Department of Mathematics Prof. Dr. Christian Herrmann Dipl.-Math. Frederick Magata Dr. Abdelhadi Es-Sarhir

TECHNISCHE UNIVERSITÄT DARMSTADT

20. April 2006

Linear Algebra II (MCS), SS 2006, Exercise 1

Groupwork

 ${f G1}$ Which of the following matrices can be completed to an orthogonal matrix? Give an admissible completion, if possible.

(i)
$$\begin{pmatrix} * & 5 & * \\ * & * & * \\ * & * & * \end{pmatrix}$$
, (ii) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & * \\ 1 & 0 & * \\ 0 & -1 & * \end{pmatrix}$, (iii) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & * \\ 0 & 0 & * \\ 1 & -1 & * \end{pmatrix}$.

G 2 Let V be a finite dimensional Euclidean space and $U, W \subset V$ subspaces. Show the following identities:

(i)
$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$
, (ii) $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$, (iii) $V = U \oplus U^{\perp}$.

- **G 3** Let $(V, \langle \cdot | \cdot \rangle)$ be a finite dimensional Euclidean space. Show that for every $\vec{x}, \vec{y} \in V$ the following identities hold:
 - (i) $\langle \vec{x} + \vec{y} | \vec{x} \vec{y} \rangle = \|\vec{x}\|^2 \|\vec{y}\|^2$.
 - (ii) $\|\vec{x} \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 2\langle \vec{x} \mid \vec{y} \rangle = \|\vec{x}\|^2 + \|\vec{y}\|^2 2\|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos\theta$, where θ denotes the angle between \vec{x} and \vec{y} . (Generalized theorem of Pythagoras)
 - (iii) $\|\vec{x} + \vec{y}\|^2 \|\vec{x} \vec{y}\|^2 = 4\langle \vec{x} \mid \vec{y} \rangle.$
 - (iv) $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} \vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2$. (Parallelogram identity)
- **G** 4 Let (\mathbb{P}, V) denote affine 3-space and let $\alpha : O, \vec{e_1}, \vec{e_2}, \vec{e_3}$ be a coordinate system. Let furthermore

$$A := \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right).$$

Describe the affine self-map $\phi : (\mathbb{P}, V) \to (\mathbb{P}, V)$ with homogeneous matrix $_{\tilde{\alpha}} \tilde{\phi}_{\tilde{\alpha}} = A$ in terms of translations, rotations, reflections, etc. Does ϕ has any fixed points? Draw a picture of the situation.

Homework

- **H1** Let V be a vector space and V^* its dual. Show that the map $V^* \setminus \{0\} \to H$, $f \mapsto f^{-1}(1)$ is a bijection, where H denotes the set of affine hyperplanes of V which do not pass through the origin.
- **H2** Let (\mathbb{P}, V) be an affine space and let $\vec{x_i}, i \in I$ be a basis of V. Show that any affine self-map ϕ : $(\mathbb{P}, V) \to (\mathbb{P}, V)$ which commutes with each of the translations $\tau_{x_i}, i \in I$ is itself a translation.
- **H 3** Let $(V, \langle \cdot | \cdot \rangle)$ be a finite dimensional Euclidean space and $U \subset V$ a subspace. Suppose that $\varphi : V \to V$ is an endomorphism with the following properties:

$$\varphi \circ \varphi = \varphi, \text{ im}(\varphi) = U, \text{ ker}(\varphi) = U^{\perp}.$$

Show that φ is the orthogonal projection of V onto U and give an explicit formula for φ in terms of a suitable basis of V and the scalar product.

Linear Algebra II (MCS), SS 2006, Exercise 1, Solution

Groupwork

G1 Which of the following matrices can be completed to an orthogonal matrix? Give an admissible completion, if possible.

(i)
$$\begin{pmatrix} * & 5 & * \\ * & * & * \\ * & * & * \end{pmatrix}$$
, (ii) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & * \\ 1 & 0 & * \\ 0 & -1 & * \end{pmatrix}$, (iii) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & * \\ 0 & 0 & * \\ 1 & -1 & * \end{pmatrix}$.

Let a_1, a_2, a_3 denote the columns of the matrix A. If A is orthogonal, we then have

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A \cdot A^{t} = \begin{pmatrix} \langle a_{1} \mid a_{1} \rangle & \langle a_{1} \mid a_{2} \rangle & \langle a_{1} \mid a_{3} \rangle \\ \langle a_{2} \mid a_{1} \rangle & \langle a_{2} \mid a_{2} \rangle & \langle a_{2} \mid a_{3} \rangle \\ \langle a_{3} \mid a_{1} \rangle & \langle a_{3} \mid a_{2} \rangle & \langle a_{3} \mid a_{3} \rangle \end{pmatrix}.$$

In particular, each column vector $a_i = (a_{1,i}, a_{2,i}, a_{3,i})^t$, i = 1, 2, 3 satisfies $a_{1,i}^2 + a_{2,i}^2 + a_{3,i}^2 = 1$ and thus each matrix entry has absolute value less than or equal to one. Furthermore, the a_i are mutually orthogonal. Hence, (i) and (ii) cannot be completed to an orthogonal matrix. For (iii) the only possible solutions are

$$\frac{1}{\sqrt{2}} \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 0 & \pm\sqrt{2} \\ 1 & -1 & 0 \end{array} \right).$$

G 2 Let V be a finite dimensional Euclidean space and $U, W \subset V$ subspaces. Show the following identities:

(i)
$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$
, (ii) $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$, (iii) $V = U \oplus U^{\perp}$

There are several ways to solve this exercise.

