

TECHNISCHE UNIVERSITÄT DARMSTADT

22. Juni 2006

Linear Algebra II (MCS), SS 2006, Exercise 10

Mini-Quiz

- (1) The principal axes transformation for a real symmetric matrix A means...?
 - \Box to find a symmetric matrix P, such that $P^{-1}AP$ is diagonal.
 - $\sqrt{}$ to find an orthogonal matrix P, such that $P^{-1}AP$ is diagonal.
 - \Box to find an invertible matrix P, such that $P^{-1}AP$ is diagonal.
 - \Box to find an invertible matrix P, such that P^tAP is diagonal.
- (2) If a real symmetric $n \times n$ -matrix A has only one eigenvalue λ , then...?
 - \sqrt{A} is already diagonal.
 - $\Box a_{ij} = \lambda$ for all $i, j = 1, \ldots, n$
 - $\Box n = 1.$
- (3) If W is a linear subspace of a vector space V with scalar product $\langle \cdot | \cdot \rangle$, then W^{\perp} is...?
 - $\Box \{ w \in W \mid w \perp W \}.$
 - $\sqrt{\{v \in V \mid v \perp W\}}.$

 - $\sqrt[4]{v \in V \mid \langle v | w \rangle} = 0 \text{ for all } w \in W \}.$ $\sqrt{\{v \in V \mid \langle w | v \rangle} = 0 \text{ for all } w \in W \}.$ $\square \{v \in V \mid v \perp W \text{ and } \|v\| = 1 \}.$

Groupwork

G 43 Determine the eigenvalues and the principal axes transformation of the following matrix using Jacobirotations:

$$A = \begin{pmatrix} 2 & 2i \\ -2i & 2 \end{pmatrix}.$$

G 44 Determine the singular value decomposition $U^*AV = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$ of the following matrix:

$$A = \begin{pmatrix} 1 & i \\ 0 & 0 \\ -1 & -i \end{pmatrix}.$$

G 45 Let $\{u_1, \ldots, u_r\}$ be an orthonormal subset of a *n*-dimensional vector space V with scalar product. Show that for every $v \in V$ we have:

$$\sum_{j=1}^{r} |\langle v | u_j \rangle|^2 \le \|v\|^2.$$
 (Bessel's Inequality)

- **G 46** Let V be a n-dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$ and let $\{u_1, \ldots, u_r\}$ be a basis of a subspace W of V. Suppose that $\alpha = \{v_1, \ldots, v_{n-r}\}$ is a linear independent system of n-r vectors, such that $\langle u_i | v_k \rangle = 0$ for all $j = 1, \ldots, r, k = 1, \ldots, n - r$. Show that α is a basis of W^{\perp} .
- **G 47** Verify the following polar forms for a scalar product $\langle \cdot | \cdot \rangle$:

 - (i) $\langle u|v \rangle = \frac{1}{4}(||u+v||^2 ||u-v||^2)$ (euclidean case) (ii) $\langle u|v \rangle = \frac{1}{4}(||u+v||^2 ||u-v||^2) + \frac{i}{4}(||u+iv||^2 ||u-iv||^2)$ (unitary case)
- **G 48** Let V be a finite dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$.
 - (i) Show that for every fixed $u \in V$, the map $\psi_u : V \to K$, $v \mapsto \langle u | v \rangle$ defines a linear form on V.
 - (ii) Show that for every element $\phi \in V^*$, i.e. every linear form $\phi: V \to K$, there is a unique vector $u \in V$ such that $\phi(v) = \psi_u(v) = \langle u, v \rangle$.

Remark: (i) and (ii) show that the map $V \to V^*, u \mapsto \psi_u$ is a bijection. However, in the unitary case, this assignment is not linear!

Homework

H 35 Determine the QR-decomposition of $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ and use it to solve $Ax = b_i$ for $b_1 = (1, 1, 1)^t$

and $b_2 = (1, 0, -1)^t$.

