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1 Sequences of functions, uniform convergence, power series

1.1 Pointwise convergence

In section 4 of the lecture notes to the Analysis I course we introduced the exponential

function
x — exp(x) :Zﬁ
k=0

For every n € N we define the polynomial function f,, : R — R by

n k

fulw) =375

k=0

Then {f,}72, is a sequence of functions with the property that

exp(r) = lim f, (x)

for every x € R. We say that the sequence { f,,}5°, converges pointwise to the exponential

function.

Definition 1.1 Let D be a set (not necessarily a set of real numbers), and let {f,} =,
be a sequence of functions f, : D — R. This sequence is said to converge pointwise, if a
function f: D — R exists such that

f(z) = lim f,(z)

n—oo

for allz € D. We call f the pointwise limit function of {f,},—; -

The sequence {f,} -, of functions converges pointwise if and only if the numerical se-
quence {f,(z)},~, converges for every x € D. For, if {f,} ~, converges pointwise, then
{fn(x)}.2, converges by definition. On the other hand, if {f,(z)} ~, converges for every
x € D, then a function f: D — R is defined by

f(z) == lim f,(x),

n—oo
and so {f,} -, converges pointwise.
Clearly, this shows that the limit function of a pointwise convergent function sequence

is uniquely determined. Moreover, together with the Cauchy convergence criterion for

numerical sequences it immediately yields the following



Theorem 1.2 A sequence {f,} ~, of functions f, : D — R converges pointwise, if and

only if to every x € D and to every € > 0 there is a number ng € N such that

|fn('r) - fm(x)| <é
for alln,m > nyg.

With quantifiers this can be written as

v v 3 Vo (@) = fml@)] <e.

z>0 >0 nogeN nm>ng
Examples
1. Let D =[0,1] and = — f,(z) := 2. Since for x € [0,1) we have lim, . fn(z) =

lim,, o 2" = 0, and since lim,, ., f,(1) = lim,, o, 1™ = 1, the function sequence {f,}

converges pointwise to the limit function f:[0,1] — R,

0, 0<z<«1
f@y=4 " 7
(@) 1, z=1.

2. Above we considered the sequence of polynomial functions {f,} -, with f,(z) =
ZZ:O”“"]C—T, which converges pointwise to the exponential function. This sequence
: o]
Yo gz—f} can also be called a function series.
" )n=1

3. Let D =[0,2] and

n, nggi
_ 1 2
folz) = 2—nx, -<zr<:
0, 2<rp<2.
n
A
I \ .
12
non 2

This function sequence {f,,}5°, converges pointwise to the null function in [0, 2].

Proof: It must be shown that for all x € D

lim f,(x)=0.

n—oo



For x = 0 we obviously have lim,, . f,(z) = lim, ., 0 = 0. Thus, let x > 0. Then there
is ng € N such that nlo < z. Since % < 2 < g for n > nyg, the definition of f, yields

no

fu(x) = 0 for all these n, whence
lim /() = 0,

]
4. Let D = R and © — f,(z) = t[nz]. Here [nz] denotes the greatest integer less or

equal to nz.

{fn}>7 | converges pointwise to the identity mapping x — f(z) :=x.

Proof: Let € R and n € N. Then there is k € Z with z € [£, £t1) hence na €
[k, k+ 1), and therefore

From % <z< % it follows that

which yields |z — f,(z)| = |z — £| < L. This implies

1.2 Uniform convergence, continuity of the limit function

Suppose that D C R and that {f,} ~, is a sequence of continuous functions f, = D — R,

which converges pointwise. It is natural to ask whether the limit function f: D — R is



continuous. However, the first example considered above shows that this need not be the

case, since
x— fo(x)=2":]0,1] = R

is continuous, but the limit function

is discontinuous. To be able to conclude that the limit function is continuous, a stronger

type of convergence must be introduced:

Definition 1.3 Let D be a set (not necessarily a set of real numbers), and let {f,}.~, be
a sequence of functions f, : D — R. This sequence is said to be uniformly convergent, if

a function f: D — R exists such that to every € > 0 there is a number ng € N with

|fu(z) = f@)] <&
for allm > ng and all x € D . The function f is called limit function.

With quantifiers, this can be written as

v o3 v v @) - f@)]<e.

e>0 nogeN zeD n>ng

Note that for pointwise convergence the number ny may depend on x € D, but for uniform
convergence it must be possible to choose the number ny independently of x € D . It is
obvious that if {f,} -, converges uniformly, then it also converges pointwise, and the

limit functions of uniform convergence and pointwise convergence coincide.

Examples
1. Let D =[0,1] and z — f,(x) := 2™ : D — R. We have shown above that the sequence

{fn}>2, converges pointwise. However, this sequence is not uniformly convergent
nJfp=1 ges p . ’ q y gent.

Proof: If this sequence would converge uniformly, the limit function had to be

since this is the pointwise limit function. We show that for this function the negation of

the statement in the definition of uniform convergence is true:

3 v o 3 3 )@=

e>0 npeN zxzeD n>ng

4



Choose € = % and ng arbitrarily. The negation is true if = € (0, 1) can be found with
1
|fn0(x) - f(CL’)| = |fn0(‘r)’ =z = 5 =¢e.
This is equivalent to
1 1 _ 1 _log2
= (— )"0 = ng — n
r= (=2 =

log 2
> ( and the strict monotonicity of the exponential function imply 0 < e o < el =

log 2
no

1 1
1, whence 0 < (%) "0 < 1, whence x = (%) "0 has the sought properties. [ ]

2. Let {f,},—, be the sequence of functions defined in example 3 of section 1.1. This
sequence converges pointwise to the function f = 0, but it does not converge uniformly.
Otherwise it had to converge uniformly to f = 0. However, choose ¢ = 1, let ng € N be

arbitrary and set z = nio . Then

1 1 1
n\— ) — — )| = \Jn\—"—)| = 1 Z y
(o) = F) = lh() =122
which negates the statement in the definition of uniform convergence.
3. Let D =R and z — f,(z) = £ [na]. The sequence {f,} ", converges uniformly to

x — f(x) = x. To verify this, let ¢ > 0 and remember that in example 4 of section 1.1

we showed that
1
Fal) = F@)] = fal) = o] < =
for all z € R and all n € N. Hence, if we choose ny € N such that nio < €, we obtain for

alln >ngand all z € R

fulg) — f@) < % < - <c.

0
Uniform convergence is important because of the following

Theorem 1.4 Let D C R, let a € D and let all the functions f, : D — R be continuous
at a. Suppose that the sequence of functions {f,}.—, converges uniformly to the limit

function f : D — R. Then f is continuous at a .

Proof: Let & > 0. We have to find § > 0 such that for all z € D with |z — a| < 0
[f(x) = fa)| < e
holds. To determine such a number &, note that for all z € D and all n € N
[f(@) = fla)| = [f(@) = ful@) + ful(@) = fula) + fula) = f(a)|
< |f(@) = ful@)| + | ful2) = fala)] + [ fala) — f(a)].

5



Since {f,},-, converges uniformly to f, there is ny € N with |f,(y) — f(y)| < § for all
n > ng and all y € D, whence
2
(@) = fla)l < ge + [fuo(2) = fro ()]
Since f,, is continuous, there is 6 > 0 such that |f,,(z) — fu,(a)| < 5 for all x € D with
|z —al < §. Thus, if |x —a| <6
2 1
£(2) = Fla)] < e+ 3o =,

which proves that f is continuous at a . [ |
This theorem shows that
lim lim f,(x) =1lim f(z) = f(a) = lim f,(a) = lim lim f,(a).

Hence, for a uniformly convergent sequence of functions the limits lim, ., and lim,, .

can be interchanged.

Corollary 1.5 The limit function of a uniformly convergent sequence of continuous func-

tions 1s continuous.

Example 2 considered above shows that the limit function can be continuous even if the

sequence { f,} -, does not converge uniformly. However, we have

Theorem 1.6 (of Dini) Let D C R be compact, let f, : D — R and f : D — R be
continuous, and assume that the sequence of functions {f,},—, converges pointwise and

monotonically to f, i.e. the sequence {|fn.(z) — f(x)|}>2, is a decreasing null sequence
for every x € D. Then {f,}.—, converges uniformly to f. (Ulisse Dini, 1845-1918).

Proof: Let ¢ > 0. To every x € D a neighborhood U(x) is associated as follows:
lim,, . fn(2) = f(x) implies that a number ng = no(x, €) exists such that | f,,, (z)— f(z)] <
e. Since f and f,, are continuous, also |f,, — f| is continuous, hence there is an open
neighborhood U(x) of x such that |f,,(y) — f(y)| < € holds for all y € U(x) N D. The
system U = {U(z) | x € D} of these neighborhoods is an open covering of the compact
set D, hence finitely many of these neighborhoods U(x1),...,U(z,,) suffice to cover D.
Let

n=max{ng(x;,e) |i=1,...,m}.

To every x € D there is a number i € {1,...,m} with x € U(x;). Then, by construction
of U(z;),
|fn0($¢,€)(x) - f(x)| <éE,

6



whence, since { f,,(z)} -, converges monotonically to f(x),

[flx) = fl2)] <e

for all n > ng(x;,€). In particular, this inequality holds for all n > n. Since n is

independent of x, this proves that {f,} -, converges uniformly to f. [

1.3 Supremum norm

For the definition of convergence and limits of numerical sequences the absolute value, a
tool to measure distance for numbers, was of crucial importance. Up to now we have not
introduced a tool to measure distance of functions, but we were nevertheless able to define
two different types of convergence of sequences of functions, the pointwise convergence and
the uniform convergence. Since functions with domain D and target set R are elements
of the algebra F(D,R), it is natural to ask whether a tool can be introduced, which
allows to measure the distance of two elements from F'(D,R), and which can be used to
define convergence on the set F'(D,R) just as the absolute value could be used to define
convergence on the set R. Here we shall show that this is indeed possible on the smaller
algebra B(D,R) of bounded real valued functions. The resulting type of convergence of

sequences of functions from B(D,R) is the uniform convergence.

Definition 1.7 Let D be a set (not necessarily a set of real numbers), and let f : D — R

be a bounded function. The nonnegative number
If]] == sup [ f ()]
zeD

15 called the supremum norm of f .

The norm has properties similar to the porperties of the absolute value on R. This is

shown by the following

Theorem 1.8 Let f,g: D — R be bounded functions and c¢ be a real number. Then
0 =0 < f=0

(i) lef I = lel 11l

(i) (L +gll < A1+ llgll

@) fgll < 1If1 llgll -



Proof: (i) and (ii) are obvious. To prove (iii), note that for z € D

((f+9) @) = [f(2)+g(@)] < [f(2)] + |g(x)|

< sup|f(y)| +suplg(y) =[£Il + llgll-
yeD yeD

Thus, ||f|| + [lg]| is an upper bound for the set {|(f + ¢)(z)| | = € D}, whence for the

least upper bound

If +gll = sup |(f + g)(@)] < [If1l + llgll

To prove (iv), we use that for z € D

((f9) (@) = [f(x)g(@)] = [f ()] lg(x)] < LA gl

whence
[£9ll = sup [(fg) ()] < [lF ] lgll -
€D
|
Definition 1.9 Let V' be a vector space. A mapping || - || : V' — [0,00) which has the
properties
i) [vl=0 <= wv=0
(ii) ||ev]] = |e| [|v]| (positive homogeneity)
(iil) v+ ul] < ||lv|| + [Jull (triangle inequality)
is called a norm on V. If V is an algebra, then || - || : V — [0,00) is called an algebra

norm, provided that (i) - (iii) and
(iv) Juoll < flul vl

are satisfied. A vector space or an algebra with norm is called a normed vector space or

a normed algebra.

Clearly, the absolute value |- | : R — [0,00) has the properties (i) - (iv) of the preceding
definition, hence | - | is an algebra norm on R and R is a normed algebra. The preceding
theorem shows that the supremum norm || - || : B(D,R) — [0,00) is an algebra norm on
the set B(D,R) of bounded real valued functions, and B(D,R) is a normed algebra.



Definition 1.10 A sequence of functions {f,} -, from B(D,R) is said to converge with
respect to the supremum norm to a function f € B(D,R), if to every e > 0 there is a

number ng € N such that

an - f” <ée
for all n > ng, or, equivalently, if
Tim [f, - £l = 0.

Theorem 1.11 A sequence {f,} -, from B(D,R) converges to f € B(D,R) with respect

to the supremum norm, if and only if {f,},-, converges uniformly to f .

Proof: {f,} -, converges uniformly to f, if and only if to every € > 0 there is ny € N

such that for all n > ng and all z € D

|[fo(2) = fz)] <e.

This holds if and only if for all n > nyq
1 fn = fll = sup | fo(2) — f(2)] <,
S

hence if and only if {f,} ~, converges to f with respect to the supremum norm. [ |

Definition 1.12 A sequence {f,}.—, of functions from B(D,R) is said to be a Cauchy

sequence, if to every € > 0 there is ng € N such that
an - fm” <ée
for alln,m > ng.

Theorem 1.13 A sequence {f,},—, of functions from B(D,R) converges uniformly, if

and only if it is a Cauchy sequence.

Proof: If {f,} ~, converges uniformly, then there is a function f € B(D,R), the limit
function, such that {||f, — f|/},—, is a null sequence. Hence to ¢ > 0 there exists no € N

such that for n,m > ng

[ = foull = [ = F = Fnll S A foe = S+ = Sl < 26

This shows that {f,} -, is a Cauchy sequence.



Conversely, assume that {f,} - is a Cauchy sequence. To prove that this sequence

o0

converges, we first must identify the limit function. To this end we show that { f,,(z)} _,

is a Cauchy sequence of real numbers for every x € D. For, since {f,},_, is a Cauchy

sequence, to € > 0 there exists ng € N such that for all n,m > ng

[fa@) = fu(@)] < |\ fo = full < e,

and so {f,(z)} ~, is indeed a Cauchy sequence of real numbers. Since every Cauchy

sequence of real numbers converges, we obtain that {f,} ~ converges pointwise with
limit function f: D — R defined by

F(z) = lim fu(a).

