Linear Algebra II (MCS), SS 2006, Exercise 10

Mini-Quiz

(1) The principal axes transformation for a real symmetric matrix A means...?
\square to find a symmetric matrix P, such that $P^{-1} A P$ is diagonal.
$\sqrt{ }$ to find an orthogonal matrix P, such that $P^{-1} A P$ is diagonal.
\square to find an invertible matrix P, such that $P^{-1} A P$ is diagonal. \square to find an invertible matrix P, such that $P^{t} A P$ is diagonal.
(2) If a real symmetric $n \times n$-matrix A has only one eigenvalue λ, then...?
$\sqrt{ } A$ is already diagonal.$a_{i j}=\lambda$ for all $i, j=1, \ldots, n$
$n=1$.
(3) If W is a linear subspace of a vector space V with scalar product $\langle\cdot \mid \cdot\rangle$, then W^{\perp} is...?
$\square\{w \in W \mid w \perp W\}$.
$\sqrt{ }\{v \in V \mid v \perp W\}$.
$\sqrt{ }\{v \in V \mid\langle v \mid w\rangle=0$ for all $w \in W\}$.
$\sqrt{ }\{v \in V \mid\langle w \mid v\rangle=0$ for all $w \in W\}$.
$\square\{v \in V \mid v \perp W$ and $\|v\|=1\}$.

Groupwork

G 43 Determine the eigenvalues and the principal axes transformation of the following matrix using Jacobirotations:

$$
A=\left(\begin{array}{cc}
2 & 2 i \\
-2 i & 2
\end{array}\right)
$$

G44 Determine the singular value decomposition $U^{*} A V=\left(\begin{array}{cc}\Sigma & 0 \\ 0 & 0\end{array}\right)$ of the following matrix:

$$
A=\left(\begin{array}{cc}
1 & i \\
0 & 0 \\
-1 & -i
\end{array}\right)
$$

G45 Let $\left\{u_{1}, \ldots, u_{r}\right\}$ be an orthonormal subset of a n-dimensional vector space V with scalar product. Show that for every $v \in V$ we have:

$$
\sum_{j=1}^{r}\left|\left\langle v \mid u_{j}\right\rangle\right|^{2} \leq\|v\|^{2} . \quad \text { (Bessel's Inequality) }
$$

G 46 Let V be a n-dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and let $\left\{u_{1}, \ldots, u_{r}\right\}$ be a basis of a subspace W of V. Suppose that $\alpha=\left\{v_{1}, \ldots, v_{n-r}\right\}$ is a linear independent system of $n-r$ vectors, such that $\left\langle u_{j} \mid v_{k}\right\rangle=0$ for all $j=1, \ldots, r, k=1, \ldots, n-r$. Show that α is a basis of W^{\perp}.
G 47 Verify the following polar forms for a scalar product $\langle\cdot \mid \cdot\rangle$:
(i) $\langle u \mid v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)$ (euclidean case)
(ii) $\langle u \mid v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)+\frac{i}{4}\left(\|u+i v\|^{2}-\|u-i v\|^{2}\right)$ (unitary case)

G 48 Let V be a finite dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$.
(i) Show that for every fixed $u \in V$, the map $\psi_{u}: V \rightarrow K, v \mapsto\langle u \mid v\rangle$ defines a linear form on V.
(ii) Show that for every element $\phi \in V^{*}$, i.e. every linear form $\phi: V \rightarrow K$, there is a unique vector $u \in V$ such that $\phi(v)=\psi_{u}(v)=\langle u, v\rangle$.
Remark: (i) and (ii) show that the map $V \rightarrow V^{*}, u \mapsto \psi_{u}$ is a bijection. However, in the unitary case, this assignment is not linear!