- **H 36** (i) Prove: For any positively semi-definite matrix $A \in K^{n \times n}$ there is a unique positively semi-definite matrix $B \in K^{n \times n}$ such that $B^2 = A$.
 - (ii) Determine for each of the following matrices A, a positively semi-definite matrix B with $B^2 = A$.

$$(a) \quad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad (b) \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

H 37 Let A be a real symmetric $n \times n$ -matrix with smallest eigenvalue λ_{\min} and largest eigenvalue λ_{\max} . (i) Show the following estimate for the *Rayleigh-Quotient*:

$$\lambda_{\min} \le \frac{x^t A x}{|x|^2} \le \lambda_{\max} \text{ for all } x \in \mathbb{R}^n \setminus \{0\}.$$

(ii) Let $Q(x) = x^t A x$ and let V_+ as in Theorem 39.7. Show that $Q|_{V_+}$ has a unique minimum in x = 0.

H38 Consider the two parallel circles

$$S_1 = \{ (x, y, -1)^t \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \}$$

$$S_2 = \{ (x, y, 1)^t \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \}$$

in \mathbb{R}^3 centered at the z-axis. Now let g be the line which passes through S_1 in the point $(1, 0, -1)^t$ and through S_2 in the point $(\cos \alpha, \sin \alpha, 1)^t$ for some fixed $\alpha \in [0, 2\pi)$. Let $H_g = \bigcup_{A \in SO(2)} A(g)$ where SO(2) denotes the set of all rotations of \mathbb{R}^3 around the z-axis. Show that

SO(2) denotes the set of all rotations of \mathbb{R}^3 around the z-axis. Show that (i) $H_g = \{(x, y, z)^t \in \mathbb{R}^3 \mid \lambda_1 x^2 + \lambda_2 y^2 - \lambda_3 z^2 = c\}$ for some $\lambda_1, \lambda_2, \lambda_3, c \in \mathbb{R}$, i.e. H_g is a quadric. (ii) Through every point of H_g run two distinct lines which lie completely in H_g (only for $\alpha \neq 0$).

Hints: Every element of SO(2) has the form $\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ for $\theta \in [0, 2\pi)$. Use the addition theorem for trigonometric functions

theorems for trigonometric functions.

H39 (Optional task)

Let V be an euclidean vector space with on-basis $\{e_1, e_2, e_3\}$ and Q a quadratic form, on V with matrix A w.r.t. this basis. Suppose that

$$1 \le Q(v) \le 3$$
 for $|v| = 1$,
 $\det(A) = 6$, $Q(e_1 - 2e_2 + 2e_3) = 27$ and
 $Q(2e_1 + 2e_2 + e_3) = 18$.

(i) Determine all eigenvalues and an on-basis of eigenvectors of Q.

(ii) Determine A.

Hint: Use Corollary 39.4: If |v| = 1 and $Q(v) = \max\{Q(w) \mid |w| = 1\}$, then v is an eigenvector of Q.

Linear Algebra II (MCS), SS 2006, Exercise 10, Solution

Mini-Quiz

- (1) The principal axes transformation for a real symmetric matrix A means...?
 - \Box to find a symmetric matrix P, such that $P^{-1}AP$ is diagonal.
 - $\sqrt{}$ to find an orthogonal matrix P, such that $P^{-1}AP$ is diagonal.
 - \Box to find an invertible matrix P, such that $P^{-1}AP$ is diagonal.
 - \Box to find an invertible matrix P, such that P^tAP is diagonal.
- (2) If a real symmetric $n \times n$ -matrix A has only one eigenvalue λ , then...?
 - \sqrt{A} is already diagonal.
 - $\Box a_{ij} = \lambda \text{ for all } i, j = 1, \dots, n$
 - $\Box \ n=1.$
- (3) If W is a linear subspace of a vector space V with scalar product $\langle \cdot | \cdot \rangle$, then W^{\perp} is...?
 - $\Box \{ w \in W \mid w \perp W \}.$ $\sqrt{\{v \in V \mid v \perp W \}}.$ $\sqrt{\{v \in V \mid \langle v \mid w \rangle = 0 \text{ for all } w \in W \}}.$ $\sqrt{\{v \in V \mid \langle w \mid v \rangle = 0 \text{ for all } w \in W \}}.$ $\Box \{v \in V \mid v \perp W \text{ and } \|v\| = 1 \}.$