We show that {f,} ~, even converges uniformly to f. For, using again that {f,} ~, is a
Cauchy sequence, to € > 0 there is ng € N with || f,, — fiu|| < € for n,m > ny. Therefore

we obtain for x € D and n > ny

Fule) = F@)] = 1fulx) = Tim fu(@)] = lm |fo(@) = fulo)] <<
whence
Ifo—fll= Sup |fulz) — f(z)| <€

for n > ng, since ¢ is independent of x . [ |

1.4 Uniformly converging series of functions

Let D be a set and let f,, : D — R be functions. The series of functions >~ | f, is said

to be uniformly convergent, if the sequence {> ", n}:nozl is uniformly convergent.

Theorem 1.14 (Criterion of Weierstraf3) Let f,, : D — R be bounded functions sat-
isfying || full < ¢, and let Y~ | ¢, be convergent. Then the series of functions Y- | f»

converges uniformly.

Proof: It suffices to show that {> ", f.} =, is a Cauchy sequence. Let ¢ > 0. Since
> pe ¢k converges, there is ng € N such that ’ S ck‘ =Y o <eforallm>n>

ng , whence
m m m
I A<D NI o <e,
k=n k=n k=n

forallm>n>ng. [ ]

10



1.5 Differentiability of the limit function

Let D be a subset of R. We showed that a uniformly convergent sequence {f,} -, of
continuous functions has a continuous limit function f : D — R . One can ask the question
what type of convergence is needed to ensure that a sequence of differentiable functions
has a differentiable limit function? Simple examples show that uniform convergence is
not sufficient to ensure this. The following is a slightly different question: Assume that
{f.} 2, is a uniformly convergent sequence of differentiable functions with limit function
[ . If f is differentiable, does this imply that the sequence of derivatives { f},} -, converges
pointwise to f’? Also this need not be true, as is shown by the following example: Let
D =0,1] and let z +— fo(z) = 22" : [0,1] — R. The sequence {f,} -, of differentiable
functions converges uniformly to the differentiable limit function f = 0. The sequence of
derivatives {f/}>, = {z"7'} ~, does not converge uniformly on [0,1], but it converges

pointwise to the limit function

(z) 0, 0<zx<«1
€Tr) =
g 1, z=1.

However, g # f'=0.
Our original question is answered by the following

Theorem 1.15 Let —0o < a < b < oo and let f, : [a,b] — R be differentiable functions.
If the sequence {f} 2, of derivatives converges uniformly and the sequence { f,} -, con-
verges at least in one point xo € [a,b], then the sequence {f,} —, converges uniformly to

a differentiable limit function f : [a,b] — R and

f(a) =l fi(x)

for all x € [a,b].

This means that under the convergence condition given in this theorem, derivation (which

is a limit process) can be interchanged with the limit with respect to n:
(lim f,) = lim f).
Proof: First we show that {f,} -, converges uniformly. Let ¢ > 0. For z € [a, b]

(@) = ful@)] < [(f(2) = fa(@)) = (fm(20) = fa(z0))] + | fn(@0) = ful@o)|. (*)

11



Since f,, — f, is differentiable, the mean value theorem yields for a suitable z between

zo and x

|(fin(2) = fu(2)) = (fin(w0) = fal20))| = | (2) = fu(2)| |2 — o] -

The sequence of derivatives converges uniformly. Therefore there is ng € N such that for

all m,n > ng

|[fm(2) = fa(2)] <

hence
[(Fnl@) = ful@)) = (Fml0) = fuleo)| < 5

for all m,n > ng and all x € [a,b]. By assumption the numerical sequence {f,(zo)} -,

converges, hence there is n; € N such that for all m,n > n;

| fn(0) = fulo)] < 5

The last two estimates and (x) together yield

fnl@) = ful@)| S S+ 5 =¢

for all m,n > ny = max{ng,n1} and all « € [a,b]. This implies that {f,} -, converges

uniformly. The limit function is denoted by f .

Let ¢ € [a,b] and for x € [a, b] set
flx) = f(o)
F(z) = r—c
0, r=c,

—-m, T#c

with m = lim,, ., f/(c). The statement of the theorem follows if F' is continuous at the
point x = ¢, since continuity of F' implies that f is differentiable at ¢ with derivative
f'(¢c) =m =lim,_ f/(c). For the proof that F' is continuous at ¢, set

fol@) = fule)

— —f(c), x#c

o T e, a

0, T =c.
Obviously F(z) = lim,,_.., F,,(z), and since F;, is continuous due to the differentiability of
[n » the continuity of F follows if it can be shown that {F,} ~ , converges uniformly. This
follows by application of the mean value theorem to the differentiable function f,, — f,:

Fo(z) — Fu(z) = r—c m s
0, T=c

= (fn(2) = £1(2)) = (frle) = £1(0))




for a suitable z between = and ¢ if « # ¢, and for z = ¢ if x = ¢. By assumption {f}}>7
converges uniformly, consequently there is ny € N such that for all m,n > ny and all
y € [a,0]

(W) = foW)] <€,

whence

[Fn(2) = Fu(@)] < [f(2) = fol2)] + [ f(e) = fr(e)]

< e4+e=2¢,

for all m,n > ng and all © € [a,b]. This shows that {F,} -, converges uniformly and

completes the proof. [ |

1.6 Power series

Let a numerical sequence {a,}, ., and a real number z, be given. For arbitrary z € R

Z an(x — x0)" .

n=0

consider the series

This series is called a power series. a, is called the n-th coefficient, x( is the center of
expansion of the power series. The Taylor series and the series for exp,sin and cos are

power series. These examples show that power series are interesting mainly as function

with f,(z) = an(x — x0)" . First the convergence of power series must be investigated:

series

Theorem 1.16 Let .
Z an(x — x0)"
n=0

be a power series.

(i)  Suppose first that
a= lim {/|a,| < co.

Then the power series is in case

13



a=0: absolutely convergent for all x € R
absolutely convergent for |x — xo| < i
a>0: convergent or divergent for |x — xo| = %

divergent for |z — zo| > L.

(i) If { Y/ \an\} is unbounded, then the power series converges only for x = xg .
n=1

Proof: By the root test, the series >~ ja,(x — x¢)" converges absolutely if
lim {/|a,| |z — xo|® = | — zo| lim {/]a,| = |z — zola < 1,
n—oo n—oo

and diverges if

lim {/|a,| |z — zo|" = |x — zpla > 1.
This proves (i). If { Y/ \an|} is unbounded, then for x # ¢ also {\x — x| ¥/ |an|}
1

o0
00 n=1 -
VNap(x — x9)" is unbounded, hence {a, (x — z¢)"}:-, is not a null sequence, and
n=1
1

consequently Y > a,(x — x0)" diverges. This proves (ii) n
Definition 1.17 Let a = lim,, .o, /|a,|. The number

I ifa#0
r=<¢ oo, ifa=0
0

,if {\"/|an|}:’:1 is unbounded

is called radius of convergence and the open interval
(o—r,z0+7)={z €R| |z —zo| <1}

is called interval of convergence of the power series
oo
n
an(x — x)" .
n=0
Examples
1. The power series
o oo 1
PILEED Dt
n
n=0 n=1

both have radius of convergence equal to 1. This is evident for the first series. To prove

it for the second series, note that

. .1 i 1
lim /n = lim en 08" = limn—oo(Glosn) — o0 — 1

n—oo n—oo

14



since lim, loix = 0, by the rule of de I'Hospital. Thus, the radius of convergence of

the second series is given by

1 1
r= = = lim {/n=1.
lim,, o0 % lim,, o0 % nee
For x = 1 both power series diverge, for x = —1 the first one diverges, the second one

converges.

2. In Analysis I it was proved that the exponential series

[e.e] n

X
2

n=0
converges absolutely for all z € R. (To verify this use the ratio test, for example.)
Consequently, the radius of convergence r must be infinite. For, if » would be finite, the

exponential series had to diverge for all  with |x| > r, which is excluded. (This implies
% = lim,, % =0, by the way.)

Theorem 1.18 Let Y 2 a,(z — x0)" and Y~ bu(z — x¢)" be power series with radii

of convergence r1 and ro , respectively. Then for all x with |z — xo| < r = min(ry, )

i an(x — x0)" + i bo(z — x0)" = i(an + b)) — 20)"
[ian(ﬂf — fl?o)n} [i bn (2 — fBo)n] = f: <iakbn_k> (z — x0)".

Proof: The statements follow immediately from the theorems about computing with
series and about the Cauchy product of two series. (We note that the radii of convergence

of both series on the right are at least equal to r, but can be larger.) |

Theorem 1.19 Let )" a,(x — x9)" be a power series with radius of convergence r .
Then this series converges uniformly in every compact interval [xg — ri,zo + 71| with

0<r <r.

Proof: Let ¢, = |a,|r}. Then

. - 1
lim /e, = lim {/|a,|r =m- <1,
n—oo n—oo T
whence the root test implies that the series

oo

>

n=0

15



converges. Because of |a,(z — z9)"| < |an|r} = ¢, for all z with |x — x¢| < ry, the Weier-

n

stra8 criterion (Theorem 1.14) yields that the power series >~ a,(z — x)" converges

uniformly for @ € [zg — 11, zo+7m1) = {y | ly — 20l <11} . ]

Corollary 1.20 Let ) a,(x—x0)" be a power series with radius of convergence r > 0.
Then the function f: (xog—1, x0+ 1) — R defined by

o
E an(x — )"

n=0

18 continuous.

3 . m n o0 . . . .
Proof: Since {z — ) "  a,(x —x0)"} ~_, is a sequence of continuous functions, which
converges uniformly in every compact interval [zg — 71, xo + r1] with r; < r, the limit
function f is continuous in each of these intervals. Hence f is continuous in the union

(xo—7r,20+7)= U [xo — 71, o +71]. n

o<ri<r

Let

o
E anl‘—!L'()

n=0
be a power series with radius of convergence r > 0. Each of the polynomials f,,(z) =

Yo g an(z — xo)™ is differentiable with derivative

m
= Znan(:r — )" L.
n=1

S0 nan(z — )"t is a power series, whose radius of convergence 7 is equal to . To

verify this, note that

o 1 e}
Z na,(x —z9)" ' = Z na,(z — xo)" ,
" T — Xy

n=1

and that .
lim /|na,| = lim /n lim /]a,| = lim {/|a,| = ~,
n—oo n—oo n— oo r

n—oo

"1 converges for all x with |z — x| < r

which implies that the series Y7 na,(x — xo)
and diverges for all  with |z — x| > r. By Theorem 1.16 this can only be true if r; = r.
Thus, Theorem 1.19 implies that the sequence {f/,}°_, of derivatives converges uni-

formly in every compact subinterval of the interval of convergence (zo — 7,29 + 7).

16



Consequently, we can use Theorem 1.15 to conclude that the limit function f(x) =
Yoo g an(z — xo)™ is differentiable with derivative

f(z) = lim f! (z)= Znan(:ﬂ — z0)" !

m—00

in all these subintervals. Hence f is differentiable with derivative given by this formula
in the interval of convergence (o — r, xg + r), which is the union of these subintervals.

Repeating these arguments we obtain

Theorem 1.21 Let f(z) =Y " an(x—1x0)" be a power series with radius of convergence
r > 0. Then f is infinitely differentiable in the interval of convergence. All the derivatives

can be computed termuwise:
f®(x) = Zn(n —1)...(n—k+ Day(z —xo)"".
Example: In the interval (0,2] the logarithm can be expanded into the power series

logz = Zﬂ(x —1)".

n

In section 7.4 of the lecture notes to Analysis I we proved that this equation holds true for
% < x < 2. To verify that it also holds for 0 < z < % , note that the radius of convergence
of the power series on the right is

r= = lim Yn=1.

m,, o {/|S2—] T

Hence, this power series converges in the interval of convergence {z | |z — 1| < 1} = (0,2)
and represents there an infinitely differentiable function. The derivative of this function

18

> ey = ey =y
1

1 /
— —1_(1_37):5:(10@9:).

n—1

Consequently > > %(z —1)" and log  both are antiderivatives of < in the interval

(0,2), and therefore differ at most by a constant:

logxzi%(x—l)”—i-C.

n=1

To determine C', set x = 1. From log(1) = 0 we obtain C' =0.

17



Theorem 1.22 (Identity theorem for power series) Let the radii of convergence rq
and ry of the power series Y~ an(x—x0)" and Y~ b,(x—x0)" be greater than zero. As-
sume that these power series coincide in a neighborhood U, (zo) = {z € R | |z — zo| <1}

of xy with r < min(ry,79) :

Z an(x — x0)" = Z by (x — x0)"
n=0 n=0

for all x € U,(xg) . Then a, = b, for alln=0,1,2,....
Proof: First choose x = xg, which immediately yields
ag = bo .

Next let n € NU {0} and assume that a = by for 0 < k < n. It must be shown that
Gp+1 = bpy1 holds. From the assumptions of the theorem and from the assumption of the

induction it follows that

o0

Zakm—xo Zbkx—mo ,
k=n+1 k=n+1
hence
o0 (o)
(LE _ xo)n-i-l Z ak(:x _ Jfo)k_n_l _ (il? . xo)n-i-l Z bk(fl? _ éfo)k_n_l
k=n+1 k=n-+1

for all z € U,(x). For = from this neighborhood with x # x( this implies

00
§ Clk<l’—l'0kn1 E:bkx_l,oknl
k=n+1 k=n+1

The continuity of power series thus implies

o
i = Y w7 = 3 e

k=n+1 k=n+1

- b - k—n—-1 _ b - k—n—-1 _ bn ]
Jim Z k(2 — x0) Z k(20 — 20) +1

Every power series defines a continuous function in the interval of convergence. Informa-
tion about continuity of the power series on the boundary of the interval of convergence

is provided by the following

18



Theorem 1.23 Let > 7 an(z — x0)" be a power series with positive radius of conver-
gence, let z € R be a boundary point of the interval of convergence and assume that
Yoo gan(z — x)™ converges. Then the power series converges uniformly in the interval

[z, z0] (if z < x0), or in the interval [xg, 2| (if xo < z), respectively.