Homework

H35 Determine the QR-decomposition of $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and use it to solve $A x=b_{i}$ for $b_{1}=(1,1,1)^{t}$ and $b_{2}=(1,0,-1)^{t}$.
H 36 (i) Prove: For any positively semi-definite matrix $A \in K^{n \times n}$ there is a unique positively semi-definite matrix $B \in K^{n \times n}$ such that $B^{2}=A$.
(ii) Determine for each of the following matrices A, a positively semi-definite matrix B with $B^{2}=A$.
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$,
(b) $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

H 37 Let A be a real symmetric $n \times n$-matrix with smallest eigenvalue $\lambda_{\text {min }}$ and largest eigenvalue $\lambda_{\text {max }}$.
(i) Show the following estimate for the Rayleigh-Quotient:

$$
\lambda_{\min } \leq \frac{x^{t} A x}{|x|^{2}} \leq \lambda_{\max } \text { for all } x \in \mathbb{R}^{n} \backslash\{0\}
$$

(ii) Let $Q(x)=x^{t} A x$ and let V_{+}as in Theorem 39.7. Show that $\left.Q\right|_{V_{+}}$has a unique minimum in $x=0$.
H 38 Consider the two parallel circles

$$
\begin{gathered}
S_{1}=\left\{(x, y,-1)^{t} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\} \\
S_{2}=\left\{(x, y, 1)^{t} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}
\end{gathered}
$$

in \mathbb{R}^{3} centered at the z-axis. Now let g be the line which passes through S_{1} in the point $(1,0,-1)^{t}$ and through S_{2} in the point $(\cos \alpha, \sin \alpha, 1)^{t}$ for some fixed $\alpha \in[0,2 \pi)$. Let $H_{g}=\bigcup_{A \in \operatorname{SO}(2)} A(g)$ where $\mathrm{SO}(2)$ denotes the set of all rotations of \mathbb{R}^{3} around the z-axis. Show that
(i) $H_{g}=\left\{(x, y, z)^{t} \in \mathbb{R}^{3} \mid \lambda_{1} x^{2}+\lambda_{2} y^{2}-\lambda_{3} z^{2}=c\right\}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{3}, c \in \mathbb{R}$, i.e. H_{g} is a quadric.
(ii) Through every point of H_{g} run two distinct lines which lie completely in H_{g} (only for $\alpha \neq 0$).

Hints: Every element of $\mathrm{SO}(2)$ has the form $\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$ for $\theta \in[0,2 \pi)$. Use the addition theorems for trigonometric functions.

H 39 (Optional task)

Let V be an euclidean vector space with on-basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and Q a quadratic form, on V with matrix A w.r.t. this basis. Suppose that

$$
\begin{gathered}
1 \leq Q(v) \leq 3 \text { for }|v|=1 \\
\operatorname{det}(A)=6, Q\left(e_{1}-2 e_{2}+2 e_{3}\right)=27 \text { and } \\
Q\left(2 e_{1}+2 e_{2}+e_{3}\right)=18 .
\end{gathered}
$$

(i) Determine all eigenvalues and an on-basis of eigenvectors of Q.
(ii) Determine A.

Hint: Use Corollary 39.4: If $|v|=1$ and $Q(v)=\max \{Q(w)| | w \mid=1\}$, then v is an eigenvector of Q.

Linear Algebra II (MCS), SS 2006, Exercise 10, Solution

Mini-Quiz

(1) The principal axes transformation for a real symmetric matrix A means...?to find a symmetric matrix P, such that $P^{-1} A P$ is diagonal.
$\sqrt{ }$ to find an orthogonal matrix P, such that $P^{-1} A P$ is diagonal.
\square to find an invertible matrix P, such that $P^{-1} A P$ is diagonal.
\square to find an invertible matrix P, such that $P^{t} A P$ is diagonal.
(2) If a real symmetric $n \times n$-matrix A has only one eigenvalue λ, then...?
$\sqrt{ } A$ is already diagonal.
$\square a_{i j}=\lambda$ for all $i, j=1, \ldots, n$$n=1$.
(3) If W is a linear subspace of a vector space V with scalar product $\langle\cdot \mid \cdot\rangle$, then W^{\perp} is...?
$\square\{w \in W \mid w \perp W\}$.
$\sqrt{ }\{v \in V \mid v \perp W\}$.
$\sqrt{ }\{v \in V \mid\langle v \mid w\rangle=0$ for all $w \in W\}$.
$\sqrt{ }\{v \in V \mid\langle w \mid v\rangle=0$ for all $w \in W\}$.
$\square\{v \in V \mid v \perp W$ and $\|v\|=1\}$.

