

29. Juni 2006

Linear Algebra II (MCS), SS 2006, Exercise 11

Mini-Quiz

- (1) The adjoint ϕ^* of an endomorphism ϕ of an euclidean vector space V is defined by...?
 - $\Box \langle \phi^*(v) | \phi^*(w) \rangle = \langle v | \phi(w) \rangle$
 - $\sqrt{\langle v | \phi(w) \rangle} = \langle \phi(v)^* | w \rangle$
 - $\Box \ \langle \phi(v) | w \rangle = \langle w | \phi(v) \rangle$

for all $v, w \in V$.

- (2) An endomorphism ϕ of an euclidean vector space V is called self-adjoint, if...?
 - $\Box \langle \phi(v) | \phi(w) \rangle = \langle v | w \rangle$
 - $\sqrt{\langle v|\phi(w)\rangle} = \langle \phi(v)|w\rangle$
 - $\Box \langle \phi(v) | w \rangle = \langle w | \phi(v) \rangle$
 - for all $v, w \in V$.
- (3) If $\lambda_1, \ldots, \lambda_r$ are the distinct eigenvalues of a selfadjoint endomorphism, v_i , resp. U_i , is an eigenvector, resp. the eigenspace, for $\lambda_i, i = 1, \ldots, r$, then for $i \neq j$:
 - $\Box \lambda_i \perp \lambda_j.$
 - $\sqrt{v_i \perp v_j}$.
 - $\sqrt{U_i \perp U_j}$.

(4) Is there a scalar product on \mathbb{R}^2 such that the shearing associated with $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is self adjoint?

 \Box Yes, put $\langle x, y \rangle := x_1y_1 + x_1y_2 + x_2y_2.$

- $\hfill\square$ Yes, the standard scalar product already has this property.
- $\sqrt{}$ No, because A is not symmetric.

Groupwork

 ${f G}\,49$ Determine the diagonal form of the following matrix after a principal axes transformation:

	(1)	1	1	1	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	
	1	1	1	1	1	
A =	1	1	1	1	1	
	1	1	1	1	1	
	$\backslash 1$	1	1	1	1/	

Do so just by thought, without lengthy computations.

Hint: What is the image of A? What does A do to the elements of its image?

G 50 Let $A = \frac{1}{2} \begin{pmatrix} 1 & -1 & -\sqrt{2} \\ -1 & 1 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$. Show that A is orthogonal and determine its axis of rotation in \mathbb{R}^3 , as

well as the angle ω of rotation around this axis. What is the normal form of A?

- **G 51** Let ϕ be an endomorphism of a vector space V with scalar product. Show:
 - (i) A linear subspace U of V is ϕ -invariant if and only if U^{\perp} is ϕ^* -invariant.
 - (ii) ker $\phi = (\operatorname{im} \phi^*)^{\perp}$ and $\operatorname{im} \phi = (\ker \phi^*)^{\perp}$.
 - (iii) If ϕ is orthogonal (or unitary) and U is ϕ -invariant, then U^{\perp} is also ϕ -invariant.
- **G 52** Let ϕ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and $\lambda \in K$. Show:
 - (i) $(\phi + \psi)^* = \phi^* + \psi^*$, (ii) $(\phi\psi)^* = \psi^*\phi^*$,

$$(iii) \quad (\lambda \cdot \phi)^* = \lambda \phi^*, \qquad (iv) \quad (\phi^*)^* = \phi,$$

(v) $id^* = id, 0^* = 0$ (vi) $(\phi^{-1})^* = (\phi^*)^{-1}$, if ϕ is invertible.

- **G 53** (i) Show that for every invertible complex $n \times n$ matrix A there are a uniquely determined positively definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, $H = \sqrt{(AA^*)}$ (see ex. **H 36**) and $S = H^{-1}A$. If A is real then so are H and S. The above decomposition of A into H and S is called *polar decomposition*.
 - (ii) Determine the polar decomposition of the matrix $\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$

Homework

H 40 Compute the pseudoinverse of $A = \begin{pmatrix} 1 & i \\ 0 & 0 \\ -1 & -i \end{pmatrix}$ and use it to determine the best approximate solution of Ax = b with **Corr**: $b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & -i \end{pmatrix}$

of Ax = b with **Corr.:** $b = (1, 1, 1)^t$.