A proof of this theorem can be found in the book: M. Barner, F. Flohr: Analysis I, p.
317, 318 (in German).

Corollary 1.24 (Abel’s limit theorem) If a power series converges at a point on the
boundary of the interval of convergence, then it is continuous at this point. (Niels Hendrick
Abel, 1802-1829).

1.7 Trigonometric functions continued

Since sine is defined by a power series with interval of convergence equal to R,

‘ o0 x2n+1
SINxr — Z(—l) m,
n=0
the derivative of sin can be computed by termwise differentiation of the power series,
hence
, o0 N I.Zn o0 . x2n
s = ()" 0+ 1) g gy = 2 g = cose

This result has been proved in Analysis I using the addition theorem for sine.

Tangent and cotangent. One defines

sin Ccos X 1
tanx = , cotx = — = .
cosS ¥ sinx tan x
| | |
cot x : cot x : cot x :
[ [ [
[ [ [
[ [ [
[ [ [
| | | .
s s T
- N3 0 i - |
[ [ |
[ [ [
[ [ |
[ [ [
¢ tarl tan! [
anx an] X anlx |
[ [ [

19



From the addition theorems for sine and cosine addition theorems for tangent and cotan-

gent can be derived:

tanx + tan
tan(z +y) = Y
1 —tanz tany
cotx coty — 1
cot(z+y) = Y
cotx + coty
The derivatives are
, sinz\’ cos?x +sin’x 1
tan'x = ( ) = =
COS T cos? x cos? x
, cos T\’ —gin®x — cos?x -1
cotxz(_)z 5 =3 -
sin x sin“ sin“ x

Inverse trigonometric functions. sine and cosine are periodic, hence not injective,
and consequently do not have inverse functions. However, if sine and cosine are restricted

to suitable intervals, inverse functions do exist.

By definition of 7, we have cosz > 0 for x € (=7, %), hence because of sin’z = cosz, the
sine function is strictly increasing in the interval [—~7, 7]. Consequently, sin : [-F, 7] —

[—1,1] has an inverse function. Moreover, inverse functions also exist to other restrictions

of sine:

: 1 3
sin : [m(n + 5),#(71—{— 5)] —[-1,1], neZ.

If one speaks of the inverse function of sine, one has to specify which one of these infinitely

many inverses are meant. If no specification is given, the inverse function

T
in: [—1,1] — -~ T
arcsin : [—1,1] — | 2,2]
of sin : [-%,5] — [~1,1] is meant. Because of reasons, which have their origin in the

theory of functions of a complex variable, the infinitely many inverse functions
x — (arcsinz) +2nw, n€Z

and
x+— —(arcsinz) + (2n+ )7, n€Z

are called branches of the inverse function of sine or branches of arc sine (”Zweige des

Arcussinus”). The function arcsin : [~1,1] — [~F, 7] is called principle branch of the
inverse function (”Hauptwert der Umkehrfunktion”).

Correspondingly, the inverse function
arccos : [—1,1] — [0, 7]

20



to the function cos : [0, 7] — [—1,1] is called principle branch of the inverse function of

cosine, but there exist the infinitely many other inverse functions

r — *(arccosz) + 2nm, n € Z.

R @

larcsin x

[SIE

X arccosx

|
|
1

I

|

1

|

1

|

|
_z | .

2 -1 1

A similar situation arises with tangent and cotangent. The principle branch of the inverse

function of tangent is the function
; [ ] [ ™ 7T]
arctan : [—oo,00] — | — =, =|.

’ 272

One calls this function arc tangent (“Arcustangens”), but there are infinitely many other

branches of the inverse function

T arctanx + nm, n ez
Y
A
jus
- _21______
arctan x
> T
_____ R I
2

In the following we consider the principle branches of the inverse functions. For the

21



derivatives one obtains

1 1
(arcsinz) = — . = .
sin’(arcsinz)  cos(arcsin z)
B 1 B 1
V/1— (sin(arcsinz))? V1 — a2
1 —1
(arccoszx) = = —
cos'(arccosz)  sin(arccos )
B -1 1
V/1— (cos(arccosx))2 V1 —a?
1 2
tanz) = — = t
(arctan z) tanl (arctan @) (cos(arctan )
1 1

1+ (tan(arctanz))? 1+ a2

The functions arcsin, arccos and arctan can be expanded into power series. For example,

o0

1
%(arctanx) =112 > (—1)"z™,

n

if |z| < 1. Also the power series

oo _1 n
Z ( ) m2n+1
2n+1

n=0

has radius of convergence equal to 1, and it is an antiderivative of Y/ (—1)"2", hence

[eS) _1)
arctan x = Z 2( _31 24 C
n

n=0
for |z| < 1, with a suitable constant C. From arctan 0 = 0 we obtain C' = 0, thus

—1)"
2n+1

$2n+1

arctanx =

NE

n=0

for all x € R with |z| < 1. The convergence criterion of Leibniz shows that the power series
on the right converges for x = 1, hence Abel’s limit theorem implies that the function
given by the power series is continuous at 1. Since arctan is continuous, the power series
and the function arctan define two continuous extensions of the function arctan from the

interval (—1,1) to (—1,1]. Since the continuous extension is unique, we must have

— (=D
tanl = g .
arctan 2 1

22



Because of

cos(2z) = (cosz)? — (sinz)? = 2(cos x)* — 1,

it follows
™2 1
o=s(om) .
CoS 1
hence
s 1
CoOS — = 4/ —
4 2
and
T T 1
in — = 1 — —)2 = —
sin - (cos 4) 5
thus
; T sin %
an — = =
4 cosZ

This yields

s
arctan1 = 1

whence

T = (1)
Z_; m+1°

Theoretically this series allows to compute 7, but the convergence is slow.
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2 The Riemann integral

For a class of real functions as large as possible one wants to determine the area of the

surface bounded by the graph of the function and the abscissa. This area is called the

(N

To determine this area might be a difficult task for functions as complicated as the Dirich-

integral of the function.

A

let function
1, reQ

0, x € R\Q,

and in fact, the Riemann integral, which we are going to discuss in this section, is not able
to assign a surface area to this function. The Riemann integral was historically the first
rigorous notion of an integral. It was introduced by Riemann in his Habilitation thesis
1854. Today mathematicians use a more general and advanced intergral, the Lebesgue
intergral, which can assign an area to the Dirichlet function. The value of the Lebesgue
integral of the Dirichlet function is 0. (Bernhard Riemann 1826 — 1866, Henri Lebesgue
1875 — 1941)

2.1 Definition of the Riemann integral

Let —00 < a < b < oo andlet f: [a,b] — R be a given function. It suggests itself to
compute the area below the graph of f by inscribing rectangles into this surface. If we
refine the subdivision, the total area of these rectangles will converge to the area of the
surface below the graph of f. It is also possible to cover the area below the graph of f
by rectangles. Again, if the subdivision is refined, the total area of these rectangles will
converge to the area of the surface below the graph of f.

Therefore one expects that in both appoximating processes the total areas of the
rectangles will converge to the same number. The area of the surface below the graph of
f is defined to be this number.
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Of course, the total areas of the inscribed rectangles and of the covering rectangles will
not converge to the same number for all functions f. An example for this is the Dirichlet
function.

Those functions f, for which these areas converge to the same number, are called
Riemann integrable, and the number is called Riemann integral of f over the interval
la, b].

A A

a b a b

This program will now be carried through rigorously.

Definition 2.1 Let —0o < a < b < 0o. A partition P of the interval [a,b] is a finite set
{zo,... 2} CR with

a=Tg<T1<...<Xp_1 <xp=0>0.

For brevity we set Ax; =x; —x,—1 (i=1,...,n).

Let f : [a,b] — R be a bounded real function and P = {xy,...,z,} a partition of [a,b].

Fori=1,...,n set

M; = sup{f(z)]|x;-y <o <},

m; = inf{f(x)]|z;1 <z <z},

and define

i=1
Since f is bounded, there exist numbers m, M such that

m < f(z) <M

25



for all z € [a,b]. This implies m < m; < M; < M for all i =1,...,n, hence

IN

> MiAx;=UP,f) <Y MAz;=M(Ob—a).
=1 =1
Consequently, the infimum and the supremum

fdex = inf{U(P, f) | P is a partition of [a, b]}

fdr = sup{L(P, f) | P is a partition of [a,b]}

exist. The numbers f_; fdx and fab f dx are called upper and lower Riemann integral of f.

Definition 2.2 A bounded function f : [a,b] — R is called Riemann integrable, if the
upper Riemann integral fabf dz and the lower Riemann integral fabf dz coincide. The

common value or the upper and lower Riemann integral is denoted by

/fdxo /f

and called the Riemann integral of f. The set of Riemann integrable functions defined on

the interval [a, b] is denoted by R([a,b]) .

2.2 Criteria for Riemann integrable functions

To work with Riemann integrable functions, one needs simple criteria for a function to be

Riemann integrable. In this section we derive such criteria.

Definition 2.3 Let P, Py, P, and P* be partitions of [a,b]. The partition P* is called
a refinement of P iof P C P* holds. P* is called common refinement of P, and Py if
P*=P UDP.

Theorem 2.4 Let f : [a,b] — R and let P* be a refinement of the partition P of |a,b].
Then

L(Pf) < L(FP".f)
U(P* f) < U(P,f).



Proof: Let P = {z,...,x,} and assume first that P* contains exactly one point x*

more than P. Then there are x;_;,z; € P with z;_; < 2" < ;. Let

wy = inf{f(z)|z;1 <z <},

wy = inf{f(z)|z* <z <y},

and forz=1,...,n
m; = inf{ f(z) | i <z <}

Then w;, wy > m;, hence
n 7j—1
=1 =1

+mj(z* —xj +a; — ")+ Z m;Ax;

i=j+1
Jj—1 n
< Z miAz; + wy (" — ;1) + wax; — ") + Z m;A\x;
i=1 i=j+1

= L(P* f).

By induction we conclude that L(P, f) < L(P*, f) holds if P* contains k£ points more

than P for any k. The second inequality stated in the theorem is proved analogously. m

Theorem 2.5 Let f : [a,b] — R be bounded. Then

/abfdngfdx.

Proof: Let P, and P, be partitions and let P* be the common refinement. Inequality

(%) proved above shows that
L(P*, ) <U(P", f).

Combination of this inequality with the preceding theorem yields

L(Py, f) < L(P*, f) SU(PY, f) S U(P, f),

whence

L(P, f) <U(P, f)

for all partitions P, and P, of [a,b]. Therefore U(P,, f) is an upper bound of the set
{L(P, f)| P is a partition of [a,b]},
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hence the least upper bound ff f dx of this set satisfies

b
/fméU@J)

Since this inequality holds for every partition P, of [a, b], it follows that ff f dx is a lower
bound of the set
{U(P, f) ‘ P is a partition of [a, b]},

hence the greatest lower bound of this set satisfies
b b
/ fdxr < / fdx.

Theorem 2.6 Let f : [a,b] — R be bounded. The function f belongs to R([a,b]) if and
only if to every € > 0 there is a partition P of [a,b] such that

UP f)—L(P, ) <e.

Proof: First assume that to every e > 0 there is a partition P with U(P, f)—L(P, f) < e.

Since

b b
Mﬂﬁg/fms/fmswﬂn
it follows that L o
b b
og/ fdx—/ fdx <U(P,f)— L(P,f) < ¢,

b b
OS/ fdx—/ fdx <e

/bfdx:/bfdx,
thus f € R([a,b]). o

Conversely, let f € R([a,b]). By definition of the infimum and the supremum to every

hence

for every € > 0. This implies

€ > 0 there are partitions P, and P, with

/abfd:c = /bfdx < UP,f) < /abfda:+§

b b
/fda: = fde > L(P,f) > fdr — —.
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Let P be the common refinement of P; and P,. Then

b b b
/afdx—g<L(P,f)§/afd:ng(P,f)</afdm+%,

hence

U(P, f) — L(P, f) < <.

From this theorem we can conclude that C([a,b]) C R([a,b]) :

Theorem 2.7 Let f : [a,b] — R be continuous. Then f is Riemann integrable. Further-

more, to every € > 0 there is d > 0 such that

‘i f(ti)Axi—/b fdx‘ <e
i=1 a

for every partition P = {xq,...,x,} of [a,b] with
max{Azxy,...,Ax,} <o
and for every choice of points ty,. .., t, with t; € [z;_1,x;].
Note that if {P;}32, is a sequence of partitions P; = {x(()j) =a, xgj), . ,x,%) = b} of [a, b

with
lim max{Az{,... Az0)} =0

5
J—00

and if tl(-j ) e 29, 29, then this theorem implies

i—1> T
’ N () ()
dr = li Az
/a f dz jggo;f(z )Az;
The integral is the limit of the Riemann sums Y ., f(t;)Az;.

Proof: Let € > 0. We set
€

—a
As a continuous function on the compact interval [a, ], the function f is bounded and

uniformly continuous (cf. Theorem 6.43 of the lecture notes to the Analysis I course).

Therefore there exists 6 > 0 such that for all x,t € [a,b] with |z —t| < d

[f (@) = f(B)] <n. (%)
We choose a partition P = {xo,...,x,} of [a,b] with max{Axy,...,Az,} < J. Then (%)
implies for all z,t € [x;_1, ]

flx) = f(t) <,
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hence

M, —m; = su r)— inf t
xi_lgfgx,-ﬂ ) xiflgtgif( )
- xi_rlng};xi f(l’) B Zz—rlnél{lﬁzz f<t>

= flwo) — f(to) <,

for suitable xq,ty € [z;_1, x;]. This yields

n

UP,f)—L(P,f) = Y (Mi—m)Az; <n) Az

i=1 i=1

= nb—a)=c. ()

Since € > 0 was arbitrary, the preceding theorem implies f € R([a,b]). From (x*) and

from the inequalities

i=1 i=1

) =1
LPf) < /quSWRﬂ

we infer that

<E. [ |

] /ab fdx—i F(t) Az,

Also the class of monotone functions is a subset of R([a, b]) :
Theorem 2.8 Let f : [a,b] — R be monotone. Then f is Riemann integrable.

