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Linear Algebra II (MCS), SS 2006, Exercise 11
Mini-Quiz
(1) The adjoint ¢* of an endomorphism ¢ of an euclidean vector space V' is defined by...7
O (¢*(v)[¢"(w)) = (v]p(w))
vV (v]g(w)) = (o(v)*|w)
O (¢(v)|w) = (wld(v))
for all v,w € V.
(2) An endomorphism ¢ of an euclidean vector space V is called self-adjoint, if...7
O (¢(v)|p(w)) = (v|w)
vV (v]g(w)) = (p(v)|w)
O (¢(v)|w) = (wld(v))

for all v,w € V.

(3) If A1, ..., A\, are the distinct eigenvalues of a selfadjoint endomorphism, v;, resp. U, is an eigenvector,
resp. the eigenspace, for \;,¢ =1,...,r, then for ¢ # j:
O AL
\/ UiJ_Uj.
Vv Ui LU;.

(4) Is there a scalar product on R? such that the shearing associated with A = ((1) 1) is self adjoint?

O Yes, put (z,y) = z1y1 + 21y2 + 2292
[0 Yes, the standard scalar product already has this property.
v/ No, because A is not symmetric.

Groupwork

G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

11111
11111
A=([1 1 1 1 1
11111
11111

Do so just by thought, without lengthy computations.
Hint: What is the image of A? What does A do to the elements of its image?
1 -1 -2
G50 Let A= % —1 1 —+/2]. Show that A is orthogonal and determine its axis of rotation in R3, as
V2 V20

well as the angle w of rotation around this axis. What is the normal form of A?

G 51 Let ¢ be an endomorphism of a vector space V' with scalar product. Show:
(i) A linear subspace U of V is ¢-invariant if and only if U~ is ¢*-invariant.

(ii) ker ¢ = (im ¢*)* and im ¢ = (ker ¢*)*.

(iii) If ¢ is orthogonal (or unitary) and U is ¢-invariant, then U is also ¢-invariant.
G 52 Let ¢ and 9 be endomorphisms of a finite dimensional vector space V' with scalar product and \ € K.

Show:

(1)  (e+y)" =o¢"+o¢% (i) (o9)" =79,

(iii) (X- )" = A", (iv) (¢7)" = ¢,

(v) id*=id, 0*=0 (vi) (¢~ 1)* = (¢*)7 1, if ¢ is invertible.

G 53 (i) Show that for every invertible complex n x n matrix A there are a uniquely determined positively
definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, H = \/(AA*)
(see ex. H 36) and S = H'A. If A is real then so are H and S. The above decomposition of
A into H and S is called polar decomposition.
V2 \/§>

(ii) Determine the polar decomposition of the matrix <_ NG



Homework

H 40

H41

H42

H 43

1

Compute the pseudoinverse of A= | 0 0 | and use it to determine the best approximate solution
-1 —i

of Az = b with Corr.: b= (1,1,1)".

Show that the following properties of an endomorphism ¢ : V. — V of a vector space with scalar

product (- | -) are equivalent:

(i) =91,

(i) (p(u)|o(v)) = (u|v) for all u,v € V,

(iii) [|@(w)] = ||u|| for all u € V.

(iv) llg(u) — ¢(v)[ = llu —v| for all u,v € V.

Remark: If V is euclidean, a ¢ with the above properties is called orthogonal. If V' is unitary, then

such a ¢ is called unitary.

Let V be a vector space with scalar product (- | -) and ¢ an endomorphism of V. Show that each of
the following conditions imply that ¢ = 0:

(i) (¢(u)|v) =0 for all u,v € V.

(ii) V is unitary and (¢(u)|u) =0 for all uw € V.
(iii) ¢ is selfadjoint and (¢(u)|u) =0 for all u € V.
Give an example of an endomorphism ¢ # 0 on an euclidean space V' with (¢(u)|u) = 0 for all u € V.
Hint: In some cases it may be helpful to polarize the quadratic form (¢(u)|u) (i.e. what is (¢(u)|v)?).
In (ii), what happens if you substitute u with iu?
Let V be a vector space with scalar product (- | -) and let « = {ej,...,e,} be any basis of V. Let
further A denote the Gram-matrix of (- | -) w.r.t. « and let ¢ : V'— V be an endomorphism. Show
that ¢ is selfadjoint if and only if Corr.: A - ¢® is a hermitean matrix.

H 44 Let V be a finite dimensional vector space with scalar product (- | -) and basis a.