- **H 41** Show that the following properties of an endomorphism $\phi : V \to V$ of a vector space with scalar product $\langle \cdot | \cdot \rangle$ are equivalent:
 - (i) $\phi^* = \phi^{-1}$,
 - (ii) $\langle \phi(u) | \phi(v) \rangle = \langle u | v \rangle$ for all $u, v \in V$,
 - (iii) $\|\phi(u)\| = \|u\|$ for all $u \in V$.
 - (iv) $\|\phi(u) \phi(v)\| = \|u v\|$ for all $u, v \in V$.

Remark: If V is euclidean, a ϕ with the above properties is called *orthogonal*. If V is unitary, then such a ϕ is called *unitary*.

- **H 42** Let V be a vector space with scalar product $\langle \cdot | \cdot \rangle$ and ϕ an endomorphism of V. Show that each of the following conditions imply that $\phi = 0$:
 - (i) $\langle \phi(u) | v \rangle = 0$ for all $u, v \in V$.
 - (ii) V is unitary and $\langle \phi(u) | u \rangle = 0$ for all $u \in V$.
 - (iii) ϕ is selfadjoint and $\langle \phi(u) | u \rangle = 0$ for all $u \in V$.

Give an example of an endomorphism $\phi \neq 0$ on an euclidean space V with $\langle \phi(u) | u \rangle = 0$ for all $u \in V$. Hint: In some cases it may be helpful to polarize the quadratic form $\langle \phi(u) | u \rangle$ (i.e. what is $\langle \phi(u) | v \rangle$?). In (ii), what happens if you substitute u with iu?

- **H 43** Let V be a vector space with scalar product $\langle \cdot | \cdot \rangle$ and let $\alpha = \{e_1, \ldots, e_n\}$ be any basis of V. Let further A denote the Gram-matrix of $\langle \cdot | \cdot \rangle$ w.r.t. α and let $\phi : V \to V$ be an endomorphism. Show that ϕ is selfadjoint if and only if **Corr.**: $A \cdot \phi^{\alpha}$ is a hermitean matrix.
- **H 44** Let V be a finite dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$ and basis α .
 - (i) Suppose that ϕ is an endomorphism associated to a hermitean form Φ on V. Show that ϕ^{α} is a hermitean matrix, if α is an on-basis.
 - (ii) For $V = \mathbb{R}^2$ with the standard scalar product and $\alpha = \{(1,2)^t, (0,-1)^t\}$ consider the endomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ with matrix $\phi^{\alpha} = \begin{pmatrix} 0 & -1 \\ -9 & 2 \end{pmatrix}$. Show that ϕ is selfadjoint, i.e. $\phi = \phi^*$, and determine the symmetric bilinear form Φ associated with ϕ .

Linear Algebra II (MCS), SS 2006, Exercise 11, Solution

Mini-Quiz

- (1) The adjoint ϕ^* of an endomorphism ϕ of an euclidean vector space V is defined by...?
 - $\Box \langle \phi^*(v) | \phi^*(w) \rangle = \langle v | \phi(w) \rangle$
 - $\sqrt{\langle v|\phi(w)\rangle} = \langle \phi(v)^*|w\rangle$
 - $\Box \langle \phi(v) | w \rangle = \langle w | \phi(v) \rangle$
 - for all $v, w \in V$.
- (2) An endomorphism ϕ of an euclidean vector space V is called self-adjoint, if...?
 - $\Box \langle \phi(v) | \phi(w) \rangle = \langle v | w \rangle$
 - $\sqrt{\langle v | \phi(w) \rangle} = \langle \phi(v) | w \rangle$
 - $\Box \langle \phi(v) | w \rangle = \langle w | \phi(v) \rangle$
 - for all $v, w \in V$.
- (3) If $\lambda_1, \ldots, \lambda_r$ are the distinct eigenvalues of a selfadjoint endomorphism, v_i , resp. U_i , is an eigenvector, resp. the eigenspace, for $\lambda_i, i = 1, \ldots, r$, then for $i \neq j$:
 - $\Box \lambda_i \perp \lambda_j$.
 - $\sqrt{v_i \perp v_j}$.
 - $\sqrt{U_i \perp U_i}$.

(4) Is there a scalar product on \mathbb{R}^2 such that the shearing associated with $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is self adjoint?

- \Box Yes, put $\langle x, y \rangle := x_1 y_1 + x_1 y_2 + x_2 y_2.$
- \Box Yes, the standard scalar product already has this property.
- $\sqrt{}$ No, because A is not symmetric.

Groupwork

G 49 Determine the diagonal form of the following matrix after a principal axes transformation:

Do so just by thought, without lengthy computations.