Proof: Assume that f is increasing. f is bounded because of f(a) < f(z) < f(b) for all
x € |a,b]. Let € > 0. To arbitrary n € N set

b—a
T, =a + i,
fori =0,1,...,n. Then P = {zy,...,x,} is a partition of [a, b], and since f is increasing
we obtain
mio =t @)= fwia)
M; = sup  f(z) = f(x),
zi—1<x<z;
thence

n

b—a

= 3 (sl = ) = (100 — )=

<e,
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where the last inequality sign holds if n € N is chosen sufficiently large. By Theorem 2.6,
this inequality shows that f € R([a,]).

For decreasing f the proof is analogous. [ |

Example: Let —o0o < a < b < oo. The function exp : [a,b] — R is continuous and

therefore Riemann integrable. The value of the integral is

b
/ e“dr = e’ — e
a

To verify this equation we use Theorem 2.7. For every n € Nand all i =0,1,...,n we set

2=+ L (b—a). Then {P,};>, with P, = {z3", .., 2} is a sequence of partitions

7

of [a, b] satisfying

lim maX{Axg o AzM} = lim -0
n—oo n—oo n
Thus, with tgn) = xy_l)l we obtain
b n
/ e“dr = lim Z exp(tgn))AxZ(»n)
a n—oo =1
b—a

- i—1
- S (e 500
nLn;OiZIexp a+ n( a) -

= lim e“b_a Z [e(b_a)/”}i_l

n—oo n
=1

b—a [e® 0/ —1

= ¢% lim

n—oo n e(b_a)/n —_ 1
a(l,b—a
- € (6 - 1) b a
= — e — e,
lim eb-)/n_1
n—00  (b—a)/n

since lim,_,q e:—_l =1, by the rule of de 'Hospital.

2.3 Simple properties of the integral

Theorem 2.9 (i) If f1, fo € R([a,b]), then f1 + f2 € R([a,b]), and

/ab(f1+f2)da::/ab flda:—l—/ab fodz.

If g € R([a,b]) and c € R, then cg € R([a,b]) and

b b
/cgd:v:c/ gdx.
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Hence R([a, b)) is a vector space.
(i) If f1, f2 € R([a,b]) and fi(x) < fo(z) for all x € [a,b], then

/b fld:cé/b fadx.
(iii) If f € R(la,b]) and if a < ¢ < b, then

Pl € RUa), f|,, € Rla.)

[a,c]

/fdx—i—/ fda:—/fdx

(iv) If f € R([a,b]) and |f(x)| < M for all x € |a,b], then

and

b
fda:‘ < M(b—a).

Proof: (i) Let f = fi; + f> and let P be a partition of [a, b]. Then

Lt S =t (fi@)+ )
& 931'7112539% fl (.CE) + Ii—llggﬁxi fg(ﬂ?)
sup  f(z) = sup (f1(55)+f2(x)>
r_1<z<z; @1 <w<w;
< sup fi(z)+ sup fo(z),
z;—1<x<z; 21 <z<z;

hence
L(P, f1) + L(P, f,) < L(P, f)

(%)

Let ¢ > 0. Since f; and f; are Riemann integrable, there exist partitions P, and P,

such that for j = 1,2

U(F;, f5) = L(P;, f) <e.
For the common refinement P of Py and P, we have L(P;, f;) < L(P, f;) and U(P, f;) <
U(Pj, f;), hence, for j = 1,2,

U<P’ f]) - L<P7 f]) <e. (**)
From this inequality and from () we obtain
U(P7f>_L(P7f) éU(P7f1)+U(P’f2)_L<P7f1)_L(Pvf2) < 2e.
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Since £ > 0 was chosen arbitrarily, this inequality and Theorem 2.6 imply f = f1 + fo €
R([a,0]).

From (%) we also obtain

b
U(P,fj)<L(P,fJ)+5§/ fjdx‘i‘&“,

whence, observing (x)

b
/ fde < UP.f) <UPf)+UP,f)

b b
< /f1d1‘+/f2d$+2€

Since € > 0 was arbitrary, this yields

fodxgulbﬁdx+llbﬁdx. ( % %)

Similarly, (xx) yields

b
L(P, ;) >U(P,fj)—62/ fdo—e,

which together with (x) results in

b
/ Jdv > L(P.f) > L(P,f)) + L(P. fy)

b b
> / f1d$+/ fadr — 2¢,
from which we conclude that

Lvmzfﬁm+[ﬁm.

This inequality and (* * %) yield

l%@:fﬁm+[ﬁm.

To prove that cg € R([a,b]) we note that the definition of L(P, cg) immediately yields for
every partition P of [a, b]
cL(P,g), ifc>0

L(P,cg) =
cU(P,g), ife<O.
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Thus, for ¢ > 0

b
/ cgdr = sup{cL(P,g) | P is a partition of [a,b] }

= csup {L(P, 9) ‘ P is a partition of [a, b]} =c

g\
o
e}
ISH
)
Il
)
m\
o
Na}
ISH
S

and for c < 0

b
/ cgdr = sup{cU(P,g)| P is a partition of [a,b]}

= cinf {U(P,g) | P is a partition of [a,b]} = c

:\@

Na}

Q.

S

Il

o
m\
o

K

QL

=

In the same manner

b b
/cgd:v:c/gda:.

b b b
/cgdx:c/ gdx:/cgdac,

which implies cg € R([a, b]) and f(f cgdr = cf;gdx.

Therefore

This completes the proof of (i). The proof of (ii) is left as an exercise. To prove (iii), note

first that to any partition P of [a,b] we can define a refinement P* by
P*=PU{c} .
Theorem 2.4 implies
L(P, f) < L(P*, f), U(P*, [)<U(Pf). (%)
From P* we obtain partitions P* of |a, c| and P} of [c,b] by setting P* = P*Na, c] and

Py = P*Nlc,b], and if P* = {xo,...,z,} with z; = ¢, then

n 7 n
L(P* f)=> miAx;=> mAz;+ Y miAx;=L(P", )+ L(P}, f).
i=1 i=1 i=j+1
Here for simplicity we wrote L(P*, f) instead of L(P*, f e C]) and U(P*, f) instead of
U(Pj,fh b]). Similarly
U, f)=UP: )+ UL f).
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From (*) and from these equations we conclude

c b
LPf) < LPH+LPLNE [ fdos [ fda

—Fc s
UP.f) > U(Pi,f>+U<PJi,f>z/fda:+/fdx.

These estimates hold for any partition P of [a, b], whence

/bfda: = /abfd:cg/acfda:+/bfd:c

abfdas - /abfdx 2Zfdx+ffdx.

Since fac fdx < f_: fdx and fcb fdx < f_cb f dx , these inequalities can only hold if

/chdxszdx, Lbfdx:ffdx,

hence f’[a,c] € R([a,c]), f’[c’b} € R([c,b]), and

/acfdx+/cbfdx:/abfdx.

This proves (iii). The obvious proof of (iv) is left as an exercise.

Theorem 2.10 Let —oo <m < M < oo and [ € R([a,b]) with f : [a,b] — [m, M]. Let

® : [m, M] — R be continuous and let h = o f. Then h € R([a,b]).

Proof: Let € > 0. Since ® is uniformly continuous on [m, M|, there is a number § > 0

such that for all s,t € [m, M| with |s —t] < o

B(s) — B(t)| < e.

Moreover, since f € R([a,b]) there is a partition P = {xy,...,z,} of [a,b] such that

U(P, f) — L(P, f) < &5.

Let
M, = swp fx),  omi o= inf f(2)
(Ei_lgl'gfﬂi xi_lgl’gxi
M} = sup h(z), my = inf  h(x)
zi—1<x<z; Ti—1<z<Ty
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and
A = {i|ieN, 1<i<n, M,—m;<?}
B = {1,....n}\A.

If i € A, then for all z,y with z;_; < x,y < z;

since | f(z) — f(y)| < M; —m; < 6. This yields for i € A

If + € B, then
M —mi < 2| @],

with the supremum norm [|®|| = sup,,<,<,, |®(f)| . Furthermore, (x) yields

5ZA$i SZ(Mi_mi)AxiSi(Mi_mi)Axi:U(Paf)_L(Paf) <ed,

i€B 1€EB i=1

whence

Zszge

ieB
Together we obtain
U(P,h) = L(P,h) = Y (M7 —m})Az; + Y (M —m})Axz;
€A 1€B
< e An 20 ) A
i€A i€B

< e(b—a)+2||®lle =e(b—a-+2|P|).

Since £ was chosen arbitrarily, we conclude from this inequality that h € R([a,b]), using

Theorem 2.6.

Corollary 2.11 Let f,g € R([a,b]). Then
(1) fg € R(la, b])
(i) |f] € R(la and‘/ fd:c‘</ |f| dz.

Proof: (i) Setting ®(¢) = ¢* in the preceding theorem yields f? = ®o f € R([a,b]). From

fo= [ +9)~( ~ 9"
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we conclude with this result that also fg € R([a, b]).
(i) Setting ®(t) = |t| in the preceding theorem yields |f| = ® o f € R([a,b]). Choose

¢ = =£1 such that ,
c/ fdx > 0.

\/abfdx|:c/abfdx:/:cfdmg/ab | f|de,

since cf(x) < |f(x)| for all z € [a, b]. ]

Then

2.4 Fundamental theorem of calculus

Let —0o < a < b < oo and f € R([a,b]) . One defines

/bafdx:—/abfdx.
/uvfdx+/vwfdx_/uwfdx,

if u, v, w are arbitrary points of [a, b] .

Then

Theorem 2.12 (Mean value theorem of integration) Let f : [a,b] — R be continu-

ous. Then there is a point ¢ with a < ¢ < b such that

/fdx— )(b—a).

Proof: f is Riemann integrable, since f is continuous. Since the integral is monotone,

we obtain

(b—a) min f(z) = mlnf dx</ f(z

z€[a,b] a YElab]

< / max f(y)dr = max f(z)(b—a).

y€la,b z€[a,b]

Since f attains the minimum and the maximum on [a,b], by the intermediate value

theorem there exists a number ¢ € [a, b] such that

1 b
—/ fdz.
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Theorem 2.13 Let f € R([a,b]) . Then

F(z) = / oL

defines a continuous function F : [a,b] — R.

Proof: There is M with |f(x)| < M for all x € [a,b]. Thus, for z,zq € [a,b] with 2y < x

T zo T
Pla) - Flao)| = | [ f®dt~ [ sy =| [ s@)at| < Mo - ).
This estimate implies that F' is continuous on [a, b] . n

Theorem 2.14 Let f € R([a,b]) be continuous. Then the function F : [a,b] — R defined
by
F(x) :/ f(t)dt
is continuously differentiable with
Fl=f.

Therefore F' is an antiderivative of f .

Proof: Let 2y € [a,b]. The mean value theorem of integration implies

lim £ = Fleo) g [/:f(t)dt—/:of(t)dt]

T—T0 Tr — 2o T—r0 T — X

1

1 xX
= xllrgo pra— /xo f(t)dt:rli_gclo pra— fy)(x — zo)
= mh_gclo fly) = f(xo),

for suitable y between xq and x. Therefore F' is differentiable with F’ = f. Since f is

continuous by assumption, F' is continuously differentiable. [ |

Theorem 2.15 (Fundamental theorem of calculus) Let F' be an antiderivative of

the continuous function f :[a,b] — R. Then

a

/f@ﬁZF@—F@=F@)

Proof: The functions =z — fax f(t)dt and F both are antiderivatives of f. Since two

antiderivatives differ at most by a constant ¢, we obtain

F(x):/wf(t)dt%—c
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for all = € [a,b]. This implies ¢ = F'(a), whence F(b) — F(a) = fab f(t)dt. ]

This theorem is so important because it simplifies the otherwise so tedious computation

of integrals.

Examples. 1.) Let 0 <a <band c€ R, c# —1. Then

b 1 b
/ xCdx = .
a c+ 1 a

For ¢ < —1 one obtains

m 1 1 1
lim 2°dr = lim mett — atl = — a“tt,
m—oo J, m—oo C—|—1 C+1 C+1
Therefore one defines for a > 0 and ¢ < —1
OO c : " c 1 c+1
z¢dx = lim zfdr = — a.
o m—oo J, c+1

The integral faoo x¢dz is called improper Riemann integral and one says that for ¢ < —1

the function z — x¢ is improperly Riemann integrable over the interval [a, c0) with a > 0.

/ x2dr=1.
1

For ¢ < 0 the function x +— z¢ is not defined at * = 0 and unbounded on every interval

In particular, one obtains

(0,b] with b > 0. Therefore the Riemann integral fob x¢dz is not defined. However, for
—1 < ¢ < 0 one obtains

: ’ c 1 c+1 : 1 c+1 1 c+1
lim 2°dr = —— b — lim e = —— b
=0 J. c+1 e—=0c+1 c+1

e>0 e>0

Therefore the improper Riemann integral

b b 1
/ 2 dx = lim 2¢dr = —— pet!
0 e—0 & _|_ 1

e>0 V¢

is defined, x¢ is improperly Riemann integrable over (0,b] for —1 <c¢<0and b> 0. In

1 1
/ z 2dx =2.
0

b1
/ —dx =logb—loga.
u T

particular, one obtains

2.)) For0<a<b<oo
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Neither of the limits limy_, o fab 2 dx, lim,_g ff L dx exists, so 7! is not improperly Rie-

mann integrable over [a, 00) or (0, b].

3.) Let -1 <a<b<1. Then

r = arcsin b — arcsina .

/a V

dr =lim lim

1 b
1 1
—_— ——dzx
/_1 V1—a? b—1 a—>—11/a V1—a?

b<1l a>—
. . . . ™ 7
= limarcsinb — lim arcsina = — — (— —) =T.
b—1 a——1 2 2
b<1 a>—1

ﬁ is improperly Riemann integrable over the interval (—1,1).