Groupwork

 ${f G}$ 43 Determine the eigenvalues and the principal axes transformation of the following matrix using Jacobirotations:

$$A = \begin{pmatrix} 2 & 2i \\ -2i & 2 \end{pmatrix}.$$

The Ansatz $(1,t)A(t,-1)^t = 0$ yields $t = \pm i$. Hence, $v_1 = \frac{1}{\sqrt{2}}(1,-i)^t$ and $v_2 = \frac{1}{\sqrt{2}}(i,-1)^t$ are the principal axes thus $T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & -1 \end{pmatrix}$ is the transformation matrix, which gives $T^*AT = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$.

G 44 Determine the singular value decomposition $U^*AV = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$ of the following matrix:

$$A = \begin{pmatrix} 1 & i \\ 0 & 0 \\ -1 & -i \end{pmatrix}.$$

We have $A^*A = \begin{pmatrix} 2 & 2i \\ -2i & 2 \end{pmatrix}$ which is the matrix from exercise **G 43**. Thus, by the algorithm of the script, we have $V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & -1 \end{pmatrix}$ and $\Sigma = (2)$. Furthermore, $AV = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \\ -\sqrt{2} & 0 \end{pmatrix}$ and after division by $\Sigma_{11} = 2$, we obtain the first column vector of U, which we complete arbitrarily to an on-basis of \mathbb{R}^3 : $U = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$.

G 45 Let $\{u_1, \ldots, u_r\}$ be an orthonormal subset of a *n*-dimensional vector space V with scalar product. Show that for every $v \in V$ we have:

$$\sum_{j=1}^{r} |\langle v | u_j \rangle|^2 \le ||v||^2.$$
 (Bessel's Inequality)

This is an implication of Plancherel's formula. In fact, we may complete $\{u_1, \ldots, u_r\}$ to an on-basis $\{u_1, \ldots, u_n\}$ of V. Then Plancherel's formula yields $\sum_{i=j}^n |\langle v|u_j \rangle|^2 = ||v||^2$. Dropping the last n - r terms on the left side yields the desired inequality, since all summands are non-negative.

G 46 Let V be a n-dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$ and let $\{u_1, \ldots, u_r\}$ be a basis of a subspace W of V. Suppose that $\alpha = \{v_1, \ldots, v_{n-r}\}$ is a linear independent system of n - r vectors, such that $\langle u_j | v_k \rangle = 0$ for all $j = 1, \ldots, r, k = 1, \ldots, n - r$. Show that α is a basis of W^{\perp} . We clearly have that $\operatorname{span}(\alpha) \subset W^{\perp}$, since $\langle u_j | v_k \rangle = 0$ for all $j = 1, \ldots, r, k = 1, \ldots, n - r$. Since $W \cap W^{\perp} = \{0\}$ and $V = W + W^{\perp}$, the dimension formula for linear subspaces yields $n = \dim V =$ $\dim W + \dim W^{\perp} = r + \dim W^{\perp}$. Thus $\dim W^{\perp} = n - r$, which shows that α generates the whole of W^{\perp} . So α is indeed a basis of W^{\perp} .

G 47 Verify the following polar forms for a scalar product $\langle \cdot | \cdot \rangle$:

(i) $\langle u|v\rangle = \frac{1}{4}(||u+v||^2 - ||u-v||^2)$ (euclidean case)

(ii) $\langle u|v \rangle = \frac{1}{4} (||u+v||^2 - ||u-v||^2) + \frac{i}{4} (||u+iv||^2 - ||u-iv||^2)$ (unitary case)

To
$$(i)$$
:

$$\begin{aligned} \frac{1}{4}(\|u+v\|^2 - \|u-v\|^2) &= \frac{1}{4}(\langle u+v|u+v\rangle - \langle u-v|u-v\rangle) \\ &= \frac{1}{4}(\langle u|u\rangle + 2\langle u|v\rangle + \langle v|v\rangle - \langle u|u\rangle + 2\langle u|v\rangle - \langle v|v\rangle) \\ &= \frac{1}{4}(4\langle u|v\rangle) = \langle u|v\rangle. \end{aligned}$$

To (ii): This is just done as in (i).