Hint: What is the image of A? What does A do to the elements of its image?

We see at a glance that A has rank equal to one. The image is the span of the vector $v = (1, 1, 1, 1, 1)^t$. Accordingly, the kernel is 4-dimensional. If we apply A to its image, then $Av = (5, 5, 5, 5, 5)^t =$ $5 \cdot (1, 1, 1, 1, 1)^t$ wherefore v is an eigenvector to the eigenvalue 5. We conclude that the normal form

G 50 Let $A = \frac{1}{2} \begin{pmatrix} 1 & -1 & -\sqrt{2} \\ -1 & 1 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$. Show that A is orthogonal and determine its axis of rotation in \mathbb{R}^3 , as

well as the angle ω of rotation around this axis. What is the normal form of A?

It is an easy calculation that $AA^t = A^tA = I$. Hence, A is orthogonal. Since $A \neq A^t$, the axis of rotation can be calculated as the kernel of $A - A^t = \begin{pmatrix} 0 & 0 & -\sqrt{2} \\ 0 & 0 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$. This yields $v_1 = \frac{1}{\sqrt{2}}(1, -1, 0)^t$, which is obviously an eigenvector to the eigenvalue of $A - A^t = \begin{pmatrix} 0 & 0 & -\sqrt{2} \\ 0 & 0 & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$.

which is obviously an eigenvector to the eigenvalues 1. The angle of rotation is determined by $\cos \omega =$ $(1 \ 0 \ 0)$

$$\frac{1}{2}(\text{tr}A - \det A) = \frac{1}{2}(1-1) = 0. \text{ Hence, } \omega = \frac{\pi}{2}. \text{ The normal form is given by } \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

G 51 Let ϕ be an endomorphism of a vector space V with scalar product. Show:

- (i) A linear subspace U of V is ϕ -invariant if and only if U^{\perp} is ϕ^* -invariant.
- (ii) ker $\phi = (\operatorname{im} \phi^*)^{\perp}$ and $\operatorname{im} \phi = (\ker \phi^*)^{\perp}$.
- (iii) If ϕ is orthogonal (or unitary) and U is ϕ -invariant, then U^{\perp} is also ϕ -invariant.

To (i): Suppose that U is ϕ -invariant and let $v \in U^{\perp}$ be arbitrary. Then for all $u \in U$ we have

$$\langle \phi^*(v) | u \rangle = \langle v | \phi(u) \rangle = 0.$$

Therefore U^{\perp} is ϕ^* -invariant. For the other implication we interchange the rôles of ϕ and ϕ^* and U and U^{\perp} and use that $(\phi^*)^* = \phi$ and $(U^{\perp})^{\perp} = U$.