Theorem 2.16 (Substitution) Let f be continuous, let g : [a,b] — R be continuously
differentiable and let the composition f o g be defined. Then

b g(b)
/ flo(®)) g'(t) dt = / fz)dz.
a g(a)

Proof: Since g is a continuous function defined on a compact interval, the range of g is
a compact interval [c,d]. Therefore we can restrict f to this interval. As a continuous
function, f : [¢,d] — R is Riemann integrable, hence has an antiderivative F': [¢,d] — R.

The chain rule implies

whence

Combination of this equation with

g(b)
F(o) - Fla@) = [ f(o)do
g(a)
yields the statement. ]

Remark: If g~ ! exists, the rule of substitution can be written in the form

b g 1(b)
/fmwzf £o(0) g/t dt

~!(a)
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Example. We want to compute fol V1 —22dzx. With the substitution x = z(t) = cost

it follows because of the invertibility of cosine on the interval [0, 7] that

! =) dz(t)
/ V1—a?2de = / V1 —x(t)? o dt
0 z~1(0)
0 /2
= / V1 —(cost)?(—sint)dt = / (sint)? dt
z 0

/2

w/2 1 1
= /0 (5 b cos(2t)) dt = % ~1 sin(2t)

Y

N

0

where we used the addition theorem for cosine:
cos(2t) = cos(t +t) = (cost)? — (sint)> =1 — (sint)? — (sint)* =1 — 2(sint)?.
Theorem 2.17 (Product integration) Let f : [a,b] — R be continuous, let F' be an

antiderivative of f and let g : [a,b] — R be continuously differentiable. Then

b

/ f(x)g(x)dx = F(z) g(x)| — / F(x)g'(x)dx.

a

Proof: The product rule gives (F -g) =F'-g+F-¢g =f-g+ F ¢, thus

b b b
Fa)g@)] = [ #@)gtw)de+ [ Fa)g'@)do.

Example. With f(z) = g(x) = sinz and F(x) = — cosx we obtain

™

s
/ (sinz)?dr = —cosz sinz
0

—1—/ (cosz)? dx
0

0

T
= —CosZ sinx

n /OW (1 - (sin2)?) dz = 7 — /Oﬂ(sinx)de,

0

hence

/ (sinz)® dr = T
0 2
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3 Continuous mappings on R"

3.1 Norms on R”
Let n € N. On the set of all n-tupels of real numbers
{x: (x1,29,...,Tp) ‘ z; € R, izl,...,n}
the operations of addition and multiplication by real numbers are defined by

Ty = (x1+y17"'7xn+yn)

cx = (cxy,...,cxy,).

The set of n-tupels together with these operations is a vector space denoted by R™. A

basis of this vector space is for example given by
er = (1,0,...,0), es = (0,1,0,...,0),..., en = (0,..., 0,1).

On R", norms can be defined in different ways. I consider three examples of norms:

1.) The maximum norm:

|2]| 0o := max {|z1], ..., |zal} -
To prove that this is a norm, the properties
i) ||zllo=0 < =0
(i) [|ex]loo = || |7 oo (positive homogeneity)
(i) ||z 4+ ylloo < [|2|loo + l¥]|oe  (triangle inequality)

must be verified. (i) and (ii) are obviously satisfied. To prove (iii) note that there exists

i€ {l,...,n} such that || + y||c = |; + v;| . Then
12+ ylloo = l2i + wil < [zil + |yil < [[@floe + [[Ylloo -

2.) The Euclidean norm:

x| = \/2i 4+ .. a2

/2 2
T+ 75
x = (11, %2)
e
| L2
|
|

T
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Using the scalar product
Ty =1y +ToYo + ...+ 2y, €ER

this can also be written as
lz| = Vz-z.
It is obvious that |z| = 0 <= x = 0 and |cz| = |¢| |z| hold. To verify that |- | is a norm

on R", it thus remains to verify the triangle inequality. To this end one first proves the
Cauchy-Schwarz inequality
|-yl < fal Jyl-
Proof: The quadratic polynomial in ¢
222+ 22 -yt + |y]* = [tr +y[* >0
cannot have two different zeros, whence the discriminant must satisfy

(z-y)* — |z’ |y]> <0.

[
Now the triangle inequality is obtained as follows:
e+ yP? = (e+y) - (@+y) =z +22-y+ [y
< P+ 20z -yl + [yl?
< o+ 20z fyl + ly* = (=l + [y])*,
whence
|z +y| < x|+ [yl.
3.) The p-norm:
Let p be a real number with p > 1. Then the p-norm is defined by
1
|z, := (|a:1]p +...+ |a:n|p)P .
Note that the 2-norm is the Euclidean norm:
lalls = |z .
Here we only verify that || - ||; is a norm. Since ||z]|; = 0 <= z =0 and ||cz|; = || ||=|}x

are evident, we have to show that the triangle inequality is satisfied:

n

lz -yl =D lei il <Y (il + lwal) = llzlh + vl -

i=1 =1
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Definition 3.1 Let || - || be a norm on R". A sequence {xy},-, with x;, € R" is said to

converge, if a € R" exists such that
lim ||z —al| =0.
k—o0

a 1s called limit or limit element of the sequence {xk}:;l :

Just as in R = R! one proves that a sequence cannot converge to two different limit
elements. Hence the limit of a sequence is unique. This limit is denoted by

a = lim z .
k—o0

In this definition of convergence on R™ a norm is used. Hence, it seems that convergence

of a sequence depends on the norm chosen. The following results show that this is not

the case.

emma 3. sequence {xg},_, with v, = (x,”,...,x € converges to a =
L 3.2 4 > | with % My ¢ Re ges t
(aM, ..., a™) with respect to the mazimum norm, if and only if every sequence of com-
ponents {:US)}Z; converges to a(i), 1=1,...,n.

Proof: The statement follows immediately from the inequalities
20 — aD] < |z — afloo < |2 — a®] + ..+ 2 — a™)].
[

Theorem 3.3 Let {x}},., with x;, € R be a sequence bounded with respect to the maz-
imum norm, i.e. there is a constant ¢ > 0 with ||xg||ec < ¢ for all k € N. Then the
sequence {xy},o, possesses a subsequence, which converges with respect to the mazimum

norm.

Proof: Since |.CEI(;)| < ||zk|loo for i = 1,...,n, all the component sequences are bounded.

Therefore by the Bolzano-Weierstrafl Theorem for sequences in R, the sequence { :c,(:) };Ozl

possesses a convergent subsequence {x,gl(z) }Joil . Then {xf&) ;11 is a bounded subsequence

of {atgf)}:;l , hence it has a convergent subsequence {m,(f(;(z))}:il . Also {x,(:&(g))}zl con-
verges as a subsequence of the converging sequence {x,(cl(z) }jil . Thus, for the subsequence
{Z’k(j(g))};il of {xk};ozl the first two component sequences converge. We proceed in the
same way and obtain after n steps a subsequence {xk }:il of {xk}:il , for which all com-

ponent sequences converge. By the preceding lemma this implies that {xks }S converges

1
with respect to the maximum norm. [ ]
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Theorem 3.4 Let || - || and | - | be norms on R™. Then there exist constants a,b > 0
such that for all z € R™
allz|] < x| < bll].

Proof: Obviously it suffices to show that for any norm || - || on R™ there exist constants
a,b > 0 such that for the maximum norm || - ||
2]l < al[z]lee, Nzl < 0l

for all x € R™. The first one of these estimates is obtained as follows:

|zl] = |zie1 +x2ea+ ... + zpey,]
< weall + - lamenll = fzaf flel] + - 4 faal [lenll
< (el +--- + lleall) 2l = allzllo
where a = |leg|| + ...+ ||en]| -

The second one of these estimates is proved by contradiction: Suppose that such a
constant b > 0 would not exist. Then for every k € N we can choose an element z, € R"
such that

2k lloo > K [kl -

Set y, = W The sequence {yk}k | satisfies
1 1
— — < =
and
Joelloe = -2 ]l.. = T lklloe = 1.
Hx H 1@l oo

Therefore by Theorem 3.3 the sequence {y;},, has a subsequence {yj; };il , which con-
verges with respect to the maximum norm. For brevity we set z; = y;, . Let z be the
limit of {2;}72, . Then

lim ||z; — z||ec = 0,

j—00
hence, since ||2j[loc = [|Yx;lloc = 1,

1= 1lim |[z[ec = lim ||2; = 2 + 2[loc < [[2]|oc + Lm [|2j = 2[Jec = ||zl ,
whence z # 0. On the other hand, |z = |lyy, || < % < % together with the estimate

l|z|| < al|z|| proved above implies

Izl =Nl = 2 + 2] = lim [l —2; + z]]

1
< lim 2 = 2] + lim [|z]] <a lim [[z = 2j]le + lim — =0,
Jj—o0 j—00 J—00 ]—>OO]
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hence z = 0. This is a contradiction, hence a constant b must exist such that |||l < b||z||

for all z € R. [
Definition 3.5 Let ||-|| and | -| be norms on a vector space V. If constant a,b > 0 exist
such that

aljvl| < Jv] < bfjv]]
for all v € V', then these norms are said to be equivalent.

The above theorem thus shows that on R™ all norms are equivalent. From the definition
of convergence it immediately follows that a sequence converging with respect to a norm
also converges with respect to an equivalent norm. Therefore on R™ the definition of

convergence does not depend on the norm.

Moreover, since all norms on R™ are equivalent to the maximum norm, from Lemma 3.2

and Theorem 3.3 we immediately obtain

Lemma 3.6 A sequence in R"™ converges to a € R™ if and only if the component sequences

all converge to the components of a .

Theorem 3.7 (Theorem of Bolzano-Weierstrafl for R™) Every bounded sequence

in R™ possesses a convergent subsequence.

Lemma 3.8 (Cauchy convergence criterion) Let ||-|| be a norm on R™. A sequence
{zr}re, in R™ converges if and only if to every e > 0 there is a ko € N such that for all
k, > kg

Hl’k — SL’@H <e€.

Proof: {xk}:il is a Cauchy sequence on R" if and only if every component sequence
{x,(j)}iozl for i = 1,...,n is a Cauchy sequence in R. For, there are constants, a,b > 0

such that foralli =1,...,n

a]a:g) - xél)‘ < allzr — 2elloo < |k — x|

IN

1 1 n n
bllag — welloo < b(j2l) — 2V 4+ |2 — 7))

The statement of the lemma follows from this observation, from the fact that the compo-
nent sequences converge in R if and only if they are Cauchy sequences, and from the fact

that a sequence converges in R” if and only if all the component sequences converge. m
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Infinite series: Let {xk};il be a sequence in R". By the infinite series ).~ x) one
means the sequence {34}21 of partial sums s, = Zizl . If {5g}2; converges, then

s = limy_ s, is called the sum of the series >~ x5 . One writes

o0
S = E Ty .
k=1

A series is said to converge absolutely, if

[ee]
> i
k=1

converges, where || - || is a norm on R". From

m m
1>zl <l
k=0 k=¢

and from the Cauchy convergence criterion it follows that an absolutely convergent series
converges. The converse is in general not true.

A series converges absolutely if and only if every component series converges absolutely.
This implies that every rearrangement of an absolutely convergent series in R™ converges
to the same sum, since this holds for the component series.

3.2 Topology of R™

In the following we denote by || - || a norm on R™.
Definition 3.9 Let a € R" and e > 0. The set
Ucda)={x e R" | ||z —al| <&}

is called open e-neighborhood of a with respect the the norm || - ||, or ball with center a
and radius € .
A subset U of R™ is called neighborhood of a if U contains an e-neighborhood of a .
The set Uy(0) = {z € R™ | ||z|| < 1} is called open unit ball with respect to || - | .

In R? the unit ball can be pictured for the different norms:
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Maximum norm || - ||o:

Euclidean norm | - |:

l-norm || - ||1:

b o
1
U1(0)
1 ~x1
A x2
U1(0)
1 71'1
b Ty
1
1(0)
1 T

p-norm || - ||, with 1 < p < oo0:
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Whereas the e-neighborhoods of a point a differ for different norms, the notion of a
neighborhood is independent of the norm. For, let || - || and | - | be norms on R". We
show that every e-neighborhood with respect to || - || of @ € R™ contains a J-neighborhood
with respect to | - | .

To this end let

Ula) = {zeR"[ |z —af <&},
Vi(a) = {z€R"| |Jz—a] <e}.

Since all norms on R™ are equivalent, there is a constant ¢ > 0 such that
cllz —al <z —al

for all z € R™. Therefore, if x € V..(a) then |z — a] < ce, which implies ||z — y|| <

% |r —a] < e, and this means x € U.(a). Consequently, with 6 = ce,
Vs(a) C Ue(a).

This result implies that if U is a neighborhood of a with respect to || - ||, then it contains a
neighborhood U(a), and then also the neighborhood V,.(a), hence U is a neighborhood
of a with respect to the norm | - | as well. Consequently, a neighborhood of a with respect
to one norm is a neighborhood of a with respect to every other norm on R™. Therefore

the definition of a neighborhood is independent of the norm.

Definition 3.10 Let M be a subset of R™. A point x € R™ is called interior point of M ,
if M contains an e-neighborhood of x , hence if M is a neighborhood of x .

x € R™ is called accumulation point of M , if every neighborhood of x contains a point
of M different from x .

x € R s called boundary point of M , if every neighborhood of x contains a point of
M and a point of the complement R™\ M .

M s called open, if it only consists of its interior points. M is called closed, if it

contains all its accumulation points.
The following statements are proved exactly as in R :

The complement of an open set is closed, the complement of a closed set is open. The
union of an arbitrary system of open sets is open, the intersection of finitely many open
sets is open. The intersection of an arbitrary system of closed sets is closed, the union of

finitely many closed sets is closed.
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A subset M of R™ is called bounded, if there exists a positive constant C' such that
lafl < C
for all x € M . The number
diam(M) := sup ||y — x|

y,xEM

is called diameter of the bounded set M .

Theorem 3.11 Let {Ai},—, be a sequence of bounded, closed, nonempty subsets Ay, of
R™ with Agyq1 C Ay and with
lim diam(Ag) =0.

k—o0

Then there is x € R™ such that

() A = {z} .

