Prof. Dr. Christian Herrmann

Linear Algebra II (MCS), SS 2006, Exercise 1

Groupwork

G 1 Which of the following matrices can be completed to an orthogonal matrix? Give an admissible completion, if possible.
(i) $\left(\begin{array}{lll}* & 5 & * \\ * & * & * \\ * & * & *\end{array}\right)$,
(ii) $\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 1 & * \\ 1 & 0 & * \\ 0 & -1 & *\end{array}\right)$,
(iii) $\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 1 & * \\ 0 & 0 & * \\ 1 & -1 & *\end{array}\right)$.

G 2 Let V be a finite dimensional Euclidean space and $U, W \subset V$ subspaces. Show the following identities:
(i) $(U+W)^{\perp}=U^{\perp} \cap W^{\perp}$,
(ii) $(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$,
(iii) $V=U \oplus U^{\perp}$.

G 3 Let $(V,\langle\cdot \mid \cdot\rangle)$ be a finite dimensional Euclidean space. Show that for every $\vec{x}, \vec{y} \in V$ the following identities hold:
(i) $\langle\vec{x}+\vec{y} \mid \vec{x}-\vec{y}\rangle=\|\vec{x}\|^{2}-\|\vec{y}\|^{2}$.
(ii) $\|\vec{x}-\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\langle\vec{x} \mid \vec{y}\rangle=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\|\vec{x}\| \cdot\|\vec{y}\| \cdot \cos \theta$, where θ denotes the angle between \vec{x} and \vec{y}. (Generalized theorem of Pythagoras)
(iii) $\|\vec{x}+\vec{y}\|^{2}-\|\vec{x}-\vec{y}\|^{2}=4\langle\vec{x} \mid \vec{y}\rangle$.
(iv) $\|\vec{x}+\vec{y}\|^{2}+\|\vec{x}-\vec{y}\|^{2}=2\|\vec{x}\|^{2}+2\|\vec{y}\|^{2}$. (Parallelogram identity)

G 4 Let (\mathbb{P}, V) denote affine 3 -space and let $\alpha: O, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$ be a coordinate system. Let furthermore

$$
A:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Describe the affine self-map $\phi:(\mathbb{P}, V) \rightarrow(\mathbb{P}, V)$ with homogeneous matrix $\tilde{\alpha} \tilde{\phi}_{\tilde{\alpha}}=A$ in terms of translations, rotations, reflections, etc. Does ϕ has any fixed points? Draw a picture of the situation.

Homework

H 1 Let V be a vector space and V^{*} its dual. Show that the map $V^{*} \backslash\{0\} \rightarrow H, f \mapsto f^{-1}(1)$ is a bijection, where H denotes the set of affine hyperplanes of V which do not pass through the origin.
$H 2$ Let (\mathbb{P}, V) be an affine space and let $\overrightarrow{x_{i}}, i \in I$ be a basis of V. Show that any affine self-map ϕ : $(\mathbb{P}, V) \rightarrow(\mathbb{P}, V)$ which commutes with each of the translations $\tau_{x_{i}}, i \in I$ is itself a translation.

H 3 Let $(V,\langle\cdot \mid \cdot\rangle)$ be a finite dimensional Euclidean space and $U \subset V$ a subspace. Suppose that $\varphi: V \rightarrow V$ is an endomorphism with the following properties:

$$
\varphi \circ \varphi=\varphi, \operatorname{im}(\varphi)=U, \operatorname{ker}(\varphi)=U^{\perp}
$$

Show that φ is the orthogonal projection of V onto U and give an explicit formula for φ in terms of a suitable basis of V and the scalar product.

Linear Algebra II (MCS), SS 2006, Exercise 1, Solution

Groupwork

G 1 Which of the following matrices can be completed to an orthogonal matrix? Give an admissible completion, if possible.
(i) $\left(\begin{array}{ccc}* & 5 & * \\ * & * & * \\ * & * & *\end{array}\right)$,
(ii) $\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 1 & * \\ 1 & 0 & * \\ 0 & -1 & *\end{array}\right)$,
(iii) $\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 1 & * \\ 0 & 0 & * \\ 1 & -1 & *\end{array}\right)$.

