
Department of Mathematics
Prof. Dr. Christian Herrmann
Dipl.-Math. Frederick Magata A

TECHNISCHE
UNIVERSITÄT
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Linear Algebra II (MCS), SS 2006, Exercise 11
Mini-Quiz

(1) The adjoint φ∗ of an endomorphism φ of an euclidean vector space V is defined by...?
� 〈φ∗(v)|φ∗(w)〉 = 〈v|φ(w)〉√
〈v|φ(w)〉 = 〈φ(v)∗|w〉

� 〈φ(v)|w〉 = 〈w|φ(v)〉
for all v, w ∈ V .

(2) An endomorphism φ of an euclidean vector space V is called self-adjoint, if...?
� 〈φ(v)|φ(w)〉 = 〈v|w〉√
〈v|φ(w)〉 = 〈φ(v)|w〉

� 〈φ(v)|w〉 = 〈w|φ(v)〉
for all v, w ∈ V .

(3) If λ1, . . . , λr are the distinct eigenvalues of a selfadjoint endomorphism, vi, resp. Ui, is an eigenvector,
resp. the eigenspace, for λi, i = 1, . . . , r, then for i 6= j:

� λi⊥λj .√
vi⊥vj .√
Ui⊥Uj .

(4) Is there a scalar product on R2 such that the shearing associated with A =
(

1 1
0 1

)
is self adjoint?

� Yes, put 〈x, y〉 := x1y1 + x1y2 + x2y2.
� Yes, the standard scalar product already has this property.√

No, because A is not symmetric.
Groupwork
G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

Do so just by thought, without lengthy computations.
Hint: What is the image of A? What does A do to the elements of its image?

G 50 Let A = 1
2

 1 −1 −
√

2
−1 1 −

√
2√

2
√

2 0

. Show that A is orthogonal and determine its axis of rotation in R3, as

well as the angle ω of rotation around this axis. What is the normal form of A?
G 51 Let φ be an endomorphism of a vector space V with scalar product. Show:

(i) A linear subspace U of V is φ-invariant if and only if U⊥ is φ∗-invariant.
(ii) kerφ = (imφ∗)⊥ and imφ = (kerφ∗)⊥.
(iii) If φ is orthogonal (or unitary) and U is φ-invariant, then U⊥ is also φ-invariant.

G 52 Let φ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and λ ∈ K.
Show:

(i) (φ+ ψ)∗ = φ∗ + ψ∗, (ii) (φψ)∗ = ψ∗φ∗,
(iii) (λ · φ)∗ = λ̄φ∗, (iv) (φ∗)∗ = φ,
(v) id∗ = id, 0∗ = 0 (vi) (φ−1)∗ = (φ∗)−1, if φ is invertible.

G 53 (i) Show that for every invertible complex n×n matrix A there are a uniquely determined positively
definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, H =

√
(AA∗)

(see ex. H 36) and S = H−1A. If A is real then so are H and S. The above decomposition of
A into H and S is called polar decomposition.

(ii) Determine the polar decomposition of the matrix
( √

2
√

2
−
√

2
√

2

)



Homework

H 40 Compute the pseudoinverse of A =

 1 i
0 0
−1 −i

 and use it to determine the best approximate solution

of Ax = b with Corr.: b = (1, 1, 1)t.
H 41 Show that the following properties of an endomorphism φ : V → V of a vector space with scalar

product 〈· | ·〉 are equivalent:
(i) φ∗ = φ−1,
(ii) 〈φ(u)|φ(v)〉 = 〈u|v〉 for all u, v ∈ V ,
(iii) ‖φ(u)‖ = ‖u‖ for all u ∈ V .
(iv) ‖φ(u)− φ(v)‖ = ‖u− v‖ for all u, v ∈ V .
Remark: If V is euclidean, a φ with the above properties is called orthogonal. If V is unitary, then
such a φ is called unitary.