Groupwork

G 43 Determine the eigenvalues and the principal axes transformation of the following matrix using Jacobirotations:

$$
A=\left(\begin{array}{cc}
2 & 2 i \\
-2 i & 2
\end{array}\right)
$$

The Ansatz $(1, t) A(t,-1)^{t}=0$ yields $t= \pm i$. Hence, $v_{1}=\frac{1}{\sqrt{2}}(1,-i)^{t}$ and $v_{2}=\frac{1}{\sqrt{2}}(i,-1)^{t}$ are the principal axes thus $T=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ -i & -1\end{array}\right)$ is the transformation matrix, which gives $T^{*} A T=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$.

G 44 Determine the singular value decomposition $U^{*} A V=\left(\begin{array}{cc}\Sigma & 0 \\ 0 & 0\end{array}\right)$ of the following matrix:

$$
A=\left(\begin{array}{cc}
1 & i \\
0 & 0 \\
-1 & -i
\end{array}\right) .
$$

We have $A^{*} A=\left(\begin{array}{cc}2 & 2 i \\ -2 i & 2\end{array}\right)$ which is the matrix from exercise $\boldsymbol{G} 43$. Thus, by the algorithm of the script, we have $V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ -i & -1\end{array}\right)$ and $\Sigma=(2)$. Furthermore, $A V=\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 0 \\ -\sqrt{2} & 0\end{array}\right)$ and after division by $\Sigma_{11}=2$, we obtain the first column vector of U, which we complete arbitrarily to an on-basis of $\mathbb{R}^{3}: U=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right)$.
G45 Let $\left\{u_{1}, \ldots, u_{r}\right\}$ be an orthonormal subset of a n-dimensional vector space V with scalar product. Show that for every $v \in V$ we have:

$$
\sum_{j=1}^{r}\left|\left\langle v \mid u_{j}\right\rangle\right|^{2} \leq\|v\|^{2} . \quad \text { (Bessel's Inequality) }
$$

This is an implication of Plancherel's formula. In fact, we may complete $\left\{u_{1}, \ldots, u_{r}\right\}$ to an on-basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of V. Then Plancherel's formula yields $\sum_{i=j}^{n}\left|\left\langle v \mid u_{j}\right\rangle\right|^{2}=\|v\|^{2}$. Dropping the last $n-r$ terms on the left side yields the desired inequality, since all summands are non-negative.

G 46 Let V be a n-dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$ and let $\left\{u_{1}, \ldots, u_{r}\right\}$ be a basis of a subspace W of V. Suppose that $\alpha=\left\{v_{1}, \ldots, v_{n-r}\right\}$ is a linear independent system of $n-r$ vectors, such that $\left\langle u_{j} \mid v_{k}\right\rangle=0$ for all $j=1, \ldots, r, k=1, \ldots, n-r$. Show that α is a basis of W^{\perp}.
We clearly have that $\operatorname{span}(\alpha) \subset W^{\perp}$, since $\left\langle u_{j} \mid v_{k}\right\rangle=0$ for all $j=1, \ldots, r, k=1, \ldots, n-r$. Since $W \cap W^{\perp}=\{0\}$ and $V=W+W^{\perp}$, the dimension formula for linear subspaces yields $n=\operatorname{dim} V=$
$\operatorname{dim} W+\operatorname{dim} W^{\perp}=r+\operatorname{dim} W^{\perp}$. Thus $\operatorname{dim} W^{\perp}=n-r$, which shows that α generates the whole of W^{\perp}. So α is indeed a basis of W^{\perp}.

G 47 Verify the following polar forms for a scalar product $\langle\cdot \mid \cdot\rangle$:
(i) $\langle u \mid v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)$ (euclidean case)
(ii) $\langle u \mid v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)+\frac{i}{4}\left(\|u+i v\|^{2}-\|u-i v\|^{2}\right)$ (unitary case)

To (i):

$$
\begin{aligned}
\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right) & =\frac{1}{4}(\langle u+v \mid u+v\rangle-\langle u-v \mid u-v\rangle) \\
& =\frac{1}{4}(\langle u \mid u\rangle+2\langle u \mid v\rangle+\langle v \mid v\rangle-\langle u \mid u\rangle+2\langle u \mid v\rangle-\langle v \mid v\rangle) \\
& =\frac{1}{4}(4\langle u \mid v\rangle)=\langle u \mid v\rangle
\end{aligned}
$$