(i) Suppose that ¢ is an endomorphism associated to a hermitean form ® on V. Show that ¢“ is a
hermitean matrix, if « is an on-basis.
(ii) For V = R? with the standard scalar product and o = {(1,2)%, (0, —1)*} consider the endomor-

phism ¢ : R? — R? with matrix ¢® = <_09 _21> Show that ¢ is selfadjoint, i.e. ¢ = ¢*, and

determine the symmetric bilinear form ® associated with ¢.



Linear Algebra IT (MCS), SS 2006, Exercise 11, Solution
Mini-Quiz
(1) The adjoint ¢* of an endomorphism ¢ of an euclidean vector space V' is defined by...7
O (¢*(v)|¢"(w)) = (v|p(w))
V (vlp(w)) = (¢(v)"|w)
O (¢(v)lw) = (w|p(v))
for all v,w € V.
(2) An endomorphism ¢ of an euclidean vector space V' is called self-adjoint, if...?
O (¢(v)|p(w)) = (v|w)
V (v]p(w)) = (o(v)|w)
O (¢(v)lw) = (w|p(v))

for all v,w € V.

(3) If A1, ..., A\, are the distinct eigenvalues of a selfadjoint endomorphism, v;, resp. U, is an eigenvector,
resp. the eigenspace, for A\;,i =1,...,r, then for i # j:
O AL
\/ UZ‘J_’UJ'.
Vv Ui LU;.
(4) Is there a scalar product on R? such that the shearing associated with A = <(1) 1) is self adjoint?

O Yes, put (z,y) 1= z1y1 + 21y2 + T2y2.
[0 Yes, the standard scalar product already has this property.
v/ No, because A is not symmetric.

Groupwork

G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

11111
11111
A=(1 1 1 1 1
11111
11111

Do so just by thought, without lengthy computations.
Hint: What is the image of A7 What does A do to the elements of its image?

We see at a glance that A has rank equal to one. The image is the span of the vector v = (1,1,1,1,1)".
Accordingly, the kernel is 4-dimensional. If we apply A to its image, then Av = (5,5,5,5,5) =
5-(1,1,1,1,1)" wherefore v is an eigenvector to the eigenvalue 5. We conclude that the normal form

5 0 0 00
00000
ofAis |0 0 0 0 O
00000
00000

1 -1 =2
G50 Let A= % —1 1 —+/2]. Show that A is orthogonal and determine its axis of rotation in R?, as

V2 V2 0

well as the angle w of rotation around this axis. What is the normal form of A?
It is an easy calculation that AA* = A*A = I. Hence, A is orthogonal. Since A # A!, the axis of

0 0 —V2
rotation can be calculated as the kernel of A—A' = | 0 0 —+/2|. Thisyieldsv, = i(l, —1,0)t,

N v

which is obviously an eigenvector to the eigenvalues 1. The angle of rotation is determined by cosw =

1 0 O
$(trA —det A) = 1(1—1) = 0. Hence, w = 5. The normal form is given by |0 0 -1
01 0

G 51 Let ¢ be an endomorphism of a vector space V' with scalar product. Show:
(i) A linear subspace U of V is ¢-invariant if and only if U~ is ¢*-invariant.
(ii) ker ¢ = (im ¢*)* and im ¢ = (ker ¢*)*.
(iii) If ¢ is orthogonal (or unitary) and U is ¢-invariant, then U~ is also ¢-invariant.
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To (i): Suppose that U is ¢-invariant and let v € UL be arbitrary. Then for all uw € U we have

(¢*(v)|u) = (v|p(w)) =
Therefore U+ is ¢*-invariant. For the other implication we interchange the réles of ¢ and ¢* and
U and U+ and use that (¢*)* = ¢ and (UH)* =U.

To (ii): Let v € ker ¢ be arbitrary. Then for all ¢*(w) € im ¢* we have (v|¢p*(w)) = (¢(v)|w) = 0. Hence,
ker¢ C (im¢*)*t. Conversely, if v € (im¢*)*, then for all w € V we have 0 = (v|¢*(w)) =
(p(v)|w). So we also have ker ¢ O (im ¢*)* and thus in fact equality. Again, interchanging the
roles of ¢ and ¢* and using (U+)+ = U we obtain the second equality.

To (iii): By (i) we have that U' is ¢*-invariant. Since in particular, ¢* = ¢! is bijective, we have
¢*(U+) = UL. If we apply ¢ on both sides of this equation, we end up, using ¢ o ¢* = id, with
U+ = ¢(U') which shows that U+ is ¢-invariant.