H 42 Let V be a vector space with scalar product 〈· | ·〉 and φ an endomorphism of V . Show that each of
the following conditions imply that φ = 0:
(i) 〈φ(u)|v〉 = 0 for all u, v ∈ V .
(ii) V is unitary and 〈φ(u)|u〉 = 0 for all u ∈ V .
(iii) φ is selfadjoint and 〈φ(u)|u〉 = 0 for all u ∈ V .
Give an example of an endomorphism φ 6= 0 on an euclidean space V with 〈φ(u)|u〉 = 0 for all u ∈ V .
Hint: In some cases it may be helpful to polarize the quadratic form 〈φ(u)|u〉 (i.e. what is 〈φ(u)|v〉?).
In (ii), what happens if you substitute u with iu?

H 43 Let V be a vector space with scalar product 〈· | ·〉 and let α = {e1, . . . , en} be any basis of V . Let
further A denote the Gram-matrix of 〈· | ·〉 w.r.t. α and let φ : V → V be an endomorphism. Show
that φ is selfadjoint if and only if Corr.: A · φα is a hermitean matrix.

H 44 Let V be a finite dimensional vector space with scalar product 〈· | ·〉 and basis α.
(i) Suppose that φ is an endomorphism associated to a hermitean form Φ on V . Show that φα is a

hermitean matrix, if α is an on-basis.
(ii) For V = R2 with the standard scalar product and α = {(1, 2)t, (0,−1)t} consider the endomor-

phism φ : R2 → R2 with matrix φα =
(

0 −1
−9 2

)
. Show that φ is selfadjoint, i.e. φ = φ∗, and

determine the symmetric bilinear form Φ associated with φ.
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(1) The adjoint φ∗ of an endomorphism φ of an euclidean vector space V is defined by...?
� 〈φ∗(v)|φ∗(w)〉 = 〈v|φ(w)〉√
〈v|φ(w)〉 = 〈φ(v)∗|w〉

� 〈φ(v)|w〉 = 〈w|φ(v)〉
for all v, w ∈ V .

(2) An endomorphism φ of an euclidean vector space V is called self-adjoint, if...?
� 〈φ(v)|φ(w)〉 = 〈v|w〉√
〈v|φ(w)〉 = 〈φ(v)|w〉

� 〈φ(v)|w〉 = 〈w|φ(v)〉
for all v, w ∈ V .

(3) If λ1, . . . , λr are the distinct eigenvalues of a selfadjoint endomorphism, vi, resp. Ui, is an eigenvector,
resp. the eigenspace, for λi, i = 1, . . . , r, then for i 6= j:

� λi⊥λj .√
vi⊥vj .√
Ui⊥Uj .

(4) Is there a scalar product on R2 such that the shearing associated with A =
(

1 1
0 1

)
is self adjoint?

� Yes, put 〈x, y〉 := x1y1 + x1y2 + x2y2.
� Yes, the standard scalar product already has this property.√

No, because A is not symmetric.
Groupwork
G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 .

Do so just by thought, without lengthy computations.
Hint: What is the image of A? What does A do to the elements of its image?
We see at a glance that A has rank equal to one. The image is the span of the vector v = (1, 1, 1, 1, 1)t.
Accordingly, the kernel is 4-dimensional. If we apply A to its image, then Av = (5, 5, 5, 5, 5)t =
5 · (1, 1, 1, 1, 1)t wherefore v is an eigenvector to the eigenvalue 5. We conclude that the normal form

of A is


5 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

G 50 Let A = 1
2

 1 −1 −
√

2
−1 1 −

√
2√

2
√

2 0

. Show that A is orthogonal and determine its axis of rotation in R3, as

well as the angle ω of rotation around this axis. What is the normal form of A?
It is an easy calculation that AAt = AtA = I. Hence, A is orthogonal. Since A 6= At, the axis of

rotation can be calculated as the kernel of A−At =

 0 0 −
√

2
0 0 −

√
2√

2
√

2 0

. This yields v1 = 1√
2
(1,−1, 0)t,

which is obviously an eigenvector to the eigenvalues 1. The angle of rotation is determined by cosω =

1
2(trA− detA) = 1

2(1− 1) = 0. Hence, ω = π
2 . The normal form is given by

1 0 0
0 0 −1
0 1 0

.

G 51 Let φ be an endomorphism of a vector space V with scalar product. Show:
(i) A linear subspace U of V is φ-invariant if and only if U⊥ is φ∗-invariant.
(ii) kerφ = (imφ∗)⊥ and imφ = (kerφ∗)⊥.
(iii) If φ is orthogonal (or unitary) and U is φ-invariant, then U⊥ is also φ-invariant.
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To (i): Suppose that U is φ-invariant and let v ∈ U⊥ be arbitrary. Then for all u ∈ U we have

〈φ∗(v)|u〉 = 〈v|φ(u)〉 = 0.