Proof: For every k € N choose x;, € Ai. Then the sequence {ZEk}ZO:l is a Cauchy
sequence, sind limy,_,, diam(A;) = 0 implies that to £ > 0 there is kg such that diam A, <
¢ for all £ > ky. Thus, Ay C A, implies for all & > kg that

|Tpre — x]] < diam (Ag) < e.

The limit = of {xk}zozl satisfies x € (= A . For, if j € N would exist with z ¢ A;, then,
since R™\4; is open, a neighborhood U.(x) could be chosen such that U.(x) N A; = 0.
Thus, U.(x) N Aje = 0, since Ajp € A;, which implies ||z — 24| > € for all £. This
contradicts the property that x is the limit of {xk}zozl, and therefore x belongs to the
intersection of all sets Ay, .

This intersection does not contain any other point. For if y € (2, Ak, then ||[z—y|| <
diam (Ayg) for all k&, whence

o =yl = lim flo = yi| < lim diamn (4) = 0.

Consequently y = =, which proves (-, Ax = {z} . [

Definition 3.12 Let x = (x1,...,2,), ¥y = (Y1,...,Yn) € R™. The set
Q={z=(21,...,2,) eER"| ;< 2z, <y;,i=1,...,n}

is called closed interval in R™. Ifyy —x1 =y — 29 =... =y, —x, = a >0, then this set
15 called a cube with edge length a .
Let M be a subset of R™. A system U of open subsets of R™ such that M C |Jye, U

15 called an open covering of M .
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Theorem 3.13 Let M C R™. The following three statements are equivalent:

(i) M is bounded and closed.

(ii) LetU be an open covering of M . Then there are finitely many Uy, ..., U, € U such

(iii) PEvery infinite subset of M possesses an accumulation point in M .

Proof: (i) = (ii): Assume that M is bounded and closed, but that there is an open
covering U of M for which (ii) is not satisfied. As a bounded set M is contained in a
suffficiently large closed cube W . Subdivide this cube into 2" closed cubes with edge
length halved. By assumption, there is at least one of the smaller cubes, denoted by W7,
such that W; N M cannot be covered by finitely many sets from . Now subdivide W;
and select W, analogously. The sequence {M NW;},~, of closed sets thus constructed,

has the following properties:

1.) MONWDOMMONW,DMNWy D ...
2.) klim diam (M NW) =0
3.) M N'Wy cannot be covered by finitely many sets from U .

3.) implies M N Wy, # 0. Therefore, by 1.) and 2.) the sequence {M N W}, satisfies

the assumptions of Theorem 3.11, hence there is € R™ such that

x € ﬂ (M NWy).
k=1
Since x € M, there is U € U with x € U . The set U is open, and therefore contains an
e-neighborhood of x, and then also a d-neighborhood of x with respect to the maximum
norm. Because limy_,, diam (W}) — 0 and because x € Wy, for all k, this J-neighborhood
contains the cubes Wy for all sufficiently large k. Hence U contains M N W for all
sufficiently large k. Thus, M N W}, can be covered by one set from U , contradicting 3.).
We thus conclude that if (i) holds, then also (ii) must be satisfied.
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(ii) = (iii): Assume that (ii) holds and let A be a subset of M which does not have
accumulation points in M . Then no one of the points of M is an accumulation point of
A, consequently to every x € M there is an open neighborhood, which does not contain a
point from A different from x . The system of all these neighborhoods is an open covering
of M, hence finitely many of these neighborhoods cover M . Since everyone of these
neighborhoods contains at most one point from A, we conclude that A must be finite.

An infinite subset of M must thus have an accumulation point in M .

(iii) = (i). Assume that (iii) is satisfied. If M would not be bounded, to every k € N
there would exist z;, € M such that

ekl = k-

Let A denote the set of these points. A is an infinite subset of M , but it does not have
an accumulation point. For, to an accumulation point y of A there must exist infinitely

many z € A satisfying ||z — y|| < 1, which implies
2l = llz =y +yll < llz =yl + llyll < 1+l

This is not possible, since A only contains finitely many points with norm smaller than
1+ ||ly|| Thus, the infinite subset A of M does not have an accumulation point. Since this
contradicts (iii), M must be bounded.

Let x be an accumulation point of M . For every k € N we can select z, € M with
0 < [Jzxg—z| < £ . The sequence {xk}zozl converges to z , hence z is the only accumulation
point of this sequence. Therefore  must belong to M by (iii), thus M contains all its

accumulation points, whence M is closed. [ |

Definition 3.14 A subset of R™ is called compact, if it has one (and therefore all) of the

three properties stated in the preceding theorem.

Theorem 3.15 A subset M of R™ is compact, if and only if every sequence in M possesses

a convergent subsequence with limit contained in M .

This theorem is proved as in R (c¢f. Theorem 6.15 in the classroom notes to Analysis I.)

A set M with the property that every sequence in M has a subsequence converging in
M, is called sequentially compact. Therefore, in R™ a set is compact if and only if it
is sequentially compact. Finally, just as in R!, from the Theorem of Bolzano-Weierstraf3

for sequences (Theorem 3.7) we obtain

52



Theorem 3.16 (Theorem of Bolzano-Weierstrafl for sets in R™) FEvery bounded

infinite subset of R™ has an accumulation point.

The proof is the same as the proof of Theorem 6.11 in the classroom notes to Analysis I.

3.3 Continuous mappings from R™ to R™

Let D be a subset of R". We consider mappings f : D — R™. Such mappings are called
functions of n variables.
For x € D let fi(x),..., fm(x) denote the components of the element f(x) € R™. This
defines mappings
fi:D—R, +1=1,...,m.

Conversely, let m mappings f1,..., f,n : D — R be given. Then a mapping
f:D—R"

is defined by
f@) = (fi(@),. fu(2)) .

Thus, every mapping f : D — R™ with D C R" is specified by m equations

Yy = f1(5171,---,$n)

Ym = fm(T1, .., 2p).

Examples

1.) Let f:R™ — R™ be a mapping, which satisfies for all z,y € R” and all c € R

flz+y) = f(z)+ f(y)
flcx) = cf(x)

Then f is called a linear mapping. The study of linear mappings from R" to R™ is the
topic of linear algebra. From linear algebra one knows that f : R™ — R™ is a linear

mapping if and only if there exists a matrix

ailp ... Qip

Am1  --- Amn
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with a;; € R such that
a111 + ...+ amr,
f(z) = Az =
am1T1 + ... + aunTy

2.) Letan,mzlandD:{xER2| lz| <1} . A mapping f : D — R is defined by

f(x) = fla1,22) = /1 —af —a3.

The graph of a mapping from a subset D of R? to R is a surface in R3. In the present

example graph f is the upper part of the unit sphere:
A
Y

X2

fi(t) cost
f&)y=1| fut) | =1 sint
f5(t) t

The range of f is a helix.
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X2

4.) Polar coordinates: Let
D:{(Ta¢,¢)€R3! 0<7’,O§<,0<27T,O<19<’/T}§R3’

and let f: D — R3,
7 cos @ sin ¥
f(ra @,¢) - TSingosinﬁ
rcos v

The range of this mapping is R? without the z3-axis:

y L3

Definition 3.17 Let D be a subset of R". A mapping f : D — R™ is said to be contin-
uous at a € D, if to every neighborhood V' of f(a) there is a neighborhood U of a such
that f(UND) C V.

Since every neighborhood of a point contains an e-neighborhood of this point, irrespective

of the norm we use to define e-neighborhoods, we obtain an equivalent formulation if in
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this definition we replace V by V.(f(a)) and U by Us(a). Thus, using the definition of

e-neighborhoods, we immediately get the following

Theorem 3.18 Let D C R™. A mapping f : D — R™ is continuous at a € D if and only
if to every € > 0 there is d > 0 such that

If(z) = fla)ll <e
for all x € D with ||x —al| <.

Note that in this theorem we denoted the norms in R"™ and R™ with the same symbol

Almost all results for continuous real functions transfer to continuous functions from

R"™ to R™ with the same proofs. An example is the following

Theorem 3.19 Let D C R™. A function f : D — R™ is continuous at a € D , if and

only if for every sequence {mk}zozl with x, € D and limy,_o x = a

lim f(z) = f(a)
holds.
Proof: Cf. the proof of Theorem 6.21 of the classroom notes to Analysis I.

Definition 3.20 Let f : D — R™ and let a € R™ be an accumulation point of D . Let
b e R™. One says that f has the limit b at a and writes
lim f(z) =10

r—a

if to every € > 0 there is 6 > 0 such that
If(z) — bl <&
for all x € D\ {a} with ||x —y|| <J.

Theorem 3.21 Let f : D — R™ and let a be an accumulation point. lim,_, f(x) = b

holds if and only if for every sequence {a:k}zozl with x € D\ {a} and limy_., x; = a
Jim f(zy) =0
holds.
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Proof: Cf. the proof of Theorem 6.39 of the classroom notes to Analysis I.

Example: Let f : R? — R be defined by

2
wzmjﬂ ) (x7y) # O
f(z,y) = ’
0, (x,y)=0.

This function is continuous at every point (x,y) € R?* with (z,y) # 0, but it is not

continuous at (z,y) = 0. For

f(2,0) = f(0,y) =0,

whence f vanishes identically on the lines y = 0 and x = 0. However, on the diagonal

r=Yy

B 212

flay) = flax) = 25

For the two sequences {zk};ozl with z, = (%, 0) and {51@}20:1 with 2z, = ( ) we therefore

11
k> k
have hmkﬁoo VAR hm;Hoo 2]@ = O, but

Jim fz) = 0= f(0) # 1= lim f(Z).

Therefore, by Theorem 3.19 f is not continuous at (0,0), and by Theorem 3.21 does not
have a limit at (0,0). Hence f cannot be made into a function continuous at (0,0) by
modifying the value f(0,0).

Observe however, that the function
z— f(z,y) :R—-R
is continuous for every y € R, and
y— flz,y) :R—R
is continuous for every x € R. Therefore f is continuous in every variable, but as a
function f: R? — R it is not continuous at (0,0).

Theorem 3.22 Let D C R™ and let f : D — R™. The function f is continuous at a
pointa € D, if and only if all the component functions fi, ..., fm : D — R are continuous

at a .

Proof: f is continuous at a, if and only if for every sequence {:ck}:;l with x, € D
and limy,_..c zx = a the sequence { f (mk)}zozl converges to f(a). This holds if and only
if every component sequence { f,(a:k)}zozl converges to fi(a) for i = 1,...,m, and this is

equivalent to the continuity of f; at a fort=1,...,m. [ |
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Definition 3.23 Let D C R". A function f : D — R™ is said to be continuous if it is

continuous at every point of D .

Definition 3.24 Let D be a subset of R™. A subset D' of D is said to be relatively open
with respect to D , if there exists an open subset O of R™ such that D' =0ND.

Thus, for example, every subset D of R" is relatively open with respect to itself, since
D = D NR"™ and R" is open.

Lemma 3.25 A subset D' of D is relatively open with respect to D , if and only if for
every x € D there is a neighborhood U of x such that U N D C D'.

Proof: If D' is relatively open, there is an open subset O of R™ such that D' =0"'ND.
For every x € D’ the set O is the sought neighborhood.

Conversely, assume that to every x € D' there is a neighborhood U(x) with U(z)ND C
D’. Since every neighborhood contains an open neighborhood, we can assume that U(z)

is open. Then

pcon|JU@=J (DnU@)cD,

zeD’ zeD’
whence D' = D N O with the open set O = (J, ., U(z). Consequently D’ is relatively

open with respect to D . [ |

Theorem 3.26 Let D C R™. A function f : D — R™ is continuous, if and only if for

each open set O of R™ the inverse image f~1(O) is relatively open with respect to D.

Proof: Let f be continuous and x € f~'(0O). Then f(z) belongs to the open set O,
whence O is a neighborhood of f(z). Therefore, by definition of continuity, there is a
neighborhood V' of z such that f(V N D) C O, which implies VN D C f~1(0). Thus,
f71O) is relatively open with respect to D.

Assume conversely that the inverse image of every open set is relatively open in D. Let
x € D and let U be an open neighborhood of f(x). Then f~1(U) is relatively open, whence
there is an open set O C R" such that f~1(U) = O N D. This implies z € f~1(U) C O,

whence O is a neighborhood of z. For this neighborhood of z we have

flonD)=f(f~(U) cU,

hence f is continuous. u

The following theorems and the corollary are proved as the corresponding theorems in R.
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Theorem 3.27 (i) Let D C R™ and let f : D — R™, g : D — R™ be continuous. Then
also the mappings f+g: D — R™ and cf : D — R™ are continuous for every c € R.

(i) Let f: D — R and g : D — R be continuous. Then also f-g: D — R and
g:{x€D|g(x)7éO}—>R

are continuous.

(iii) Let f: D — R™ and ¢ : D — R be continuous. Then also pf is continuous.

Theorem 3.28 Let D; C R"™ and Dy C RP. Assume that f : Dy — Dy and g : Dy — R™

are continuous. Then go f: Dy — R™ is continuous.

This theorem is proved just as Theorem 6.25 in the classroom notes of Analysis I.

Definition 3.29 Let D be a subset of R™. A mapping f : D — R™ is said to be uniformly

continuous, if to every € > 0 there is § > 0 such that

If(z) = f)ll <e

for all z,y € D satisfying ||z —y|| < 9.

Theorem 3.30 Let D C R"™ be compact and f : D — R™ be continuous. Then f is

uniformly continuous and f(D) C R™ is compact.

Corollary 3.31 Let D C R"™ be compact and f : D — R be continuous. Then f attains

the mazimum and minimum.

Definition 3.32 A subset M of R™ is said to be connected, if it has the following property:
Let Uy, Uy be relatively open subsets of M such that Uy N Uy = () and Uy UUy = M. Then
M=U andUs =0 or M =Uy and Uy = 0.

Example Every interval in R is connected.

Theorem 3.33 Let D be a connected subset of R™ and f : D — R™ be continuous. Then
f(D) is a connected subset of R™.