G 52 Let ¢ and ¢ be endomorphisms of a finite dimensional vector space V with scalar product and A € K.
Show:
(1))  (e+v) =9 +¢7, (i1) (P9) 7,/) o,
i

(i11) (X~ ¢)* = Ag*, (1) (#%)" =
(v) id*=id, 0" =0 (vi) (¢~ 1)* = ( *)~1 if ¢ is invertible.

To (i): (¢ +)%’b);‘(v)\w> = (¢ + ) (w)) = (vlp(w)) + (v|d(w)) = (¢"(v)|lw) + (" (V)|w) = ((¢" +
o) (v
)

To (ii): < [w) = (v|(¢ oY) (w)) = (Wp(Y(w))) = (¢ (v)[h(w)) = (($* 0 ¢*)(v)[w).

To (iii): ((Ad)*(v)[w) = (v[(Ad)(w)) = A{v|p(w)) = Me™ (v)[w) = (Ag™(v)|w).

To (iv): ((¢*)*(v)w) = (v[¢*(w)) = (¢(v)|w).

To (v): ((1d*)( Jw) = (v]id(w)) = (id(v)|w) and 0* = 0 by (iii) with A = 0.

To (vi): Since ¢o ¢~ = id we can apply (ii) and (v) to obtain (¢~1)* o ¢* = id, whence (¢~ 1)* = (¢*)!

G 53 (i) Show that for every invertible complex n x n matrix A there are a uniquely determined positively
definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, H = \/(AA*)
(see ex. H 36) and S = H'A. If A is real then so are H and S. The above decomposition of
A into H and S is called polar decomposition.
V3 V2

(ii) Determine the polar decomposition of the matrix (_ ) \/§>

To (i): Since A is invertible, AA* is clearly positively definite, as it is congruent to the identity matrix.
By exercise H 36 the square root H = \/(AA*) is a well defined, unique and positively definite
hermitean matrix. If we define S = H~'A, then according to the rules of exercise G 52, which
clearly hold for matrices, too:

S*S=(H 'A*H 'A=A*"(H*) 'H A= A*(H*)'A= A*(AA") 1A =1,
which shows that S is unitary. We furthermore have HS = HH'A = A, which completes the
proof of existence for the decomposition. In order to prove the uniqueness of the decomposition,
suppose that A = HS as claimed. Then H = AS* and H> = HH* = AS*SA* = AA*. Since the
root of AA* is unique, we have H = v/ AA* and then S = H~'A is also uniquely determined.
(V2 V2 . (40 (20 S 1NV2 12
To (ii): For A = (—\/i V2 we have AA* = 0 4 , then H = 0 92 and S = YNNG
Homework
1
H 40 Compute the pseudoinverse of A= | 0 0 | and use it to determine the best approximate solution
-1 —i
of Ax = b with Corr.: b= (1,1,1)".

In exercise G44 the singular value decomposition of A was computed as U*AV = (E O), with

0 0
19 L
V2 V2 1 4
U= 0 1 0|,V= \}§< 1> and ¥ = (2). The pseudoinverse AT of A is then AT =
1 1 -t =
AR
v(Z7 Yo 110 ) Lk Hence, the best imate solution for Az = b i
00 =31(_; o ;) = 14" Hence, the best approximate solution for Ay = b is
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H 41 Show that the following properties of an endomorphism ¢ : V' — V of a vector space with scalar
product (- | > are equivalent:
(i) o =o¢71,
(ii) (P(u)|o( )) = (ulv) for all u,v € V,
(iii) |l¢(u)|| = |Ju|| for all w € V.
(iv) |lo(u) — @(v)|| = ||u — v|| for all u,v € V.
Remark: If V' is euclidean, a ¢ with the above properties is called orthogonal. If V is unitary, then
such a ¢ is called unitary.

(i) & (ii): (ulv) = (9" o Pp(u)|v) = (d(u)|p(v)), for all u,v € V. The other implication follows from (u|v) =
(p(u)|p(v)) = (¢* o ¢p(u)|v), for all u,v € V and therefore ¢* o p(v) = v for all v € V. This in
turn implies ¢* = ¢.

(ii) = (iii): In (ii), just take v = u and take the square root from ||¢(u)||> = (o(u)|d(u)) = (ulu) = ||ul|?.

(iii) < (iv): (iv) follows from (iii) by substituting u with v — v and conversely, if we put v = 0, we obtain (iii)
from (iv).