- **G 48** Let V be a finite dimensional vector space with scalar product $\langle \cdot | \cdot \rangle$.
 - (i) Show that for every fixed $u \in V$, the map $\psi_u : V \to K, v \mapsto \langle u | v \rangle$ defines a linear form on V.
 - (ii) Show that for every element $\phi \in V^*$, i.e. every linear form $\phi : V \to K$, there is a unique vector $u \in V$ such that $\phi(v) = \psi_u(v) = \langle u, v \rangle$.

Remark: (i) and (ii) show that the map $V \to V^*$, $u \mapsto \psi_u$ is a bijection. However, in the unitary case, this assignment is not linear!

- To (i): By definition, a scalar product is linear in the second argument and its image lies in the ground field. Hence ψ_u is a well defined linear form on V.
- To (ii): Let ϕ be an arbitrary linear form on V. If $\phi = 0$, then clearly $\psi_0 = \phi$. If $\phi \neq 0$, then by the dimension formula for linear maps, $W := \ker \phi$ is a hyperplane in V, i.e. dim $W = \dim V 1$. Let $u \in V$ be such that $u \perp W$ and $\phi(u) = 1$. We claim that $\psi_u = \phi$. In fact, $V = W \oplus (K \cdot u)$ and on both summands, ψ_u and ϕ coincide. By linearity, both linear forms coincide on V. Uniqueness of u can be seen as follows, if arguable: Suppose there is some u' such that $\psi_u = \phi = \psi_{u'}$. Then for all $v \in V$: $0 = \psi_u(v) \psi_{u'}(v) = \langle u u' | v \rangle$. Hence u = u'.

Homework

H 35 Determine the QR-decomposition of $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ and use it to solve $Ax = b_i$ for $b_1 = (1, 1, 1)^t$ and $b_2 = (1, 0, -1)^t$.

Applying Gram-Schmidt orthonormalization to the columns b_1, b_2, b_3 of A we obtain

$$u_{1} = b_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

$$v_{1} = \frac{u_{1}}{\|u_{1}\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

$$u_{2} = b_{2} - \langle v_{1} | b_{2} \rangle v_{1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix},$$

$$v_{2} = \frac{u_{2}}{\|u_{2}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix},$$

$$u_{3} = b_{3} - \langle v_{1} | b_{3} \rangle v_{1} - \langle v_{2} | b_{3} \rangle v_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix},$$

$$v_{3} = \frac{u_{3}}{\|u_{3}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}.$$

The vectors v_1, v_2, v_3 form the columns of the matrix Q in the QR-decomposition. Hence,

$$R = \begin{pmatrix} \langle v_1 | b_1 \rangle & \langle v_1 | b_2 \rangle & \langle v_1 | b_3 \rangle \\ 0 & \langle v_2 | b_2 \rangle & \langle v_2 | b_3 \rangle \\ 0 & 0 & \langle v_3 | b_3 \rangle \end{pmatrix} = \begin{pmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

so A decomposes as

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Using this decomposition, we solve $Ax_i = b_i$ by first forming $Q^t b_i$ and then solving $Rx_i = Q^t b_i$ by substituting backwards. We then have:

$$Q^{t}b_{1} = (\sqrt{3}, 0, 0)^{t} \implies x_{1} = (1, 0, 0)^{t}.$$
$$Q^{t}b_{2} = (0, -\frac{3}{\sqrt{6}}, -\frac{1}{\sqrt{2}})^{t} \implies x_{2} = (1, -1, -1)^{t}.$$