Proof: Let U; and U, be relatively open subsets of f(D) with Uy N Uy = () and Uy U
Uy = f(D). With suitable open subsets 0,02 of R™ we thus have U; = O; N f(D)
and Uy = O, N f(D), whence the continuity of f implies that f~}(U;) = f~(O;) and
7 HUy) = f7YO,) are relatively open subsets of D satisfying f~*(Uy) N f~(Uz) = 0
and f~1(U;) U f~1(Uy) = D. Thus, since D is connected, it follows that f~!(U;) = 0 or
F7HUy) =0, hence Uy = 0 or Uy = (). Consequently, f(D) is connected. n
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Definition 3.34 Let [a,b] be an interval in R and let v : [a,b] — R™ be continuous.
Then ~ s called a path in R™.

Definition 3.35 A subset M of R™ is said to be pathwise connected, if any two points in
M can be connected by a path in M, i.e. if to x,y € M there is an intervall [a,b] and a
continuous mapping vy : [a,b] — M such that y(a) = x and v(b) =y .

v(a) is called starting point, v(b) end point of 7.

Theorem 3.36 Let D C R"™ be pathwise connected and let f : D — R™ be continuous.
Then f(D) is pathwise connected.

Proof: Let u,v € f(D) and let x € f~'(u) and y € f~'(v). Then there is a path v,

which connects x with y in D . Thus, f o+ is a path which connects v with v in f(D). =
Theorem 3.37 Let M C R™ be pathwise connected. Then M is connected.

Proof: Suppose that M is not connected. Then there are relatively open subsets U; # ()
and Uy # () such that Uy NUy = () and U; UU, = M. Select z € U; and y € U, and let
v : [a,b] — M be a path connecting = with y. Since M is not connected, it follows that

the set y([a, b]) is not connected. To see this, set

‘/1 = 7([&,6])HU1,
‘/-2 = 7([a,b])ﬂU2_

Then Vi and V5 are relatively open subsets of v([a, b]) satisfying V1NV, = () and ViNV, =
v([a,b]) . Therefore, since x € V1, y € Vo implies Vi # 0, Vo # 0, it follows that v([a, b])
is not connected.

On the other hand, since [a, b] is connected and since 7 is continuous, the set y([a, b])
must be connected. Our assumption has thus led to a contradiction, hence M is connected.

]
Example. Consider the mapping f : [0,00) — R defined by

sin%, x>0
flz) =
0, x=0.

Then M = graph(f) = {(z, f(z)) | z € [0,00)} is a subset of R?, which is connected, but

not pathwise connected.
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To prove that M is not pathwise connected, assume the contrary. Then, since (0,0) €
M and (z¢,1) € M with xp = 1/%, a path v : [a,b] — M exists such that y(a) = (0,0)
and y(b) = (xp,1). The component functions y; and -, are continuous. Since to every
x > 0 a unique y € R exists such that (x,y) € M, namely y = f(z), these component

functions satisfy for all ¢ € [a, b]

10 = (1(e), 32(e)) = (1(0), F(u(e)).

hence
Yo=fom.
However, this is a contradiction, since f oy; is not continuous.

To see this, set

1
Ty = ———.
5 +2nm

Then { xn}zozl is a null sequence with

m(a)=0<z, <xo="7(D).

Therefore the intermediate value theorem implies that a sequence {cn} exists with

a < ¢, < b such that

[e's)
n=1

m(cn) = Tp .

The bounded sequence {cn}zozl has a convergent subsequence {cnj}jozl with limit

c= lim ¢,, € [a,b].

J—o0
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From the continuity of v, it follows that

/71(0) = hm ’Yl(CNj) = jlirgo Tpn; = lim z, =0,

hence
(f om)(c) = f(mlc)) = f(0) =0,
but

lim (f o) (en,) = lim f(vi(cn;)) = lim f(an,)

= lim sin (g + 2nj7r) =lim1=1%# (fov)(c),
J]—00

J—00

which proves that f o~; is not continuous at c.
To prove that M is connected, assume the contrary. Then there are relatively open
subsets Uy, Uy of M satisfying Uy 0, Uy # 0, UyNUy =0, and U; UU, = M . the set

M ={(z, f(x)) |z >0} C M
is connected as the image of the connected set (0, 00) under the continuous map
z— (2, f(z)) : (0,00) — R

Consequently, Uy N M’ = () or Uy N M’ = (). Without restriction of equality we assume
that Uy "N M’ = (). Then Uy = M’ and U; = {(0,0)} . However, this is a contradiction,
since {(O, O)} is not relatively open with respect to M . Otherwise an open set O C R?
would exist such that {(0,0)} = MNO, hence (0,0) € O, and therefore O would contain
an e-neighborhood of (0,0) . Since sin (1) has infinitely many zeros in every neighborhood
of = 0, the e-neighborhood of (0,0) would contain besides (0,0) infinitely many points
of M on the positive real axis, hence M NO # {(O, 0)} . Consequently, M is connected. m

This example shows that the statement of the preceding theorem cannot be inverted.

Theorem 3.38 Let D be a compact subset of R™ and f : D — R™ be continuous and

injective. Then the inverse f~1: f(D) — D is continuous.

The proof of this theorem is obtained by a slight modification of the proof of Theorem

6.28 in the classroom notes of Analysis .

Definition 3.39 let D CR"™ and W C R™. A mapping f : D — W is called homeomor-

phism, if f is bijective, continuous and has a continuous inverse.
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3.4 Uniform convergence, the normed spaces of continuous and linear map-

pings

Definition 3.40 Let D be a nonempty set and let f : D — R™ be bounded. Then

[flloc := sup [|f(2)]
zeD
is called the supremum norm of f. Here || - || denotes a norm on R™.

As for real valued mappings it follows that || - || is a norm on the vector space B(D,R™)
of bounded mappings from D to R™, cf. the proof of Theorem 1.8. Therefore, with this
norm B(D,R™) is a normed space. Of course, the supremum norm on B(D,R™) depends
on the norm on R™ used to define the supremum norm. However, from the equivalence of
all norms on R™ it immediately follows that the supremum norms on B(D,R™) obtained
from different norms on R are equivalent. Therefore the following definition does not

depend on the supremum norm chosen:

Definition 3.41 Let D be a nonempty set and let {fi}32, be a sequence of functions
fr € B(D,R™). The sequence {fr}32 is said to converge uniformly, if f € B(D,R™)

exists such that
T [|fi— flloo =0

Theorem 3.42 A sequence {fi}32, with fr € B(D,R™) converges uniformly if and only
if to every € > 0 there is kg € N such that for all k,{ > kg

/e = fells <€
(Cauchy convergence criterion.)

This theorem ist proved as Corollary 1.5.

Definition 3.43 A normed vector space with the property that every Cauchy sequence
converges, is called a complete normed space or a Banach space (Stefan Banach, 1892 —
1945).

Corollary 3.44 The space B(D,R™) with the supremum norm is a Banach space.

Theorem 3.45 Let D C R" and let {fx}32, be a sequence of continuous functions fi €
B(D,R™), which converges uniformly to f € B(D,R™). Then f is continuous.
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This theorem is proved as Corollary 1.5. For a subset D of R" we denote by C(D,R™)
the set of all continuous functions from D to R™. This is a linear subspace of the vector
space of all functions from D to R™. Also the set of all bounded continuous functions
C(D,R™)N B(D,R™) is a vector space. As a subspace of B(D,R™) it is a normed space
with the supremum norm. From the preceding theorem we obtain the following important

result:

Corollary 3.46 For D C R" the normed space C(D,R™)N B(D,R™) is complete, hence

it 1s a Banach space.

Proof: Let {f;}32; be a Cauchy sequence in C'(D,R™) N B(D,R™). Then this sequence
converges with respect to the supremum norm to a function f € B(D,R™). The preceding
theorem implies that f € C(D,R™), since f; € C(D,R™) for all k. Thus, f € C(D,R™)N
B(D,R™), and {fi}2, converges with respect to the supremum norm to f. Therefore
every Cauchy sequence converges in C'(D,R™) N B(D,R™), hence this space is complete.

By L(R™ R™) we denote the set of all linear mappings f : R — R™. Since for linear
mappings f, g and for a real number ¢ the mappings f + ¢g and cf are linear, L(R™ R™)

is a vector space.

Theorem 3.47 Let f : R™ — R™ be linear. Then f is continuous. If f differs from zero,

then f is unbounded.

Proof: To f there exists a unique m x n-Matrix (a;;)i=1,..m such that
P

1,..., n

filze, .., @) = anx+ ...+ a1,
fon(z1, . sy = @iz + ..+ GunTa.
Since everyone of the expressions on the right depends continuously on z = (z1,...,z,),

it follows that all component functions of f are continuous, hence f ist continuous.
If f differs from 0, there is x € R with f(x) # 0. From the linearity we then obtain
for A € R

[FQx)[ = [Af(@)] = A1 ()],

which can be made larger than any constant by choosing |A| sufficiently large. Hence f

is not bounded. ]
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We want to define a norm on the linear space L(R™ R™). It is not possible to use the
supremum norm, since every linear mapping f # 0 is unbounded, hence, the supremum

of the set
{If @)z € R"}

does not exist. Instead, on L(R",R™) a norm can be defined as follows: Let B = {z €
R ‘ |z|]| < 1} be the closed unit ball in R™. The set B is bounded and closed, hence
compact. Thus, since f € L(R",R™) is continuous and since every continuous map is

bounded on compact sets, the supremum
11l := sup [[f(2)]
zeB

exists. The following lemma shows that the mapping || - || : L(R",R™) — [0, co) thus

defined is a norm:

Lemma 3.48 Let f,g: R" — R™ be linear, let c € R and x € R™. Then
(i) f=0=|flI=0

(i) Aefll = lel £

(i) f +gll < 1A+ gl

(V) L@ < A ]l

Proof: We first prove (iv). For z = 0 the linearity of f implies f(z) = 0, whence
If(@)] =0 < ||f]l ||z||. For z # 0 we have Hﬁ | = 1, hence % € B. Therefore the

|z

linearity of f yields

@ = 1Ol = 0

]
= lelllf (pll < Izl sup £ @) = =l 1]

T
]

To prove (i), let f = 0. Then ||f|| = sup||f(x)|| = 0. On the other hand, if ||f|| = 0, we
zeB

conclude from (iv) for all x € R™ that

1F @) < A=l =0,

hence f(z) = 0, and therefore f = 0. (ii) and (iii) are proved just as the corresponding

properties for the supremum norm in Theorem 1.8. |
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Definition 3.49 For f € L(R",R™)

11l = sup [If(z)]]

[lzf|<1

is called the operator norm of f.

With this norm L(R"™ R™) is a normed vector space. To every linear mapping A : R" —
R™ there is associated a unique m x n—matrix, which we also denote by A, such that
A(z) = Ax. Here Az denotes the matrix multiplication. The question arises, whether the
operator norm ||A|| can be computed from the elements of the matrix A. To give a partial

answer, we define for A = (a;;),

JAlloo = max agl.

1,..., m

Theorem 3.50 There exist constants ¢,C > 0 such that for every A € L(R",R™)
Al < [|A]l < CllA] -

Proof: Note first that there exist constants c¢q,...,c3 > 0 such that for all x € R™ and
yeR"
allzlleo <zl < eallzlloo, Myl < esllyll,

because all norms on R™ are equivalent. For 1 < j < n let e; denote the j-th unit vector
of R™ and let

a¥) = : cR™

be the j—th column vector of the matrix A = (a;;). Then for z € R”
JA@)]| = Az]| = 11> aDay]|. ()
j=1
Setting x = e; in this equation yields
e = (1A < Al [lesl,

hence, with ¢4 = 1r£1]a<>%HejH,

. 1 .
14|l = max [la¥]c < — max [la®] < Z|A].
(&1

1<j<n C1 1<j<n
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On the other hand, for ||z|| < 1 equation (x) yields
IA@)I < Y D] 2] < eall Allos Y L)
j=1 j=1
= alAllsllzll < cof| Allcocs|lz]| < cacsl| Al
whence

[A[l = sup [|A(z)]| < cacal|Alloo-

=<1
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4 Differentiable mappings on R"

4.1 Definition of the derivative

The derivative of a real function f at a satisfies the equation

f(@) = fa) + fi(a)(z — a) + r(z)(z — a) ,

where the function r is continuous at a and satisfies r(a) = 0. Since x — f'(a)z is
a linear map from R to R, the interpretation of this equation is that under all affine
maps ¢ — f(a) + T(x — a), where T : R — R is linear, the one obtained by choosing
T(z) = f'(a)x is the best approximation of the function f in a neighborhood of a .

Viewed in this way, the notion of the derivative can be generalized immediately to
mappings f : D — R™ with D C R". Thus, the derivative of f at a € D is the linear
map T : R” — R™ such that under all affine functions the mapping z — f(a) + T'(z — a)

approximates f best in a neighborhood of a .

tangential plane

(af(@)

For a mapping f : R? — R this means that the linear mapping 7" : R? — R, the derivative
of f at a, must be chosen such that the graph of the mapping = — f(a) + T(z — a) is
equal to the tangential plane of the graph of f at (a, f(a))

This idea leads to the following rigorous definition of a differentiable function:

Definition 4.1 Let U be an open subset of R™. A function f : U — R™ is said to be
differentiable at the point a € U , if there is a linear mapping T : R™ — R™ and a function

r: U — R™, which is continuous at a and satisfies r(a) = 0, such that for all x € U

f(x) = fla) + T(x = a) +r(z) |z —al|.
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Therefore to verify that f is differentiable at @ € D a linear mapping 7" : R® — R™ must
be found such that the function r defined by
f(x) = fla) = T(z - a)

[ = all

r(z):=

satisfies
limr(z) =0.
r—a
Later we show how T can be found. However, there is at most one such 7 :

Lemma 4.2 The linear mapping T is uniquely determined.

Proof: Let T7,T5 : R® — R™ be linear mappings and 71,79 : U — R™ be functions with

lim, o 71 (2) = lim,_, 79(x) = 0, such that for x € U

f@) = fla)+ Ti(x —a) +ri(z) [lz —
fl@) = fla)+Ta(x = a) +ra(2) |z — al|.

Then
(Ty — Ty)(x — a) = (ra(z) —ri(x)) |z — af .