Let a_{1}, a_{2}, a_{3} denote the columns of the matrix A. If A is orthogonal, we then have

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=A \cdot A^{t}=\left(\begin{array}{ccc}
\left\langle a_{1} \mid a_{1}\right\rangle & \left\langle a_{1} \mid a_{2}\right\rangle & \left\langle a_{1} \mid a_{3}\right\rangle \\
\left\langle a_{2} \mid a_{1}\right\rangle & \left\langle a_{2} \mid a_{2}\right\rangle & \left\langle a_{2} \mid a_{3}\right\rangle \\
\left\langle a_{3} \mid a_{1}\right\rangle & \left\langle a_{3} \mid a_{2}\right\rangle & \left\langle a_{3} \mid a_{3}\right\rangle
\end{array}\right) .
$$

In particular, each column vector $a_{i}=\left(a_{1, i}, a_{2, i}, a_{3, i}\right)^{t}, i=1,2,3$ satisfies $a_{1, i}^{2}+a_{2, i}^{2}+a_{3, i}^{2}=1$ and thus each matrix entry has absolute value less than or equal to one. Furthermore, the a_{i} are mutually orthogonal. Hence, (i) and (ii) cannot be completed to an orthogonal matrix. For (iii) the only possible solutions are

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & \pm \sqrt{2} \\
1 & -1 & 0
\end{array}\right)
$$

G 2 Let V be a finite dimensional Euclidean space and $U, W \subset V$ subspaces. Show the following identities:

$$
\text { (i) }(U+W)^{\perp}=U^{\perp} \cap W^{\perp}, \quad \text { (ii) }(U \cap W)^{\perp}=U^{\perp}+W^{\perp}, \quad \text { (iii) } V=U \oplus U^{\perp} \text {. }
$$

There are several ways to solve this exercise.
To (i): Let $u+w \in U+W$ and $x \in U^{\perp} \cap W^{\perp}$ be arbitrary elements. Then

$$
\langle u+w \mid x\rangle=\underbrace{\langle u \mid x\rangle}_{=0}+\underbrace{\langle w \mid x\rangle}_{=0}=0,
$$

which proves $U^{\perp} \cap W^{\perp} \subset(U+W)^{\perp}$. Conversely, let $x \in(U+W)^{\perp}$ and $u \in U, w \in W$ be arbitrary elements. Then $\langle x \mid u\rangle=0$ and $\langle x \mid w\rangle=0$, whence $x \in U^{\perp}$ and $x \in W^{\perp}$. This implies $x \in U^{\perp} \cap W^{\perp}$. To (ii): Applying (i) to U^{\perp} and W^{\perp} gives

$$
\left(U^{\perp}+W^{\perp}\right)^{\perp}=U^{\perp \perp} \cap W^{\perp \perp} .
$$

Applying now $(\cdot)^{\perp}$ to both sides and using that $U^{\perp \perp}=U$, yields the desired formula. To (iii): This is Corollary 25.3.

G 3 Let $(V,\langle\cdot \mid \cdot\rangle)$ be a finite dimensional Euclidean space. Show that for every $\vec{x}, \vec{y} \in V$ the following identities hold:
(i) $\langle\vec{x}+\vec{y} \mid \vec{x}-\vec{y}\rangle=\|\vec{x}\|^{2}-\|\vec{y}\|^{2}$.
(ii) $\|\vec{x}-\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\langle\vec{x} \mid \vec{y}\rangle=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\|\vec{x}\| \cdot\|\vec{y}\| \cdot \cos \theta$, where θ denotes the angle between \vec{x} and \vec{y}. (Generalized theorem of Pythagoras)
(iii) $\|\vec{x}+\vec{y}\|^{2}-\|\vec{x}-\vec{y}\|^{2}=4\langle\vec{x} \mid \vec{y}\rangle$.
(iv) $\|\vec{x}+\vec{y}\|^{2}+\|\vec{x}-\vec{y}\|^{2}=2\|\vec{x}\|^{2}+2\|\vec{y}\|^{2}$. (Parallelogram identity)