To (ii): This is just done as in (i).
G 48 Let V be a finite dimensional vector space with scalar product $\langle\cdot \mid \cdot\rangle$.
(i) Show that for every fixed $u \in V$, the map $\psi_{u}: V \rightarrow K, v \mapsto\langle u \mid v\rangle$ defines a linear form on V.
(ii) Show that for every element $\phi \in V^{*}$, i.e. every linear form $\phi: V \rightarrow K$, there is a unique vector $u \in V$ such that $\phi(v)=\psi_{u}(v)=\langle u, v\rangle$.
Remark: (i) and (ii) show that the map $V \rightarrow V^{*}, u \mapsto \psi_{u}$ is a bijection. However, in the unitary case, this assignment is not linear!
To (i): By definition, a scalar product is linear in the second argument and its image lies in the ground field. Hence ψ_{u} is a well defined linear form on V.
To (ii): Let ϕ be an arbitrary linear form on V. If $\phi=0$, then clearly $\psi_{0}=\phi$. If $\phi \neq 0$, then by the dimension formula for linear maps, $W:=\operatorname{ker} \phi$ is a hyperplane in V, i.e. $\operatorname{dim} W=\operatorname{dim} V-1$. Let $u \in V$ be such that $u \perp W$ and $\phi(u)=1$. We claim that $\psi_{u}=\phi$. In fact, $V=W \oplus(K \cdot u)$ and on both summands, ψ_{u} and ϕ coincide. By linearity, both linear forms coincide on V. Uniqueness of u can be seen as follows, if arguable: Suppose there is some u^{\prime} such that $\psi_{u}=\phi=\psi_{u^{\prime}}$. Then for all $v \in V: 0=\psi_{u}(v)-\psi_{u^{\prime}}(v)=\left\langle u-u^{\prime} \mid v\right\rangle$. Hence $u=u^{\prime}$.

Homework

H 35 Determine the QR-decomposition of $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and use it to solve $A x=b_{i}$ for $b_{1}=(1,1,1)^{t}$ and $b_{2}=(1,0,-1)^{t}$.
Applying Gram-Schmidt orthonormaliztion to the columns b_{1}, b_{2}, b_{3} of A we obtain

$$
\begin{aligned}
& u_{1}=b_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& v_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& u_{2}=b_{2}-\left\langle v_{1} \mid b_{2}\right\rangle v_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-\frac{2}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right) \\
& v_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& u_{3}=b_{3}-\left\langle v_{1} \mid b_{3}\right\rangle v_{1}-\left\langle v_{2} \mid b_{3}\right\rangle v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-\frac{2}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) \\
& v_{3}=\frac{u_{3}}{\left\|u_{3}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) .
\end{aligned}
$$

The vectors v_{1}, v_{2}, v_{3} form the columns of the matrix Q in the $Q R$-decomposition. Hence,

$$
R=\left(\begin{array}{ccc}
\left\langle v_{1} \mid b_{1}\right\rangle & \left\langle v_{1} \mid b_{2}\right\rangle & \left\langle v_{1} \mid b_{3}\right\rangle \\
0 & \left\langle v_{2} \mid b_{2}\right\rangle & \left\langle v_{2} \mid b_{3}\right\rangle \\
0 & 0 & \left\langle v_{3} \mid b_{3}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
\frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

so A decomposes as

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Using this decomposition, we solve $A x_{i}=b_{i}$ by first forming $Q^{t} b_{i}$ and then solving $R x_{i}=Q^{t} b_{i}$ by substituting backwards. We then have:

$$
\begin{gathered}
Q^{t} b_{1}=(\sqrt{3}, 0,0)^{t} \Longrightarrow x_{1}=(1,0,0)^{t} \\
Q^{t} b_{2}=\left(0,-\frac{3}{\sqrt{6}},-\frac{1}{\sqrt{2}}\right)^{t} \Longrightarrow x_{2}=(1,-1,-1)^{t}
\end{gathered}
$$

H 36 (i) Prove: For any positively semi-definite matrix $A \in K^{n \times n}$ there is a unique positively semi-definite matrix $B \in K^{n \times n}$ such that $B^{2}=A$.
(ii) Determine for each of the following matrices A, a positively semi-definite matrix B with $B^{2}=A$.
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$,
(b) $\quad\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