- To (ii): Let $v \in \ker \phi$ be arbitrary. Then for all $\phi^*(w) \in \operatorname{im} \phi^*$ we have $\langle v | \phi^*(w) \rangle = \langle \phi(v) | w \rangle = 0$. Hence, ker $\phi \subset (\operatorname{im} \phi^*)^{\perp}$. Conversely, if $v \in (\operatorname{im} \phi^*)^{\perp}$, then for all $w \in V$ we have $0 = \langle v | \phi^*(w) \rangle = \langle \phi(v) | w \rangle$. So we also have ker $\phi \supset (\operatorname{im} \phi^*)^{\perp}$ and thus in fact equality. Again, interchanging the roles of ϕ and ϕ^* and using $(U^{\perp})^{\perp} = U$ we obtain the second equality.
- To (iii): By (i) we have that U^{\perp} is ϕ^* -invariant. Since in particular, $\phi^* = \phi^{-1}$ is bijective, we have $\phi^*(U^{\perp}) = U^{\perp}$. If we apply ϕ on both sides of this equation, we end up, using $\phi \circ \phi^* = id$, with $U^{\perp} = \phi(U^{\perp})$ which shows that U^{\perp} is ϕ -invariant.
- **G 52** Let ϕ and ψ be endomorphisms of a finite dimensional vector space V with scalar product and $\lambda \in K$. Show:
 - $\begin{array}{ll} (i) & (\phi+\psi)^*=\phi^*+\psi^*, & (ii) & (\phi\psi)^*=\psi^*\phi^*, \\ (iii) & (\lambda\cdot\phi)^*=\bar{\lambda}\phi^*, & (iv) & (\phi^*)^*=\phi, \\ (v) & \mathrm{id}^*=\mathrm{id}, \ 0^*=0 & (vi) & (\phi^{-1})^*=(\phi^*)^{-1}, \ \mathrm{if} \ \phi \ \mathrm{is \ invertible}. \end{array}$
 - To (i): $\langle (\phi + \psi)^*(v) | w \rangle = \langle v | (\phi + \psi)(w) \rangle = \langle v | \phi(w) \rangle + \langle v | \psi(w) \rangle = \langle \phi^*(v) | w \rangle + \langle \psi^*(v) | w \rangle = \langle (\phi^* + \psi^*)(v) | w \rangle.$
 - To (ii): $\langle (\phi \circ \psi)^*(v) | w \rangle = \langle v | (\phi \circ \psi)(w) \rangle = \langle v | \phi(\psi(w)) \rangle = \langle \phi^*(v) | \psi(w) \rangle = \langle (\psi^* \circ \phi^*)(v) | w \rangle.$
 - To (iii): $\langle (\lambda\phi)^*(v)|w\rangle = \langle v|(\lambda\phi)(w)\rangle = \lambda\langle v|\phi(w)\rangle = \lambda\langle \phi^*(v)|w\rangle = \langle \bar{\lambda}\phi^*(v)|w\rangle.$
 - To (iv): $\langle (\phi^*)^*(v) | w \rangle = \langle v | \phi^*(w) \rangle = \langle \phi(v) | w \rangle.$
 - To (v): $\langle (\mathrm{id}^*)(v)|w\rangle = \langle v|\mathrm{id}(w)\rangle = \langle \mathrm{id}(v)|w\rangle$ and $0^* = 0$ by (iii) with $\lambda = 0$.
 - To (vi): Since $\phi \circ \phi^{-1} = \text{id}$ we can apply (ii) and (v) to obtain $(\phi^{-1})^* \circ \phi^* = \text{id}$, whence $(\phi^{-1})^* = (\phi^*)^{-1}$.
- **G 53** (i) Show that for every invertible complex $n \times n$ matrix A there are a uniquely determined positively definite hermitean matrix H and a unitary matrix S with A = HS. More precisely, $H = \sqrt{(AA^*)}$ (see ex. **H 36**) and $S = H^{-1}A$. If A is real then so are H and S. The above decomposition of A into H and S is called *polar decomposition*.
 - (ii) Determine the polar decomposition of the matrix $\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$
 - To (i): Since A is invertible, AA^* is clearly positively definite, as it is congruent to the identity matrix. By exercise **H** 36 the square root $H = \sqrt{(AA^*)}$ is a well defined, unique and positively definite hermitean matrix. If we define $S = H^{-1}A$, then according to the rules of exercise **G** 52, which clearly hold for matrices, too:

$$S^*S = (H^{-1}A)^*H^{-1}A = A^*(H^*)^{-1}H^{-1}A = A^*(H^2)^{-1}A = A^*(AA^*)^{-1}A = I,$$

which shows that S is unitary. We furthermore have $HS = HH^{-1}A = A$, which completes the proof of existence for the decomposition. In order to prove the uniqueness of the decomposition, suppose that A = HS as claimed. Then $H = AS^*$ and $H^2 = HH^* = AS^*SA^* = AA^*$. Since the root of AA^* is unique, we have $H = \sqrt{AA^*}$ and then $S = H^{-1}A$ is also uniquely determined.

To (ii): For
$$A = \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$$
 we have $AA^* = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$, then $H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $S = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$.

Homework

H 40 Compute the pseudoinverse of $A = \begin{pmatrix} 1 & i \\ 0 & 0 \\ -1 & -i \end{pmatrix}$ and use it to determine the best approximate solution of Ax = b with **Corr.**: $b = (1, 1, 1)^t$.

In exercise **G44** the singular value decomposition of A was computed as $U^*AV = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$, with

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}, V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & -1 \end{pmatrix} \text{ and } \Sigma = (2). \text{ The pseudoinverse } A^+ \text{ of } A \text{ is then } A^+ = V \begin{pmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^* = \frac{1}{4} \begin{pmatrix} 1 & 0 & -1 \\ -i & 0 & i \end{pmatrix} = \frac{1}{4} A^*. \text{ Hence, the best approximate solution for } Ax = b \text{ is } x = A^+ b = 0.$$

- **H 41** Show that the following properties of an endomorphism $\phi : V \to V$ of a vector space with scalar product $\langle \cdot | \cdot \rangle$ are equivalent:
 - (i) $\phi^* = \phi^{-1}$,
 - (ii) $\langle \phi(u) | \phi(v) \rangle = \langle u | v \rangle$ for all $u, v \in V$,
 - (iii) $\|\phi(u)\| = \|u\|$ for all $u \in V$.
 - (iv) $\|\phi(u) \phi(v)\| = \|u v\|$ for all $u, v \in V$.

