) \mid v\rangle$. If we replace u by $i u$, we obtain $0=\langle\phi(v) \mid i u\rangle+\langle\phi(i u) \mid v\rangle=i\langle\phi(v) \mid u\rangle-i\langle\phi(u) \mid v\rangle$ and therefore $\langle\phi(v) \mid u\rangle-\langle\phi(u) \mid v\rangle=0$. Adding this to the first equation yields $\langle\phi(v) \mid u\rangle=0$ for all $u, v \in V$. By (i), this implies $\phi=0$.

To (iii): As in (ii), we polarize and obtain $0=\langle\phi(v) \mid u\rangle+\langle\phi(u) \mid v\rangle=\langle\phi(v) \mid u\rangle+\left\langle u \mid \phi^{*}(v)\right\rangle=\langle\phi(v) \mid u\rangle+$ $\overline{\langle\phi(v) \mid u\rangle}=2 \Re\langle\phi(v) \mid u\rangle$ for all $u, v \in V$. As in exercise $\mathbf{H} 41$ we show that this implies $\langle\phi(v) \mid u\rangle=0$ for all $u, v \in V$. By (i) again, we then conclude that $\phi=0$.
H 43 Let V be a vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and let $\alpha=\left\{e_{1}, \ldots, e_{n}\right\}$ be any basis of V. Let further A denote the Gram-matrix of $\langle\cdot \mid \cdot\rangle$ w.r.t. α and let $\phi: V \rightarrow V$ be an endomorphism. Show that ϕ is selfadjoint if and only if Corr.: $A \cdot \phi^{\alpha}$ is a hermitean matrix.
Let $A=\left(a_{i j}\right):=\left(\left\langle e_{i} \mid e_{j}\right\rangle\right)$ and $\left(f_{i j}\right):=\phi^{\alpha}$. We have to show that $\langle\phi(u) \mid v\rangle=\langle u \mid \phi(v)\rangle \Leftrightarrow\left(A \cdot \phi^{\alpha}\right)^{*}=$ $A \cdot \phi^{\alpha}$. The left hand side is clearly equivalent to

$$
\begin{equation*}
\left\langle\phi\left(e_{i}\right) \mid e_{j}\right\rangle=\left\langle e_{i} \mid \phi\left(e_{j}\right)\right\rangle \tag{*}
\end{equation*}
$$

for all $i, j=1, \ldots n$. Now $\phi\left(e_{i}\right)=\sum_{k=1}^{n} f_{k i} e_{k}$ and thus

$$
\begin{aligned}
(*) & \Leftrightarrow \sum_{k=0}^{n} \bar{f}_{k i}\left\langle e_{k} \mid e_{j}\right\rangle=\sum_{k=0}^{n} f_{k j}\left\langle e_{i} \mid e_{k}\right\rangle \Leftrightarrow \sum_{k=0}^{n} \bar{f}_{k i} a_{k j}=\sum_{k=0}^{n} f_{k j} a_{i k} \\
& \Leftrightarrow\left(\phi^{\alpha}\right)^{*} \cdot A=A \cdot \phi^{\alpha} \Leftrightarrow\left(A^{*} \cdot \phi^{\alpha}\right)^{*}=A \cdot \phi^{\alpha} \\
& \Leftrightarrow\left(A \cdot \phi^{\alpha}\right)^{*}=A \cdot \phi^{\alpha}
\end{aligned}
$$

H 44 Let V be a finite dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and basis α.
(i) Suppose that ϕ is an endomorphism associated to a hermitean form Φ on V. Show that ϕ^{α} is a hermitean matrix, if α is an on-basis.
(ii) For $V=\mathbb{R}^{2}$ with the standard scalar product and $\alpha=\left\{(1,2)^{t},(0,-1)^{t}\right\}$ consider the endomor$\operatorname{phism} \phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with matrix $\phi^{\alpha}=\left(\begin{array}{cc}0 & -1 \\ -9 & 2\end{array}\right)$. Show that ϕ is selfadjoint, i.e. $\phi=\phi^{*}$, and determine the symmetric bilinear form Φ associated with ϕ.
To (i): We have by definition: $\Phi(u, v)=\langle u \mid \phi(v)\rangle$ for all $u, v \in V$. Let $\alpha=\left\{e_{1}, \ldots, e_{n}\right\}$ be an onbasis. Let then $A:=\left(a_{i j}\right)=\left(\Phi\left(e_{i}, e_{j}\right)\right)$ be the Gram-matrix of Φ and $\left(f_{i j}\right):=\phi^{\alpha}$. Then $a_{i j}=\Phi\left(e_{i}, e_{j}\right)=\left\langle e_{i} \mid \phi\left(e_{j}\right)\right\rangle=\sum_{k=1}^{n} f_{j k}\left\langle e_{i} \mid e_{k}\right\rangle=f_{j i}$. Since $a_{i j}=\overline{a j i}$, the same holds for $f_{i j}$. Thus ϕ^{α} is hermitean.
To (ii): Let β be the standard basis. Then the transition matrix from α to β is given by $T=\left(\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right)$, which is coincidentally equal to its inverse T^{-1}. Now $T \phi^{\alpha} T=\phi^{\beta}=\left(\begin{array}{cc}-2 & 1 \\ 1 & 4\end{array}\right)$, which is a symmetric matrix. Thus ϕ is a selfadjoint endomorphism and the associated symmetric bilinear form is given by $\Phi(u, v)=\langle u \mid \phi(v)\rangle=-2 u_{1} v_{1}+u_{1} v_{2}+u_{2} v_{1}+4 u_{2} v_{2}$.