To (i): Since A is positively semi-definite, there is a unitary, resp. orthogonal, matrix S and a diagonal matrix D with nonnegative entries $\lambda_{1}, \ldots, \lambda_{n}$ such that $A=S D S^{*}$, resp. $A=S D S^{t}$. Now put $B=S \sqrt{D} S^{*}$, where \sqrt{D} denotes the diagonal matrix whose diagonal entries are just $\sqrt{\lambda}_{1}, \ldots, \sqrt{\lambda}_{n}$. Then $B^{2}=S \sqrt{D} S^{*} S \sqrt{D} S^{*}=S D S^{*}=A$. This proves the existence of the square root.
For the uniqueness, suppose that B satisfies $B^{2}=A$. Let v be an eigenvector of B to the eigenvalue μ. Then v is an eigenvector of A to the eigenvalue μ^{2}. Hence $E_{\mu}(B) \subset E_{\mu^{2}}(A)$. Since
the eigenvalues of A are non-negative, they have a unique square root. This implies that the eigenspaces of B for distinct μ lie in the eigenspaces of A for distinct μ^{2}. By the pigeon hole principle, $E_{\mu}(B)=E_{\mu^{2}}(A)$. Since B is completely determined by its eigenspaces and eigenvalues, we have just proved the uniqueness of B.
To (ii): For $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ the eigenvalues are 2 and 0 . Corresponding eigenvectors are $(1,1)^{t}$ and $(1,-1)^{t}$. Hence the transition matrix of A is $S=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. By (i), B is given by $S \sqrt{D} S^{t}=$ $\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=\frac{1}{\sqrt{2}} A$.
For $A^{\prime}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ the eigenvalues are 3 and 1. Corresponding eigenvectors are $(1,1)^{t}$ and $(1,-1)^{t}$. Hence the transition matrix of A^{\prime} is the same as that of A and by (i), B^{\prime} is given by $S \sqrt{D}^{\prime} S^{t}=$ $\frac{1}{2}\left(\begin{array}{ll}\sqrt{3}+1 & \sqrt{3}-1 \\ \sqrt{3}-1 & \sqrt{3}+1\end{array}\right)$.

H 37 Let A be a real symmetric $n \times n$-matrix with smallest eigenvalue $\lambda_{\text {min }}$ and largest eigenvalue $\lambda_{\text {max }}$.
(i) Show the following estimate for the Rayleigh-Quotient:

$$
\lambda_{\min } \leq \frac{x^{t} A x}{|x|^{2}} \leq \lambda_{\max } \text { for all } x \in \mathbb{R}^{n} \backslash\{0\}
$$

(ii) Let $Q(x)=x^{t} A x$ and let V_{+}as in Theorem 39.7. Show that $\left.Q\right|_{V_{+}}$has a unique minimum in $x=0$.
To (i): Let $Q(x):=x^{t} A x$. Then Q is a quadratic form on \mathbb{R}^{n} and by Corollary 39.4 we have for all $\|x\|=1: \lambda_{\min } \leq Q(x) \leq \lambda_{\max }$. If now $x \in \mathbb{R}^{n} \backslash\{0\}$ is arbitrary, put $r:=\|x\|$ and then by the above: $\lambda_{\min } \leq Q\left(\frac{x}{r}\right) \leq \lambda_{\max }$. However, $Q\left(\frac{x}{r}\right)=\frac{1}{r^{2} Q} Q(x)=\frac{Q(x)}{\|x\|^{2}}=\frac{x^{t} A x}{\|x\|^{2}}$ and our claim follows.
To (ii): Suppose that Q has a (local) minimum in $x_{0} \in \mathbb{R}^{n} \backslash\{0\}$. Then there is some open ball $B_{\epsilon}\left(x_{0}\right)$ around x_{0} such that for all $y \in B_{\epsilon}\left(x_{0}\right)$ we have $Q(y) \geq Q\left(x_{0}\right)=$: m. However, $Q\left(r x_{0}\right)=$ $r^{2} Q\left(x_{0}\right)=r^{2} m$ for all $r \in \mathbb{R}$. In particular for all $r \in(1-\epsilon, 1+\epsilon)$ we have $r^{2} m \geq m$. But for $r<1$, clearly $r^{2} m<m$, a contradiction. Hence, the unique minimum of Q is 0 .