Using the bilinearity and symmetry of the scalar product, we obtain:
(i): $\langle\vec{x}+\vec{y} \mid \vec{x}-\vec{y}\rangle=\langle\vec{x} \mid \vec{x}\rangle-\langle\vec{x} \mid \vec{y}\rangle+\langle\vec{y} \mid \vec{x}\rangle+\langle\vec{y} \mid \vec{y}\rangle=\|\vec{x}\|^{2}-\|\vec{y}\|^{2}$.
(ii): $\|\vec{x}-\vec{y}\|^{2}=\langle\vec{x}-\vec{y} \mid \vec{x}-\vec{y}\rangle=\langle\vec{x} \mid \vec{x}\rangle-\langle\vec{x} \mid \vec{y}\rangle-\langle\vec{y} \mid \vec{x}\rangle+\langle\vec{y} \mid \vec{y}\rangle=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2 \cdot\langle\vec{x} \mid \vec{y}\rangle$.

By definition of the angle between \vec{x} and \vec{y}, we have $\langle\vec{x} \mid \vec{y}\rangle=\|\vec{x}\| \cdot\|\vec{y}\| \cdot \cos \theta$.
(iii)\& (iv): Applying (ii) to \vec{x}, \vec{y}, as well as $\vec{x},-\vec{y}$ and subtracting (resp. adding) the resulting equations, yields the particular formula.

G 4 Let (\mathbb{P}, V) denote affine 3 -space and let $\alpha: O, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$ be a coordinate system. Let furthermore

$$
A:=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Describe the affine self-map $\phi:(\mathbb{P}, V) \rightarrow(\mathbb{P}, V)$ with homogeneous matrix $\tilde{\alpha} \tilde{\phi}_{\tilde{\alpha}}=A$ in terms of translations, rotations, reflections, etc. Does ϕ has any fixed points? Draw a picture of the situation.

From the first column we read of that the translational part of ϕ is $\tau_{\vec{v}}$ with $\vec{v}=\overrightarrow{e_{1}}+\overrightarrow{e_{2}}+\overrightarrow{e_{3}}$. The lower right 3×3-block of A tells us, that the linear part of ϕ is represented by the matrix

$$
\tilde{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

which is an orthogonal reflection ϕ_{0} on the hyperplane $\epsilon=\left\{\vec{x}+O \mid\left\langle\overrightarrow{e_{1}}-\overrightarrow{e_{3}} \mid \vec{x}\right\rangle=0\right\}$. That is: $\phi_{0}(\vec{x})=$ $\vec{x}-2\left\langle\overrightarrow{e_{1}}-\overrightarrow{e_{2}} \mid \vec{x}\right\rangle$ and ϕ decomposes as $\phi=\tau_{\vec{v}} \circ \phi_{0}$. From this description, we read of that ϕ is a proper glide reflection on ϵ. I.e. it has no fixed points, one fixed line (given by $l=\left\{r\left(\overrightarrow{e_{1}}+\overrightarrow{e_{2}}+\overrightarrow{e_{3}}\right)+O \mid r \in \mathbb{R}\right\}$) and one fixed plane (given by ϵ).

Homework

H 1 Let V be a vector space and V^{*} its dual. Show that the map $V^{*} \backslash\{0\} \rightarrow H, f \mapsto f^{-1}(1)$ is a bijection, where H denotes the set of affine hyperplanes of V which do not pass through the origin.