- **H 36** (i) Prove: For any positively semi-definite matrix $A \in K^{n \times n}$ there is a unique positively semi-definite matrix $B \in K^{n \times n}$ such that $B^2 = A$.
 - (ii) Determine for each of the following matrices A, a positively semi-definite matrix B with $B^2 = A$.

$$(a) \quad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad (b) \quad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

To (i): Since A is positively semi-definite, there is a unitary, resp. orthogonal, matrix S and a diagonal matrix D with nonnegative entries $\lambda_1, \ldots, \lambda_n$ such that $A = SDS^*$, resp. $A = SDS^t$. Now put $B = S\sqrt{D}S^*$, where \sqrt{D} denotes the diagonal matrix whose diagonal entries are just $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}$. Then $B^2 = S\sqrt{D}S^*S\sqrt{D}S^* = SDS^* = A$. This proves the existence of the square root. For the uniqueness, suppose that B satisfies $B^2 = A$. Let v be an eigenvector of B to the eigenvalue μ . Then v is an eigenvector of A to the eigenvalue μ^2 . Hence $E_{\mu}(B) \subset E_{\mu^2}(A)$. Since the eigenvalues of A are non-negative, they have a unique square root. This implies that the eigenspaces of B for distinct μ lie in the eigenspaces of A for distinct μ^2 . By the pigeon hole principle, $E_{\mu}(B) = E_{\mu^2}(A)$. Since B is completely determined by its eigenspaces and eigenvalues, we have just proved the uniqueness of B.

To (ii): For
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 the eigenvalues are 2 and 0. Corresponding eigenvectors are $(1,1)^t$ and $(1,-1)^t$. Hence the transition matrix of A is $S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. By (i), B is given by $S\sqrt{D}S^t = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \frac{1}{\sqrt{2}}A$.
For $A' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ the eigenvalues are 3 and 1. Corresponding eigenvectors are $(1,1)^t$ and $(1,-1)^t$.
Hence the transition matrix of A' is the same as that of A and by (i), B' is given by $S\sqrt{D}'S^t = \frac{1}{2} \begin{pmatrix} \sqrt{3}+1 & \sqrt{3}-1 \\ \sqrt{3}-1 & \sqrt{3}+1 \end{pmatrix}$.

H 37 Let A be a real symmetric $n \times n$ -matrix with smallest eigenvalue λ_{\min} and largest eigenvalue λ_{\max} . (i) Show the following estimate for the *Rayleigh-Quotient*:

$$\lambda_{\min} \le \frac{x^t A x}{|x|^2} \le \lambda_{\max} \text{ for all } x \in \mathbb{R}^n \setminus \{0\}.$$

- (ii) Let $Q(x) = x^t A x$ and let V_+ as in Theorem 39.7. Show that $Q|_{V_+}$ has a unique minimum in x = 0.
- To (i): Let $Q(x) := x^t A x$. Then Q is a quadratic form on \mathbb{R}^n and by Corollary 39.4 we have for all $||x|| = 1 : \lambda_{\min} \leq Q(x) \leq \lambda_{\max}$. If now $x \in \mathbb{R}^n \setminus \{0\}$ is arbitrary, put r := ||x|| and then by the above: $\lambda_{\min} \leq Q(\frac{x}{r}) \leq \lambda_{\max}$. However, $Q(\frac{x}{r}) = \frac{1}{r^2}Q(x) = \frac{Q(x)}{||x||^2} = \frac{x^t A x}{||x||^2}$ and our claim follows. To (ii): Suppose that Q has a (local) minimum in $x_0 \in \mathbb{R}^n \setminus \{0\}$. Then there is some open ball $B_{\epsilon}(x_0)$
- To (ii): Suppose that Q has a (local) minimum in $x_0 \in \mathbb{R}^n \setminus \{0\}$. Then there is some open ball $B_{\epsilon}(x_0)$ around x_0 such that for all $y \in B_{\epsilon}(x_0)$ we have $Q(y) \ge Q(x_0) =: m$. However, $Q(rx_0) = r^2 Q(x_0) = r^2 m$ for all $r \in \mathbb{R}$. In particular for all $r \in (1 - \epsilon, 1 + \epsilon)$ we have $r^2 m \ge m$. But for r < 1, clearly $r^2 m < m$, a contradiction. Hence, the unique minimum of Q is 0.
- H 38 Consider the two parallel circles