H38 Consider the two parallel circles

$$
\begin{gathered}
S_{1}=\left\{(x, y,-1)^{t} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\} \\
S_{2}=\left\{(x, y, 1)^{t} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}
\end{gathered}
$$

in \mathbb{R}^{3} centered at the z-axis. Now let g be the line which passes through S_{1} in the point $(1,0,-1)^{t}$ and through S_{2} in the point $(\cos \alpha, \sin \alpha, 1)^{t}$ for some fixed $\alpha \in[0,2 \pi)$. Let $H_{g}=\bigcup_{A \in \operatorname{SO}(2)} A(g)$ where $\mathrm{SO}(2)$ denotes the set of all rotations of \mathbb{R}^{3} around the z-axis. Show that
(i) $H_{g}=\left\{(x, y, z)^{t} \in \mathbb{R}^{3} \mid \lambda_{1} x^{2}+\lambda_{2} y^{2}-\lambda_{3} z^{2}=c\right\}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{3}, c \in \mathbb{R}$, i.e. H_{g} is a quadric.
(ii) Through every point of H_{g} run two distinct lines which lie completely in H_{g} (only for $\alpha \neq 0$).

Hints: Every element of $\mathrm{SO}(2)$ has the form $\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$ for $\theta \in[0,2 \pi)$. Use the addition theorems for trigonometric functions.

To (i): The line g is the set of all $(x, y, z)^{t}=(1,0,-1)^{t}+t \cdot(\cos \alpha-1, \sin \alpha, 2)^{t}$ with arbitrary $t \in \mathbb{R}$. Hence, every element of H_{g} has the form $A_{\theta} \cdot(x, y, z)^{t}$ for some $\theta \in[0,2 \pi)$ and $(x, y, z)^{t} \in g$. This
yields:

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
-1
\end{array}\right)+t \cdot\left(\begin{array}{c}
(\cos \alpha-1) \cos \theta-\sin \alpha \sin \theta \\
(\cos \alpha-1) \sin \theta+\sin \alpha \cos \theta \\
2
\end{array}\right) \\
& =\left(\begin{array}{c}
\cos \theta+t \cos (\alpha+\theta)-t \cos \theta \\
\sin \theta+t \sin (\alpha+\theta)-t \sin \theta \\
-1+2 t
\end{array}\right) \\
& =\left(\begin{array}{c}
\cos \theta(1-t)+t \cos (\alpha+\theta) \\
\sin \theta(1-t)+t \sin (\alpha+\theta) \\
2 t-1
\end{array}\right)
\end{aligned}
$$

From the last equation we obtain $t=\frac{1+z}{2}$ and substituting this into the equations for x and y gives:

$$
\begin{aligned}
& x=\cos \theta\left(\frac{1-z}{2}\right)+\left(\frac{1+z}{2}\right) \cos (\alpha+\theta) \\
& y=\sin \theta\left(\frac{1-z}{2}\right)+\left(\frac{1+z}{2}\right) \sin (\alpha+\theta)
\end{aligned}
$$

Now we square both equations, add them up and use $\cos ^{2}+\sin ^{2}=1$ to obtain

$$
x^{2}+y^{2}=\left(\frac{1-z}{2}\right)^{2}+\left(\frac{1+z}{2}\right)^{2}+\left(\frac{1-z^{2}}{2}\right)(\cos \theta \cos (\alpha+\theta)+\sin \theta \sin (\alpha+\theta))
$$

We use the addition theorem for trigonometric functions one last time and arrive at

$$
x^{2}+y^{2}-\frac{(1-\cos \alpha)}{2} z^{2}=\frac{(1+\cos \alpha)}{2}
$$

Choosing $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=-\frac{(1-\cos \alpha)}{2}$ and $c=\frac{(1+\cos \alpha)}{2}$, we have shown that H_{g} is included in a quadric. This quadric is for $\alpha=0$ a cylinder, for $\alpha=\pi$ a cone and in all other cases a onesheeted hyperboloid. We still have to verify that the quadric does not contain more points than H_{g}. In fact, it is not difficult to see that the intersection of every plane parallel to the x, y-plane intersects with H_{g} in a circle centered at the z-axis. The same holds true for the quadric. As a circle contained in another circle must coincide with the latter, we see that both sets H_{g} and the quadric must coincide.
To (ii): Since H_{g} is invariant under all rotations around the z-axis, it is also invariant under all reflections on planes which contain the z-axis. Now let p be an arbitrary point on H_{g}. By definition, there is some $A \in \mathrm{SO}(2)$ such that the line $A(g)$ passes through p. Under the reflection τ on the plane which contains p and the z-axis, $A(g)$ gets mapped to the line $\tau(A(g))$ which is different from $A(g)$, because we excluded the case $\alpha=0$ for which H_{g} is a cylinder.