Therefore U⊥ is φ∗-invariant. For the other implication we interchange the rôles of φ and φ∗ and
U and U⊥ and use that (φ∗)∗ = φ and (U⊥)⊥ = U .

To (ii): Let v ∈ kerφ be arbitrary. Then for all φ∗(w) ∈ imφ∗ we have 〈v|φ∗(w)〉 = 〈φ(v)|w〉 = 0. Hence,
kerφ ⊂ (imφ∗)⊥. Conversely, if v ∈ (imφ∗)⊥, then for all w ∈ V we have 0 = 〈v|φ∗(w)〉 =
〈φ(v)|w〉. So we also have kerφ ⊃ (imφ∗)⊥ and thus in fact equality. Again, interchanging the
roles of φ and φ∗ and using (U⊥)⊥ = U we obtain the second equality.

To (iii): By (i) we have that U⊥ is φ∗-invariant. Since in particular, φ∗ = φ−1 is bijective, we have
φ∗(U⊥) = U⊥. If we apply φ on both sides of this equation, we end up, using φ ◦ φ∗ = id, with
U⊥ = φ(U⊥) which shows that U⊥ is φ-invariant.

G 52 Let φ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and λ ∈ K.
Show:

(i) (φ+ ψ)∗ = φ∗ + ψ∗, (ii) (φψ)∗ = ψ∗φ∗,
(iii) (λ · φ)∗ = λ̄φ∗, (iv) (φ∗)∗ = φ,
(v) id∗ = id, 0∗ = 0 (vi) (φ−1)∗ = (φ∗)−1, if φ is invertible.

To (i): 〈(φ + ψ)∗(v)|w〉 = 〈v|(φ + ψ)(w)〉 = 〈v|φ(w)〉 + 〈v|ψ(w)〉 = 〈φ∗(v)|w〉 + 〈ψ∗(v)|w〉 = 〈(φ∗ +
ψ∗)(v)|w〉.

To (ii): 〈(φ ◦ ψ)∗(v)|w〉 = 〈v|(φ ◦ ψ)(w)〉 = 〈v|φ(ψ(w))〉 = 〈φ∗(v)|ψ(w)〉 = 〈(ψ∗ ◦ φ∗)(v)|w〉.
To (iii): 〈(λφ)∗(v)|w〉 = 〈v|(λφ)(w)〉 = λ〈v|φ(w)〉 = λ〈φ∗(v)|w〉 = 〈λ̄φ∗(v)|w〉.
To (iv): 〈(φ∗)∗(v)|w〉 = 〈v|φ∗(w)〉 = 〈φ(v)|w〉.
To (v): 〈(id∗)(v)|w〉 = 〈v|id(w)〉 = 〈id(v)|w〉 and 0∗ = 0 by (iii) with λ = 0.
To (vi): Since φ ◦ φ−1 = id we can apply (ii) and (v) to obtain (φ−1)∗ ◦ φ∗ = id, whence (φ−1)∗ = (φ∗)−1.

G 53 (i) Show that for every invertible complex n×n matrix A there are a uniquely determined positively
definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, H =

√
(AA∗)

(see ex. H 36) and S = H−1A. If A is real then so are H and S. The above decomposition of
A into H and S is called polar decomposition.

(ii) Determine the polar decomposition of the matrix
( √

2
√

2
−
√

2
√

2

)
To (i): Since A is invertible, AA∗ is clearly positively definite, as it is congruent to the identity matrix.

By exercise H 36 the square root H =
√

(AA∗) is a well defined, unique and positively definite
hermitean matrix. If we define S = H−1A, then according to the rules of exercise G 52, which
clearly hold for matrices, too:

S∗S = (H−1A)∗H−1A = A∗(H∗)−1H−1A = A∗(H2)−1A = A∗(AA∗)−1A = I,

which shows that S is unitary. We furthermore have HS = HH−1A = A, which completes the
proof of existence for the decomposition. In order to prove the uniqueness of the decomposition,
suppose that A = HS as claimed. Then H = AS∗ and H2 = HH∗ = AS∗SA∗ = AA∗. Since the
root of AA∗ is unique, we have H =

√
AA∗ and then S = H−1A is also uniquely determined.