To (i): Let $u + w \in U + W$ and $x \in U^{\perp} \cap W^{\perp}$ be arbitrary elements. Then

$$\langle u+w\mid x\rangle = \underbrace{\langle u\mid x\rangle}_{=0} + \underbrace{\langle w\mid x\rangle}_{=0} = 0,$$

which proves $U^{\perp} \cap W^{\perp} \subset (U+W)^{\perp}$. Conversely, let $x \in (U+W)^{\perp}$ and $u \in U$, $w \in W$ be arbitrary elements. Then $\langle x \mid u \rangle = 0$ and $\langle x \mid w \rangle = 0$, whence $x \in U^{\perp}$ and $x \in W^{\perp}$. This implies $x \in U^{\perp} \cap W^{\perp}$. To (ii): Applying (i) to U^{\perp} and W^{\perp} gives

$$(U^{\perp} + W^{\perp})^{\perp} = U^{\perp \perp} \cap W^{\perp \perp}.$$

Applying now $(\cdot)^{\perp}$ to both sides and using that $U^{\perp \perp} = U$, yields the desired formula. To (iii): This is Corollary 25.3.

- **G 3** Let $(V, \langle \cdot | \cdot \rangle)$ be a finite dimensional Euclidean space. Show that for every $\vec{x}, \vec{y} \in V$ the following identities hold:
 - (i) $\langle \vec{x} + \vec{y} \mid \vec{x} \vec{y} \rangle = \|\vec{x}\|^2 \|\vec{y}\|^2$.
 - (ii) $\|\vec{x} \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 2\langle \vec{x} \mid \vec{y} \rangle = \|\vec{x}\|^2 + \|\vec{y}\|^2 2\|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos\theta$, where θ denotes the angle between \vec{x} and \vec{y} . (Generalized theorem of Pythagoras)
 - (iii) $\|\vec{x} + \vec{y}\|^2 \|\vec{x} \vec{y}\|^2 = 4\langle \vec{x} \mid \vec{y} \rangle.$
 - (iv) $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} \vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2$. (Parallelogram identity)

Using the bilinearity and symmetry of the scalar product, we obtain:

- $(i): \langle \vec{x} + \vec{y} \mid \vec{x} \vec{y} \rangle = \langle \vec{x} \mid \vec{x} \rangle \langle \vec{x} \mid \vec{y} \rangle + \langle \vec{y} \mid \vec{x} \rangle + \langle \vec{y} \mid \vec{y} \rangle = \|\vec{x}\|^2 \|\vec{y}\|^2.$
- (ii): $\|\vec{x} \vec{y}\|^2 = \langle \vec{x} \vec{y} \mid \vec{x} \vec{y} \rangle = \langle \vec{x} \mid \vec{x} \rangle \langle \vec{x} \mid \vec{y} \rangle \langle \vec{y} \mid \vec{x} \rangle + \langle \vec{y} \mid \vec{y} \rangle = \|\vec{x}\|^2 + \|\vec{y}\|^2 2 \cdot \langle \vec{x} \mid \vec{y} \rangle.$ By definition of the angle between \vec{x} and \vec{y} , we have $\langle \vec{x} \mid \vec{y} \rangle = \|\vec{x}\| \cdot \|\vec{y}\| \cdot \cos \theta.$

(iii) & (iv): Applying (ii) to \vec{x}, \vec{y} , as well as $\vec{x}, -\vec{y}$ and subtracting (resp. adding) the resulting equations, yields the particular formula.

G 4 Let (\mathbb{P}, V) denote affine 3-space and let $\alpha : O, \vec{e_1}, \vec{e_2}, \vec{e_3}$ be a coordinate system. Let furthermore

$$A := \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right).$$

Describe the affine self-map $\phi : (\mathbb{P}, V) \to (\mathbb{P}, V)$ with homogeneous matrix $_{\tilde{\alpha}} \phi_{\tilde{\alpha}} = A$ in terms of translations, rotations, reflections, etc. Does ϕ has any fixed points? Draw a picture of the situation.

From the first column we read of that the translational part of ϕ is $\tau_{\vec{v}}$ with $\vec{v} = \vec{e_1} + \vec{e_2} + \vec{e_3}$. The lower right 3 × 3-block of A tells us, that the linear part of ϕ is represented by the matrix

$$\tilde{A} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right),$$

which is an orthogonal reflection ϕ_0 on the hyperplane $\epsilon = \{\vec{x} + O \mid \langle \vec{e_1} - \vec{e_3} \mid \vec{x} \rangle = 0\}$. That is: $\phi_0(\vec{x}) = \vec{x} - 2\langle \vec{e_1} - \vec{e_2} \mid \vec{x} \rangle$ and ϕ decomposes as $\phi = \tau_{\vec{v}} \circ \phi_0$. From this description, we read of that ϕ is a proper glide reflection on ϵ . I.e. it has no fixed points, one fixed line (given by $l = \{r(\vec{e_1} + \vec{e_2} + \vec{e_3}) + O \mid r \in \mathbb{R}\}$) and one fixed plane (given by ϵ).