Remark: If V is euclidean, a ϕ with the above properties is called *orthogonal*. If V is unitary, then such a ϕ is called *unitary*.

- (i) \Leftrightarrow (ii): $\langle u|v \rangle = \langle \phi^* \circ \phi(u)|v \rangle = \langle \phi(u)|\phi(v) \rangle$, for all $u, v \in V$. The other implication follows from $\langle u|v \rangle = \langle \phi(u)|\phi(v) \rangle = \langle \phi^* \circ \phi(u)|v \rangle$, for all $u, v \in V$ and therefore $\phi^* \circ \phi(v) = v$ for all $v \in V$. This in turn implies $\phi^* = \phi$.
- (ii) \Rightarrow (iii): In (ii), just take v = u and take the square root from $\|\phi(u)\|^2 = \langle \phi(u)|\phi(u)\rangle = \langle u|u\rangle = \|u\|^2$.
- (iii) \Leftrightarrow (iv): (iv) follows from (iii) by substituting u with u v and conversely, if we put v = 0, we obtain (iii) from (iv).
- (iii) \Rightarrow (ii): The key is polarization: Since $\|\phi(u)\| = \|u\|$ for all $u \in V$, we also have $\|\phi(u+v)\|^2 = \|u+v\|^2$ for all $u, v \in V$. By expansion of the expressions on both sides we obtain:

$$\|\phi(u)\|^{2} + \|\phi(v)\|^{2} + 2\Re\langle\phi(u)|\phi(v)\rangle = \|u\|^{2} + \|v\|^{2} + 2\Re\langle u|v\rangle.$$

This yields $\Re\langle\phi(u)|\phi(v)\rangle = \Re\langle u|v\rangle$, which concludes the proof of the euclidean case. In the unitary case, we have $\Im\langle u|v\rangle = \Re\langle iu|v\rangle$. This in combination with the former result yields $\Im\langle\phi(u)|\phi(v)\rangle = \Re\langle\phi(iu)|\phi(v)\rangle = \Re\langle iu|v\rangle = \Im\langle u|v\rangle$. Thus in total we have: $\langle\phi(u)|\phi(v)\rangle = \langle u|v\rangle$ for all $u, v \in V$.

- **H 42** Let V be a vector space with scalar product $\langle \cdot | \cdot \rangle$ and ϕ an endomorphism of V. Show that each of the following conditions imply that $\phi = 0$:
 - (i) $\langle \phi(u) | v \rangle = 0$ for all $u, v \in V$.
 - (ii) V is unitary and $\langle \phi(u) | u \rangle = 0$ for all $u \in V$.
 - (iii) ϕ is selfadjoint and $\langle \phi(u) | u \rangle = 0$ for all $u \in V$.

Give an example of an endomorphism $\phi \neq 0$ on an euclidean space V with $\langle \phi(u)|u \rangle = 0$ for all $u \in V$. Hint: In some cases it may be helpful to polarize the quadratic form $\langle \phi(u)|u \rangle$ (i.e. what is $\langle \phi(u)|v \rangle$?). In (ii), what happens if you substitute u with iu?