To (ii): For A =
( √

2
√

2
−
√

2
√

2

)
we have AA∗ =

(
4 0
0 4

)
, then H =

(
2 0
0 2

)
and S =

(
1/
√

2 1/
√

2
−1/

√
2 1/

√
2

)
.

Homework

H 40 Compute the pseudoinverse of A =

 1 i
0 0
−1 −i

 and use it to determine the best approximate solution

of Ax = b with Corr.: b = (1, 1, 1)t.

In exercise G44 the singular value decomposition of A was computed as U∗AV =
(

Σ 0
0 0

)
, with

U =


1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 , V = 1√
2

(
1 i
−i −1

)
and Σ = (2). The pseudoinverse A+ of A is then A+ =

V

(
Σ−1 0
0 0

)
U∗ = 1

4

(
1 0 −1
−i 0 i

)
= 1

4A
∗. Hence, the best approximate solution for Ax = b is

x = A+b = 0.
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H 41 Show that the following properties of an endomorphism φ : V → V of a vector space with scalar
product 〈· | ·〉 are equivalent:
(i) φ∗ = φ−1,
(ii) 〈φ(u)|φ(v)〉 = 〈u|v〉 for all u, v ∈ V ,
(iii) ‖φ(u)‖ = ‖u‖ for all u ∈ V .
(iv) ‖φ(u)− φ(v)‖ = ‖u− v‖ for all u, v ∈ V .
Remark: If V is euclidean, a φ with the above properties is called orthogonal. If V is unitary, then
such a φ is called unitary.

(i) ⇔ (ii): 〈u|v〉 = 〈φ∗ ◦ φ(u)|v〉 = 〈φ(u)|φ(v)〉, for all u, v ∈ V . The other implication follows from 〈u|v〉 =
〈φ(u)|φ(v)〉 = 〈φ∗ ◦ φ(u)|v〉, for all u, v ∈ V and therefore φ∗ ◦ φ(v) = v for all v ∈ V . This in
turn implies φ∗ = φ.

(ii) ⇒ (iii): In (ii), just take v = u and take the square root from ‖φ(u)‖2 = 〈φ(u)|φ(u)〉 = 〈u|u〉 = ‖u‖2.
(iii) ⇔ (iv): (iv) follows from (iii) by substituting u with u− v and conversely, if we put v = 0, we obtain (iii)

from (iv).
(iii) ⇒ (ii): The key is polarization: Since ‖φ(u)‖ = ‖u‖ for all u ∈ V , we also have ‖φ(u+ v)‖2 = ‖u+ v‖2

for all u, v ∈ V . By expansion of the expressions on both sides we obtain:

‖φ(u)‖2 + ‖φ(v)‖2 + 2<〈φ(u)|φ(v)〉 = ‖u‖2 + ‖v‖2 + 2<〈u|v〉.
This yields <〈φ(u)|φ(v)〉 = <〈u|v〉, which concludes the proof of the euclidean case. In the
unitary case, we have =〈u|v〉 = <〈iu|v〉. This in combination with the former result yields
=〈φ(u)|φ(v)〉 = <〈φ(iu)|φ(v)〉 = <〈iu|v〉 = =〈u|v〉. Thus in total we have: 〈φ(u)|φ(v)〉 = 〈u|v〉
for all u, v ∈ V .

H 42 Let V be a vector space with scalar product 〈· | ·〉 and φ an endomorphism of V . Show that each of
the following conditions imply that φ = 0:
(i) 〈φ(u)|v〉 = 0 for all u, v ∈ V .
(ii) V is unitary and 〈φ(u)|u〉 = 0 for all u ∈ V .
(iii) φ is selfadjoint and 〈φ(u)|u〉 = 0 for all u ∈ V .
Give an example of an endomorphism φ 6= 0 on an euclidean space V with 〈φ(u)|u〉 = 0 for all u ∈ V .
Hint: In some cases it may be helpful to polarize the quadratic form 〈φ(u)|u〉 (i.e. what is 〈φ(u)|v〉?).
In (ii), what happens if you substitute u with iu?