Homework

H1 Let V be a vector space and V^* its dual. Show that the map $V^* \setminus \{0\} \to H$, $f \mapsto f^{-1}(1)$ is a bijection, where H denotes the set of affine hyperplanes of V which do not pass through the origin.

We first have to verify, that the map, say $\Psi: V^* \setminus \{0\} \to H$, is indeed well defined. That is, we have to verify that for any $f \in V^* \setminus \{0\}$, the point set $f^{-1}(1)$ is indeed an affine hyperplane. Since $f \neq 0$, we obtain that f has to be surjective. In particular, $f^{-1}(1)$ is not empty and we may choose some element $v \in f^{-1}(1)$. By the dimension formula for linear maps, it follows that $f^{-1}(0)$ is a hyperplane through the origin and then $f^{-1}(1) = v + f^{-1}(0)$ is an affine hyperplane, not containing the origin.

Next, we deal with the injectivity of Ψ . For this purpose suppose that f_1 , f_2 have the same image under Ψ . That is $f_1^{-1}(1) = f_2^{-1}(1) =: E$ and f_1 , f_2 coincide on said hypersurface. Now, for an arbitrary $v \in E$, the hyperplane E' = -v + E contains the origin and is therefore a linear subspace. Since $v \notin E'$ and the codimension of E' is one, we have a direct sum decomposition of $V = E' \oplus \operatorname{span}(v)$. Thus, every element w of V can be uniquely written as a sum of an element of E' and a scalar multiple of v. Say, $w = e + r \cdot v$. Then

$$f_1(w) = f_1(e + r \cdot v) = f_1(e) + r \cdot f_1(v) = 0 + r = r = f_2(w)$$

holds for every $w \in W$ and hence $f_1 = f_2$, proving the injectivity of Ψ .

Finally, in order to proof the surjectivity of Ψ , let E be an arbitrary hypersurface in V, not containing the origin. Then for some $v \in E$ we again have a direct sum decomposition of $V = E' \oplus \operatorname{span}(v)$, where E' = -v + E. We define a linearform f on V by setting $f|_{E'} = 0$ and f(v) = 1. Obviously, $f \neq 0$ and $f^{-1}(1) = v + E' + E$.

Did you observe that we did not require V to be finite dimensional?

H2 Let (\mathbb{P}, V) be an affine space and let $\vec{x_i}, i \in I$ be a basis of V. Show that any affine self-map ϕ : $(\mathbb{P}, V) \to (\mathbb{P}, V)$ which commutes with each of the translations $\tau_{x_i}, i \in I$ is itself a translation. Linear Algebra II (MCS), SS 2006, Exercise 1, Solution

Let us first assume that $\phi(0) = 0$, that is ϕ is linear. By assumption we then have $\phi \circ \tau_{x_i} = \tau_{x_i} \circ \phi$. Applying this equation to the zero vector, we obtain

$$\phi(x_i) = \tau_{x_i}(\phi(0)) = \tau_{x_i}(0) = x_i.$$

Since we may write every $v \in V$ as a unique, finite linear combination of the x_i , say $v = \sum_{i \in I} v_i \cdot x_i$ (for all but finitely many $i \in I$ we have $v_i = 0$), we have by linearity of ϕ :

$$\phi(v) = \phi(\sum_{i \in I} v_i \cdot x_i) = \sum_{i \in I} v_i \cdot \phi(x_i) = \sum_{i \in I} v_i \cdot x_i = v.$$

Thus, ϕ is the translation by the zero vector.

If ϕ is not linear, we may pass to $\phi' = \tau_{-v} \circ \phi$, where $v = \phi(0)$. Since all translations commute, we have that ϕ' satisfies our assumption and furthermore, it is a linear map. By the arguments above we thus have $\phi' = id$ and hence $\phi = \tau_v \circ \phi' = \tau_v$.

H 3 Let $(V, \langle \cdot | \cdot \rangle)$ be a finite dimensional Euclidean space and $U \subset V$ a subspace. Suppose that $\varphi : V \to V$ is an endomorphism with the following properties:

$$\varphi \circ \varphi = \varphi, \text{ im}(\varphi) = U, \text{ ker}(\varphi) = U^{\perp}.$$

Show that φ is the orthogonal projection of V onto U and give an explicit formula for φ in terms of a suitable basis of V and the scalar product.

Actually, all this exercise requires of you is to locate and review the definition of an orthogonal projection in the script. For any $x \in U$ you have some $v \in V$ with $\varphi(v) = u$. By the given property, you have $\varphi(u) = \varphi \circ \varphi(v) = \varphi(v) = u$. The rest follows from theorem 25.2.