$$S_1 = \{ (x, y, -1)^t \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \}$$

$$S_2 = \{ (x, y, 1)^t \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \}$$

in \mathbb{R}^3 centered at the z-axis. Now let g be the line which passes through S_1 in the point $(1, 0, -1)^t$ and through S_2 in the point $(\cos \alpha, \sin \alpha, 1)^t$ for some fixed $\alpha \in [0, 2\pi)$. Let $H_g = \bigcup_{A \in SO(2)} A(g)$ where SO(2) denotes the set of all rotations of \mathbb{R}^3 around the z-axis. Show that

SO(2) denotes the set of all rotations of \mathbb{R}^3 around the z-axis. Show that (i) $H_g = \{(x, y, z)^t \in \mathbb{R}^3 \mid \lambda_1 x^2 + \lambda_2 y^2 - \lambda_3 z^2 = c\}$ for some $\lambda_1, \lambda_2, \lambda_3, c \in \mathbb{R}$, i.e. H_g is a quadric. (ii) Through every point of H_g run two distinct lines which lie completely in H_g (only for $\alpha \neq 0$).

Hints: Every element of SO(2) has the form $\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ for $\theta \in [0, 2\pi)$. Use the addition theorems for trigonometric functions

theorems for trigonometric functions.

To (i): The line g is the set of all $(x, y, z)^t = (1, 0, -1)^t + t \cdot (\cos \alpha - 1, \sin \alpha, 2)^t$ with arbitrary $t \in \mathbb{R}$. Hence, every element of H_g has the form $A_{\theta} \cdot (x, y, z)^t$ for some $\theta \in [0, 2\pi)$ and $(x, y, z)^t \in g$. This yields:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} (\cos \alpha - 1) \cos \theta - \sin \alpha \sin \theta \\ (\cos \alpha - 1) \sin \theta + \sin \alpha \cos \theta \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta + t \cos(\alpha + \theta) - t \cos \theta \\ \sin \theta + t \sin(\alpha + \theta) - t \sin \theta \\ -1 + 2t \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta (1 - t) + t \cos(\alpha + \theta) \\ \sin \theta (1 - t) + t \sin(\alpha + \theta) \\ 2t - 1 \end{pmatrix}.$$

From the last equation we obtain $t = \frac{1+z}{2}$ and substituting this into the equations for x and y gives:

$$x = \cos \theta \left(\frac{1-z}{2}\right) + \left(\frac{1+z}{2}\right) \cos(\alpha + \theta)$$
$$y = \sin \theta \left(\frac{1-z}{2}\right) + \left(\frac{1+z}{2}\right) \sin(\alpha + \theta).$$

Now we square both equations, add them up and use $\cos^2 + \sin^2 = 1$ to obtain

$$x^{2} + y^{2} = \left(\frac{1-z}{2}\right)^{2} + \left(\frac{1+z}{2}\right)^{2} + \left(\frac{1-z^{2}}{2}\right)(\cos\theta\cos(\alpha+\theta) + \sin\theta\sin(\alpha+\theta)).$$

We use the addition theorem for trigonometric functions one last time and arrive at

$$x^{2} + y^{2} - \frac{(1 - \cos \alpha)}{2}z^{2} = \frac{(1 + \cos \alpha)}{2}$$

Choosing $\lambda_1 = \lambda_2 = 1, \lambda_3 = -\frac{(1-\cos\alpha)}{2}$ and $c = \frac{(1+\cos\alpha)}{2}$, we have shown that H_g is included in a quadric. This quadric is for $\alpha = 0$ a cylinder, for $\alpha = \pi$ a cone and in all other cases a one-sheeted hyperboloid. We still have to verify that the quadric does not contain more points than H_g . In fact, it is not difficult to see that the intersection of every plane parallel to the x, y-plane intersects with H_g in a circle centered at the z-axis. The same holds true for the quadric. As a circle contained in another circle must coincide with the latter, we see that both sets H_g and the quadric must coincide.