To (i): This is clear, since a scalar product is non-degenerate. I.e. the only vector orthogonal to every
other vector is the zero vector.

To (ii): We polarize q(u) := 〈φ(u)|u〉. I.e. 0 = q(u + v) = 〈φ(u + v)|u + v〉 = 〈φ(u) + φ(v)|u + v〉 =
〈φ(u)|u〉+ 〈φ(u)|v〉+ 〈φ(v)|u〉+ 〈φ(v)|v〉 = q(u)+q(v)+ 〈φ(v)|u〉+ 〈φ(u)|v〉 = 〈φ(v)|u〉+ 〈φ(u)|v〉.
If we replace u by iu, we obtain 0 = 〈φ(v)|iu〉 + 〈φ(iu)|v〉 = i〈φ(v)|u〉 − i〈φ(u)|v〉 and therefore
〈φ(v)|u〉 − 〈φ(u)|v〉 = 0. Adding this to the first equation yields 〈φ(v)|u〉 = 0 for all u, v ∈ V . By
(i), this implies φ = 0.

To (iii): As in (ii), we polarize and obtain 0 = 〈φ(v)|u〉 + 〈φ(u)|v〉 = 〈φ(v)|u〉 + 〈u|φ∗(v)〉 = 〈φ(v)|u〉 +
〈φ(v)|u〉 = 2<〈φ(v)|u〉 for all u, v ∈ V . As in exercise H41 we show that this implies 〈φ(v)|u〉 = 0
for all u, v ∈ V . By (i) again, we then conclude that φ = 0.

H 43 Let V be a vector space with scalar product 〈· | ·〉 and let α = {e1, . . . , en} be any basis of V . Let
further A denote the Gram-matrix of 〈· | ·〉 w.r.t. α and let φ : V → V be an endomorphism. Show
that φ is selfadjoint if and only if Corr.: A · φα is a hermitean matrix.
Let A = (aij) := (〈ei|ej〉) and (fij) := φα. We have to show that 〈φ(u)|v〉 = 〈u|φ(v)〉 ⇔ (A · φα)∗ =
A · φα. The left hand side is clearly equivalent to

〈φ(ei)|ej〉 = 〈ei|φ(ej)〉 (*)

for all i, j = 1, . . . n. Now φ(ei) =
∑n

k=1 fkiek and thus

(∗) ⇔
n∑

k=0

f̄ki〈ek|ej〉 =
n∑

k=0

fkj〈ei|ek〉 ⇔
n∑

k=0

f̄kiakj =
n∑

k=0

fkjaik

⇔ (φα)∗ ·A = A · φα ⇔ (A∗ · φα)∗ = A · φα

⇔ (A · φα)∗ = A · φα.

H 44 Let V be a finite dimensional vector space with scalar product 〈· | ·〉 and basis α.
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(i) Suppose that φ is an endomorphism associated to a hermitean form Φ on V . Show that φα is a
hermitean matrix, if α is an on-basis.

(ii) For V = R2 with the standard scalar product and α = {(1, 2)t, (0,−1)t} consider the endomor-

phism φ : R2 → R2 with matrix φα =
(

0 −1
−9 2

)
. Show that φ is selfadjoint, i.e. φ = φ∗, and

determine the symmetric bilinear form Φ associated with φ.
To (i): We have by definition: Φ(u, v) = 〈u|φ(v)〉 for all u, v ∈ V . Let α = {e1, . . . , en} be an on-

basis. Let then A := (aij) = (Φ(ei, ej)) be the Gram-matrix of Φ and (fij) := φα. Then
aij = Φ(ei, ej) = 〈ei|φ(ej)〉 =

∑n
k=1 fjk〈ei|ek〉 = fji. Since aij = aji, the same holds for fij .

Thus φα is hermitean.

To (ii): Let β be the standard basis. Then the transition matrix from α to β is given by T =
(

1 0
2 −1

)
,

which is coincidentally equal to its inverse T−1. Now TφαT = φβ =
(
−2 1
1 4

)
, which is a

symmetric matrix. Thus φ is a selfadjoint endomorphism and the associated symmetric bilinear
form is given by Φ(u, v) = 〈u|φ(v)〉 = −2u1v1 + u1v2 + u2v1 + 4u2v2.