H39 (Optional task)

Let V be an euclidean vector space with on-basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and Q a quadratic form, on V with matrix A w.r.t. this basis. Suppose that

$$
\begin{gathered}
1 \leq Q(v) \leq 3 \text { for }|v|=1 \\
\operatorname{det}(A)=6, Q\left(e_{1}-2 e_{2}+2 e_{3}\right)=27 \text { and } \\
Q\left(2 e_{1}+2 e_{2}+e_{3}\right)=18 .
\end{gathered}
$$

(i) Determine all eigenvalues and an on-basis of eigenvectors of Q.
(ii) Determine A.

Hint: Use Corollary 39.4: If $|v|=1$ and $Q(v)=\max \{Q(w)| | w \mid=1\}$, then v is an eigenvector of Q.
To (i): From $Q\left(e_{1}-2 e_{2}+2 e_{3}\right)=27$ we obtain $3=\frac{1}{9} Q\left(e_{1}-2 e_{2}+2 e_{3}\right)=Q\left(\frac{1}{3} e_{1}-\frac{2}{3} e_{2}+\frac{2}{3} e_{3}\right)$. Thus the corollary says that $v_{1}=\left(\frac{1}{3} e_{1}-\frac{2}{3} e_{2}+\frac{2}{3} e_{3}\right)^{t}$ is an eigenvector to the maximal eigenvalue $\lambda_{1}=3$. We can furthermore choose a normed basis v_{1}, v_{2}, v_{3} of eigenvectors corresponding to the eigenvalues $3=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq 1$. Since the determinant of a diagonalizable matrix is equal to the product of its eigenvalues, we obtain from $\operatorname{det} A=6$ that $2=\lambda_{2} \cdot \lambda_{3}$. Now look at the restriction $\left.Q\right|_{W}$ of Q to the subspace $W=v_{1}^{\perp}=\operatorname{span}\left\{v_{2}, v_{3}\right\}$. Then $\left.Q\right|_{W}$ is also a quadratic form, with eigenvalues λ_{2}, λ_{3}. Furthermore, an eigenvector of $\left.Q\right|_{W}$ is also one of Q. By assumption,
$Q\left(2 e_{1}+2 e_{2}+e_{3}\right)=18$ and as above, this implies that $2=\frac{1}{9} Q\left(2 e_{1}+2 e_{2}+e_{3}\right)=Q\left(\frac{2}{3} e_{1}+\frac{2}{3} e_{2}+\frac{1}{3} e_{3}\right)$. Since $\left(\frac{2}{3} e_{1}+\frac{2}{3} e_{2}+\frac{1}{3} e_{3}\right)^{t}$ is orthogonal to v_{1} and has norm equal to one, we see that $\lambda_{2}=2$ and may take $v_{2}=\left(\frac{2}{3} e_{1}+\frac{2}{3} e_{2}+\frac{1}{3} e_{3}\right)^{t}$, due to the corollary again. By the determinant condition above, we also see that $\lambda_{3}=1$. Now V_{1} and v_{2} already determine v_{3} uniquely up to a sign. For instance, we can take $v_{3}=\left(-\frac{2}{3} e_{1}+\frac{1}{3} e_{2}+\frac{2}{3} e_{3}\right)^{t}$.
To (ii): From the data obtained in (i) we know that the transformation matrix S which diagonalizes A is given by $S=\frac{1}{3}\left(\begin{array}{ccc}1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$ and the corresponding diagonal matrix is $D=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$. Accordingly, we get for $A=S D S^{t}=\frac{1}{3}\left(\begin{array}{ccc}5 & 0 & 2 \\ 0 & 7 & -2 \\ 2 & -2 & 6\end{array}\right)$.