- To (i): This is clear, since a scalar product is non-degenerate. I.e. the only vector orthogonal to every other vector is the zero vector.
- To (ii): We polarize $q(u) := \langle \phi(u) | u \rangle$. I.e. $0 = q(u+v) = \langle \phi(u+v) | u+v \rangle = \langle \phi(u) + \phi(v) | u+v \rangle = \langle \phi(u) | u \rangle + \langle \phi(v) | u \rangle + \langle \phi(u) | v \rangle = \langle \phi(v) | u \rangle + \langle \phi(u) | v \rangle$. If we replace u by iu, we obtain $0 = \langle \phi(v) | iu \rangle + \langle \phi(iu) | v \rangle = i \langle \phi(v) | u \rangle - i \langle \phi(u) | v \rangle$ and therefore $\langle \phi(v) | u \rangle - \langle \phi(u) | v \rangle = 0$. Adding this to the first equation yields $\langle \phi(v) | u \rangle = 0$ for all $u, v \in V$. By (i), this implies $\phi = 0$.
- To (iii): As in (ii), we polarize and obtain $0 = \langle \phi(v) | u \rangle + \langle \phi(u) | v \rangle = \langle \phi(v) | u \rangle + \langle u | \phi^*(v) \rangle = \langle \phi(v) | u \rangle + \overline{\langle \phi(v) | u \rangle} = 2\Re \langle \phi(v) | u \rangle$ for all $u, v \in V$. As in exercise **H41** we show that this implies $\langle \phi(v) | u \rangle = 0$ for all $u, v \in V$. By (i) again, we then conclude that $\phi = 0$.
- **H 43** Let V be a vector space with scalar product $\langle \cdot | \cdot \rangle$ and let $\alpha = \{e_1, \ldots, e_n\}$ be any basis of V. Let further A denote the Gram-matrix of $\langle \cdot | \cdot \rangle$ w.r.t. α and let $\phi : V \to V$ be an endomorphism. Show that ϕ is selfadjoint if and only if **Corr.**: $A \cdot \phi^{\alpha}$ is a hermitean matrix.

Let $A = (a_{ij}) := (\langle e_i | e_j \rangle)$ and $(f_{ij}) := \phi^{\alpha}$. We have to show that $\langle \phi(u) | v \rangle = \langle u | \phi(v) \rangle \Leftrightarrow (A \cdot \phi^{\alpha})^* = A \cdot \phi^{\alpha}$. The left hand side is clearly equivalent to

$$\langle \phi(e_i)|e_j \rangle = \langle e_i|\phi(e_j) \rangle \tag{(*)}$$

for all i, j = 1, ..., n. Now $\phi(e_i) = \sum_{k=1}^n f_{ki}e_k$ and thus

$$(*) \quad \Leftrightarrow \quad \sum_{k=0}^{n} \bar{f}_{ki} \langle e_k | e_j \rangle = \sum_{k=0}^{n} f_{kj} \langle e_i | e_k \rangle \Leftrightarrow \sum_{k=0}^{n} \bar{f}_{ki} a_{kj} = \sum_{k=0}^{n} f_{kj} a_{ik}$$
$$\Leftrightarrow \quad (\phi^{\alpha})^* \cdot A = A \cdot \phi^{\alpha} \Leftrightarrow (A^* \cdot \phi^{\alpha})^* = A \cdot \phi^{\alpha}$$
$$\Leftrightarrow \quad (A \cdot \phi^{\alpha})^* = A \cdot \phi^{\alpha}.$$

H 44 Let V be a finite dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$ and basis α .

- (i) Suppose that ϕ is an endomorphism associated to a hermitean form Φ on V. Show that ϕ^{α} is a hermitean matrix, if α is an on-basis.
- (ii) For $V = \mathbb{R}^2$ with the standard scalar product and $\alpha = \{(1,2)^t, (0,-1)^t\}$ consider the endomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ with matrix $\phi^{\alpha} = \begin{pmatrix} 0 & -1 \\ -9 & 2 \end{pmatrix}$. Show that ϕ is selfadjoint, i.e. $\phi = \phi^*$, and determine the symmetric bilinear form Φ associated with ϕ .
- To (i): We have by definition: $\Phi(u, v) = \langle u | \phi(v) \rangle$ for all $u, v \in V$. Let $\alpha = \{e_1, \ldots, e_n\}$ be an onbasis. Let then $A := (a_{ij}) = (\Phi(e_i, e_j))$ be the Gram-matrix of Φ and $(f_{ij}) := \phi^{\alpha}$. Then $a_{ij} = \Phi(e_i, e_j) = \langle e_i | \phi(e_j) \rangle = \sum_{k=1}^n f_{jk} \langle e_i | e_k \rangle = f_{ji}$. Since $a_i j = \overline{aji}$, the same holds for f_{ij} . Thus ϕ^{α} is hermitean.

To (ii): Let β be the standard basis. Then the transition matrix from α to β is given by $T = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$, which is coincidentally equal to its inverse T^{-1} . Now $T\phi^{\alpha}T = \phi^{\beta} = \begin{pmatrix} -2 & 1 \\ 1 & 4 \end{pmatrix}$, which is a symmetric matrix. Thus ϕ is a selfadjoint endomorphism and the associated symmetric bilinear form is given by $\Phi(u, v) = \langle u | \phi(v) \rangle = -2u_1v_1 + u_1v_2 + u_2v_1 + 4u_2v_2$.