To (ii): Since H_g is invariant under all rotations around the z-axis, it is also invariant under all reflections on planes which contain the z-axis. Now let p be an arbitrary point on H_g . By definition, there is some $A \in SO(2)$ such that the line A(g) passes through p. Under the reflection τ on the plane which contains p and the z-axis, A(g) gets mapped to the line $\tau(A(g))$ which is different from A(g), because we excluded the case $\alpha = 0$ for which H_g is a cylinder.

H39 (Optional task)

Let V be an euclidean vector space with on-basis $\{e_1, e_2, e_3\}$ and Q a quadratic form, on V with matrix A w.r.t. this basis. Suppose that

$$1 \le Q(v) \le 3$$
 for $|v| = 1$,
det $(A) = 6$, $Q(e_1 - 2e_2 + 2e_3) = 27$ and
 $Q(2e_1 + 2e_2 + e_3) = 18$.

- (i) Determine all eigenvalues and an on-basis of eigenvectors of Q.
- (ii) Determine A.

Hint: Use Corollary 39.4: If |v| = 1 and $Q(v) = \max\{Q(w) \mid |w| = 1\}$, then v is an eigenvector of Q. To (i): From $Q(e_1 - 2e_2 + 2e_3) = 27$ we obtain $3 = \frac{1}{9}Q(e_1 - 2e_2 + 2e_3) = Q(\frac{1}{3}e_1 - \frac{2}{3}e_2 + \frac{2}{3}e_3)$. Thus the corollary says that $v_1 = (\frac{1}{3}e_1 - \frac{2}{3}e_2 + \frac{2}{3}e_3)^t$ is an eigenvector to the maximal eigenvalue $\lambda_1 = 3$. We can furthermore choose a normed basis v_1, v_2, v_3 of eigenvectors corresponding to the eigenvalues $3 = \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 1$. Since the determinant of a diagonalizable matrix is equal to the product of its eigenvalues, we obtain from det A = 6 that $2 = \lambda_2 \cdot \lambda_3$. Now look at the restriction $Q|_W$ of Q to the subspace $W = v_1^{\perp} = \operatorname{span}\{v_2, v_3\}$. Then $Q|_W$ is also a quadratic form, with eigenvalues λ_2, λ_3 . Furthermore, an eigenvector of $Q|_W$ is also one of Q. By assumption, $Q(2e_1+2e_2+e_3) = 18$ and as above, this implies that $2 = \frac{1}{9}Q(2e_1+2e_2+e_3) = Q(\frac{2}{3}e_1+\frac{2}{3}e_2+\frac{1}{3}e_3)$. Since $(\frac{2}{3}e_1+\frac{2}{3}e_2+\frac{1}{3}e_3)^t$ is orthogonal to v_1 and has norm equal to one, we see that $\lambda_2 = 2$ and may take $v_2 = (\frac{2}{3}e_1+\frac{2}{3}e_2+\frac{1}{3}e_3)^t$, due to the corollary again. By the determinant condition above, we also see that $\lambda_3 = 1$. Now V_1 and v_2 already determine v_3 uniquely up to a sign. For instance, we can take $v_3 = (-\frac{2}{2}e_1+\frac{1}{2}e_2+\frac{2}{3}e_3)^t$.

instance, we can take $v_3 = (-\frac{2}{3}e_1 + \frac{1}{3}e_2 + \frac{2}{3}e_3)^t$. To (ii): From the data obtained in (i) we know that the transformation matrix S which diagonalizes Ais given by $S = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ and the corresponding diagonal matrix is $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Accordingly, we get for $A = SDS^t = \frac{1}{3} \begin{pmatrix} 5 & 0 & 2 \\ 0 & 7 & -2 \\ 2 & -2 & 6 \end{pmatrix}$.