We first have to verify, that the map, say $\Psi: V^{*} \backslash\{0\} \rightarrow H$, is indeed well defined. That is, we have to verify that for any $f \in V^{*} \backslash\{0\}$, the point set $f^{-1}(1)$ is indeed an affine hyperplane. Since $f \neq 0$, we obtain that f has to be surjective. In particular, $f^{-1}(1)$ is not empty and we may choose some element $v \in f^{-1}(1)$. By the dimension formula for linear maps, it follows that $f^{-1}(0)$ is a hyperplane through the origin and then $f^{-1}(1)=v+f^{-1}(0)$ is an affine hyperplane, not containing the origin.
Next, we deal with the injectivity of Ψ. For this purpose suppose that f_{1}, f_{2} have the same image under Ψ. That is $f_{1}^{-1}(1)=f_{2}^{-1}(1)=: E$ and f_{1}, f_{2} coincide on said hypersurface. Now, for an arbitrary $v \in E$, the hyperplane $E^{\prime}=-v+E$ contains the origin and is therefore a linear subspace. Since $v \notin E^{\prime}$ and the codimension of E^{\prime} is one, we have a direct sum decomposition of $V=E^{\prime} \oplus \operatorname{span}(v)$. Thus, every element w of V can be uniquely written as a sum of an element of E^{\prime} and a scalar multiple of v. Say, $w=e+r \cdot v$. Then

$$
f_{1}(w)=f_{1}(e+r \cdot v)=f_{1}(e)+r \cdot f_{1}(v)=0+r=r=f_{2}(w)
$$

holds for every $w \in W$ and hence $f_{1}=f_{2}$, proving the injectivity of Ψ.
Finally, in order to proof the surjectivity of Ψ, let E be an arbitrary hypersurface in V, not containing the origin. Then for some $v \in E$ we again have a direct sum decomposition of $V=E^{\prime} \oplus \operatorname{span}(v)$, where $E^{\prime}=-v+E$. We define a linearform f on V by setting $\left.f\right|_{E^{\prime}}=0$ and $f(v)=1$. Obviously, $f \neq 0$ and $f^{-1}(1)=v+E^{\prime}+E$.
Did you observe that we did not require V to be finite dimensional?
H 2 Let (\mathbb{P}, V) be an affine space and let $\overrightarrow{x_{i}}, i \in I$ be a basis of V. Show that any affine self-map ϕ : $(\mathbb{P}, V) \rightarrow(\mathbb{P}, V)$ which commutes with each of the translations $\tau_{x_{i}}, i \in I$ is itself a translation.

Let us first assume that $\phi(0)=0$, that is ϕ is linear. By assumption we then have $\phi \circ \tau_{x_{i}}=\tau_{x_{i}} \circ \phi$. Applying this equation to the zero vector, we obtain

$$
\phi\left(x_{i}\right)=\tau_{x_{i}}(\phi(0))=\tau_{x_{i}}(0)=x_{i}
$$

Since we may write every $v \in V$ as a unique, finite linear combination of the x_{i}, say $v=\sum_{i \in I} v_{i} \cdot x_{i}$ (for all but finitely many $i \in I$ we have $v_{i}=0$), we have by linearity of ϕ :

$$
\phi(v)=\phi\left(\sum_{i \in I} v_{i} \cdot x_{i}\right)=\sum_{i \in I} v_{i} \cdot \phi\left(x_{i}\right)=\sum_{i \in I} v_{i} \cdot x_{i}=v
$$

Thus, ϕ is the translation by the zero vector.
If ϕ is not linear, we may pass to $\phi^{\prime}=\tau_{-v} \circ \phi$, where $v=\phi(0)$. Since all translations commute, we have that ϕ^{\prime} satisfies our assumption and furthermore, it is a linear map. By the arguments above we thus have $\phi^{\prime}=\mathrm{id}$ and hence $\phi=\tau_{v} \circ \phi^{\prime}=\tau_{v}$.

H 3 Let $(V,\langle\cdot \mid \cdot\rangle)$ be a finite dimensional Euclidean space and $U \subset V$ a subspace. Suppose that $\varphi: V \rightarrow V$ is an endomorphism with the following properties:

$$
\varphi \circ \varphi=\varphi, \operatorname{im}(\varphi)=U, \operatorname{ker}(\varphi)=U^{\perp}
$$

Show that φ is the orthogonal projection of V onto U and give an explicit formula for φ in terms of a suitable basis of V and the scalar product.

Actually, all this exercise requires of you is to locate and review the definition of an orthogonal projection in the script. For any $x \in U$ you have some $v \in V$ with $\varphi(v)=u$. By the given property, you have $\varphi(u)=\varphi \circ \varphi(v)=\varphi(v)=u$. The rest follows from theorem 25.2.