(iii) = (ii): The key is polarization: Since ||¢(u)|| = ||u|| for all u € V, we also have ||¢(u + v)||? = ||u + v]|?
for all u,v € V. By expansion of the expressions on both sides we obtain:

le()lI* + lo(0) 1> + 2R(p(w)|p(v)) = [[ull® + [[o]|* + 2R (ulv).
This yields R(¢(u)|p(v)) = R(u|v), which concludes the proof of the euclidean case. In the
unitary case, we have (ulv) = R(iu|v). This in combination with the former result yields
Sp(u)|p(v)) = R{o(iu)|d(v)) = Riu|v) = I(u|v). Thus in total we have: (p(u)|p(v)) = (u|v)
for all u,v € V.

H 42 Let V be a vector space with scalar product (- | -) and ¢ an endomorphism of V. Show that each of

the following conditions imply that ¢ = 0:
(i) (¢(u)|v) =0 for all u,v € V.

(ii) V is unitary and (¢(u)|u) =0 for all u € V.
(iii) ¢ is selfadjoint and (¢p(u)|u) = 0 for all u € V.
Give an example of an endomorphism ¢ # 0 on an euclidean space V' with (¢(u)|u) =0 for all u € V.
Hint: In some cases it may be helpful to polarize the quadratic form (¢(u)|u) (i.e. what is (¢(u)|v)?).
In (ii), what happens if you substitute v with iu?

To (i): This is clear, since a scalar product is non-degenerate. lLe. the only vector orthogonal to every
other vector is the zero vector.

To (ii): We polarize q(u) := (¢(u)|u). Le. 0 = q(u +v) = (p(u + v)|u + v) = (p(u) + ¢(v)|u + v) =
() ) + (S0} + D(0) ) + (B(0)[) = () + (v) + {B(0) [0} + (B(ew) o) = (D)) + {B(w)]o).
If we replace u by iu, we obtain 0 = (¢(v)|iu) + (p(iu)|v) = i(p(v)|u) — i(¢(u)|v) and therefore
(p(v)|u) — (p(u)|v) = 0. Adding this to the first equation yields (¢(v)|u) = 0 for all u,v € V.. By
(1), this implies ¢ = 0.

To (iii): As in (ii), we polarize and obtain 0 = (p(v)|u) + (d(u)|v) = (d(v)|u) + (ulp*(v)) = (d(v)|u) +
(p(v)|u) = 2R(¢(v)|u) for all u,v € V. As in exercise H41 we show that this implies (¢(v)|u) =0
for all u,v € V. By (i) again, we then conclude that ¢ = 0.

H 43 Let V be a vector space with scalar product (- | -) and let @ = {ei,...,e,} be any basis of V. Let
further A denote the Gram-matrix of (- | -) w.r.t. a and let ¢ : V. — V be an endomorphism. Show
that ¢ is selfadjoint if and only if Corr.: A - ¢ is a hermitean matrix.

Let A = (aij) := ((eilej)) and (fi;) := ¢*. We have to show that (¢(u)|v) = (u|p(v)) & (A-¢*)" =
A - ¢®. The left hand side is clearly equivalent to

(¢(ei)lej) = (eilo(e;)) ()
for all i,j =1,...n. Now ¢(e;) = Y p_, friex and thus

M:

(x) &

n
frilerles) ka] (eilex) < kazak] > frjain
k=0 k=0

& (0%) -A—A-qb“ & (A% 9%) —A-cb‘”‘
(A~¢a)*:A-¢a.

H 44 Let V be a finite dimensional vector space with scalar product (- | -) and basis a.

¢
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(i) Suppose that ¢ is an endomorphism associated to a hermitean form ® on V. Show that ¢“ is a
hermitean matrix, if « is an on-basis.

(ii) For V = R? with the standard scalar product and o = {(1,2)%, (0, —1)*} consider the endomor-

phism ¢ : R? — R? with matrix ¢® = <_09 _21> Show that ¢ is selfadjoint, i.e. ¢ = ¢*, and
determine the symmetric bilinear form ® associated with ¢.

To (i): We have by definition: ®(u,v) = (u|¢(v)) for all u,v € V. Let a = {e1,...,en} be an on-
basis. Let then A := (ai;) = (®(es,ej)) be the Gram-matrix of ® and (f;;) := ¢*. Then
aij = Plei,ej) = (eilo(ej)) = dp_y firleilex) = fji. Since a;j = aji, the same holds for f;;.
Thus ¢ is hermitean.

To (ii): Let 3 be the standard basis. Then the transition matrix from « to (3 is given by T = (; _01),

which is coincidentally equal to its inverse T~'. Now T¢*T = ¢° = _12 i), which is a
symmetric matrix. Thus ¢ is a selfadjoint endomorphism and the associated symmetric bilinear
form is given by ®(u,v) = (u|p(v)) = —2u1v1 + uive + ugvy + 4ugvs.