Let h € R™. Then, x = a4+ th € U for all sufficiently small ¢ > 0 since U is open, whence
(T = To)(th) = {(Th = Ta)(h) = (ra(a + th) — ri(a+ th)) [|th]],
thus
(Th = T)(h) = lim(T3 — Ty) (h) = lim (r2(a+th) —ri(a+th)) ||h]| = 0.
This implies T} = T5, since h € R™ was chosen arbitrarily. [ ]

Definition 4.3 Let U C R"™ be open and let f : U — R™ be differentiable at a € U. Then
the unique linear mapping T : R™ — R™ , for which a function r : U — R™ satisfying

lim, ., 7(z) = 0 exists, such that
f(x) = fla) + T(x —a) +r(z) ||z — a

holds for all x € U, is called derivative of f at a. This linear mapping is denoted by
fla)=T.
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Mostly we drop the brackets around the argument and write T'(h) = Th = f'(a)h.

For a real valued function f the derivative is a linear mapping f’(a) : R* — R . Such
linear mappings are also called linear forms. In this case f’(a) can be represented by
a 1xn-matrix, and we normally identify f’(a) with this matrix. The transpose [f’(a)]”
of this 1xn-matrix is a nx1-matrix, a column vector. For this transpose one uses the

notation
grad f(a) = [f'(a)]" .

grad f(a) is called the gradient of f at a. With the scalar product on R™ the gradient

can be used to represent the derivative of f: For h € R™ we have

f'(a)h = (grad f(a)) - h.

If h € R™ is a unit vector and if ¢ runs through R, then the point th moves along the
straight line through the origin with direction h. A differentiable real function is defined
by

t— (grad f(a)) - th = t(grad f(a) - h).

The derivative is grad f(a) - h, and this derivative attains the maximum value

grad f(a) - h = [grad f(a)|

if h has the direction of grad f(a). Since f(a)+ grad f(a) - (th) = f(a)+ f'(a)th approxi-
mates the value f(a+th), it follows that the vector grad f(a) points into the direction of
steepest ascent of the function f at a, and the length of grad f(a) determines the slope

of f in this direction.

Lemma 4.4 Let U C R"™ be an open set. The function f : U — R™ is differentiable at
a € U, if and only if all component functions fi,..., f;n : U — R are differentiable in a .
The deriwatives satisfy

(f3)(a) = (f'(a)),

i j=1...,m.

Proof: If the derivatives f'(a) exist, then the components satisfy

- fila+h) = fi(a) = (f'(a) ;h .

h—0 17l

Since ( f (a))j : R" — R is linear, it follows that f; is differentiable at a with derivative
(fj) (a) = (f’(a))j. Conversely, if the derivative (f;)'(a) of f; exists at a for all j =
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1,...,m, then a linear mapping 7" : R® — R™ is defined by

(f1) (a)h
(fm)'(a)h
for which . -
i L@t = fla)=Th _ -
h—0 7]
Thus, f is differentiable at a with derivative f'(a) =T . [

4.2 Directional derivatives and partial derivatives

Let U C R™ be an open set, let a € U and let f: U — R™. Let v € R" be a given vector.
Since U is open, there is 6 > 0 such that a + tv € U for all ¢ € R with |¢| < ¢; hence
f(a+tv) is defined for all such ¢. If ¢ runs through the interval (—6,¢), then a + tv runs

through a line segment passing through a, which has the direction of the vector v .

Definition 4.5 We call the limit

Dy fla) — tim £ 10) = F(@)

t—0 t
derivative of f at a in the direction of the vector v, if this limit exists.
It is possible that the directional derivative D, f(a) exists, even if f is not differentiable at
a . Also, it can happen that the derivative of f at a exists in the direction of some vectors,
and does not exist in the direction of other vectors. In any case, the directional derivative

contains useful information about the function f. However, if f is differentiable at a,

then all directional derivatives of f exist at a:

Lemma 4.6 Let U C R"™ be open, let a € U and let f: U — R™ be differentiable at a .

Then the directional derivative D, f(a) exists for every v € R™ and satisfies
Dy f(a) = f'(a)v.
Proof: Set z = a + tv with ¢t € R, ¢t # 0. Then by definition of the derivative f’(a)
fla+tv) = f(a) + f'(a)(tv) + r(tv + a) t] 0],
hence

fla+tv) — f(a)
t

= Playo+ ot +a) 2 .
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l¢]

Since ' = #£1 and since lim;_or(tv + a) = r(a) = 0, it follows that lim,_or(tv +

a) % ||lv]| = 0, hence

fla+tv) — f(a)

. _pl
1;1% ; = f'(a)v.
[
This result can be used to compute f’(a): If v1,...,v, is a basis of R™, then every vector

v € R can be represented as a linear combination v = )" | o,v; of the basis vectors with

uniquely determined numbers «; € R. The linearity of f’(a) thus yields

f(a)v = f’(a)(i aivi> = Zj:aif'(a)vi = iaiDvif(a) )

Therefore f’(a) is known if the directional derivatives D,, f(a) for the basis vectors are
known. It suggests itself to use the standard basis ey, ..., e,. The directional derivative
D., f(a) is called i-th partial derivative of f at a. For the i-th partial derivative one uses

the notations

of

Di v a9 Jxo /-7 i -
I
For:=1,...,nand j =1,...,m we have
8f(a) _ hmf(a+tei)—f(a): lim f(al,...,xi,...,an)—f(al,...,al-,...,an)’
ox; t—0 t zi—a; Ti — a;
%() _ hm fj(al,...,a:i,...,an)—fj(al,...,ai,...,an)'
ox; Ti—a; Ty —a

Consequently, to compute partial derivatives the differential calculus for functions of one

real variable suffices.

To construct f’(a) from the partial derivatives one proceeds as follows: If f'(a) exists,
then all the partial derivatives D;f(a) = %(a) exist. For arbitrary h € R" we have
h = Z?:l h;e; , where h; € R are the components of A, hence

f(a)h = f’(a)<z hz’@‘) = Z (f,(a)ei)hi = Z D f(a)hi,

=1

or, in matrix notation,

(f’(a)h)1 Difi(a) ... Dypfi(a) hy

(f’(a)h)m Dyfn(a) ... Dyfm(a) ha,
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Thus,

Difi(a) ... Dyfi(a) g—ﬁ(a) o ngi(a)
f'(a) = : =
Difm(a) ... Dypfm(a) g’;”: (@) ... ‘Z’%:(a)
is the representation of f’(a) as mxn-matrix belonging to the standard bases eq,..., e,
of R" and ey, ..., e, of R™. This matrix is called Jacobi-matrix of f at a. (Carl Gustav

Jacob Jacobi 1804-1851).

It is possible that all partial derivatives exist at a without f being differentiable at
a. Then the Jacobi-matrix can be formed, but it does not represent the derivative f’(a),
which does not exist.

Therefore, to check whether f is differentiable at a, one first verifies that all partial
derivatives exist at a. This is a necessary condition for the existence of f’(a). Then one

forms the Jacobi-matrix

and tests whether for this matrix

L fla+h) = fla) = Th
0 ]

holds. If this holds, then f is differentiable at a with derivative f'(a) =T .

=0

Examples
1.) Let f:R?* — R be defined by

(fize, me)\ (2] — 3
f@r, @) = (f2($1,$2)> B ( lex;) |

At a = (ay,a2) € R? the Jacobi-matrix is

- g—ﬁ(a) g—g(a) B 2a, —2as
g—g(a) g—ﬁ(a) 2as 2a,

To test the differentiability of f at a, set for h = (hy,hy) € R* and i = 1,2
fila+h) — fi(a) — Ti(h)

i = ol |
hence
(h) = (a1 + h1)? = (ag + h2)? — a2 + a2 — 2a1hy + 2ashy _ h? — h3 |
I17] 17l
ro(h) = 2(ay + h1)(ag + ha) — 2a1as — 2ashy — 2a1hy _ 2hihy .
Il il
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Using the maximum norm || - || = || - ||, We obtain

Iri(h)] < 2[h]le
Ira(h)] < 2[[hl
thus
lim || (R)||oo = Lim [|(r1 (), 72(1) oo < lim 2][A]]o = 0.

Therefore f is differentiable at a. Since a was arbitrary, f is everywhere differentiable,
i.e. f is differentiable.

2.) Let the affine map f : R” — R™ be defined by
flx) = Az +c,
where ¢ € R™ and A : R® — R™ is linear. Then f is differentiable with derivative

f'(a) = A for all a € R". For,

fla+h)— f(a) — Ah A(a—i—h)-l—c—Aa—c—Ah:O

17| B 17|
3.) Let f:R? — R be defined by

0, for (x1,29) =0,
[y, 22) = T1| T

L, for (x1,22) #0.

3+ a3
This function is not differentiable at a = 0, but it has all the directional derivatives at 0.
To see that all directional derivatives exist, let v = (v, v9) be a vector from R? different
from zero. Then
tv) — (0 t|t
Dy F(O) -ty L= FO) o fve

=0 t U RVA e VAT T

To see that f is not differentiable at 0, note that the partial derivatives satisfy
of of
Loy=o, L
8.771 8952
Therefore, if f would be differentiable at 0, the derivative had to be

ro - (2o FLo)-0 o

(0) =0.

Consequently, all directional derivatives would satisfy
D, f(0) = f'(0)v =0.

74



Yet, the preceding calculation yields for the derivative in the direction of the diagonal
vector v = (1, 1) that

1
D, f(0)=—.
f(0) 7
Therefore f/(0) cannot exist.
We note that |f(x1,x2)| = |m‘1;|62| < |z|, which implies that f is continuous at 0.

4.3 Elementary properties of differentiable mappings

In the preceding example f was not differentiable at 0, but had all the directional deriva-
tives and was continuous at 0. Here is an example of a function f : R? — R, which has

all the directional derivatives at 0, yet is not continuous at 0: f is defined by

0, for (x1,22) =0
f(x1,22) = $1ZE%
2?2 + 2§’

for (z1, ) #0.

To see that all directional derivatives exist at 0, let v = (vy,v9) € R* with v # 0. Then

2 2
tv) — (0 lim ——— = —=, ifv; #0
DU f(O) — %II% M — t—0 U% + t4vg U1 ! 7&
- 0, ifv;=0.

Yet, for h = (hy, v/h1) with hy > 0 we have

2

= 11m
h1—0 1 + hl

lim f(h)

= lim 1
h1—0 m—0 hi+ hi

=14 f(0).

Therefore f is not continuous at 0. Together with the next result we obtain as a conse-

quence that f is not differentiable at 0:

Theorem 4.7 Let U be an open subset of R", let a € U and let f : U — R™ be differ-
entiable at a. Then there is a constant ¢ > 0 such that for all x from a neighborhood of

1f(2) = fla)ll < ¢llz — all.

In particular, f is continuous at a .

Proof: We have
f(@) = fa) + f'(a)(z — a) + r(z) |z — all,
whence, with the operator norm || f'(a)|| of the linear mapping f'(a) : R — R™,

1f(x) = fla)| < 17 (@)l Iz = all + ()] [l = al|.
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Since lim,_., r(z) = 0, there is § > 0 such that
[r(z)l <1
for all x € D with ||z — a]| < 0, whence for these x

1f (@) = fla)ll < (If ()]l +1) lz — all = c[lz — all,
with ¢ = || f’(a)]| + 1. In particular, this implies
tim [1/(2) = F(a)l < lim cllo — all =0,

whence f is continuous at a . ]

Theorem 4.8 Let U C R" be open anda € U. If f : U — R™ and g : U — R™ are
differentiable at a, then also f + g and cf are differentiable at a for all c € R, and

(f+9)(a) = f(a)+d(a)
(cf)(a) = cf'(a).
Proof: We have for h € R" with a+h € U
fla+h)= f(a)+ f'(a)h +ri(a+h)|h], }llii%rl(a +h)=0
gla+h) = g(a) + g (a)h +ra(a+ h)||h]|, }ILEI(I)TQ(CL +h)=0.

Thus
(f +9)a+h)=(f+g)a)+ (f'(a) +g'(a)h+ (ri+rs)(a+h)|A]

with lim,_(r1 +72)(a+h) = 0. Consequently f + g is differentiable at a with derivative
(f+9)(a) = f'(a) + ¢'(a) . The statement for cf follows in the same way. [

Theorem 4.9 (Product rule) Let U C R™ be open and let f,g : U — R be differen-
tiable at a € U . Then f-g: U — R s differentiable at a with derivative

(f-9)(a) = f(a)g'(a) + g(a) f'(a).
Proof: We have fora+h € U
(f-9)a+nh) = (fla)+ f(@)h+ri(a+hn)|hl)- (g(a) + g (a)h+r2(a+ h)||h])

= (f-9)(a) + f(a) g'(a)h + g(a) f'(a)h +r(a+ h)[|A],
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where

rat DB = (g (@) i) B+ (9(0) + @) (o + 1) ]
+(f(@)+ f/(@h)raa+b) Al +ri(a+ ) rala+ B) 1]
The absolute value is a norm on R. Since r(a+ k) € R, we thus obtain with the operator
norms ||f(a)], lg/(a)]]
lim r(a+0) < Jim (1@ 0] 1lg'(a)])

)
+ (lo(@)] + 1@ 14 I (a+ 1)
+ ([f(@)| + [If' @] [|2]]) [r2(a+ h)|
tlri(a+ h)| ra(a + B)] uhu] —0.

Since f(a) ¢'(a)h + g(a) f'(a)h = (f(a) ¢'(a) + g(a) f'(a))h, it follows that f - g is differ-
entiable at a with derivative given by this linear mapping. ]

Theorem 4.10 (Chain rule) Let U C R? and V' C R"™ be open, let f : U — V and
g:V — R™. Suppose that a € U, that f is differentiable at a and that g is differentiable
at b= f(a). Then go f: U — R" is differentiable at a with derivative

(9o f)(a) =g (f(a)) o f(a).

Remark: Since ¢/'(b) and f’(a) can be represented by matrices, ¢’(b) o f’(a) can also be

written as ¢’(b) f'(a), employing matrix multiplication.

Proof: For brevity we set

and for h e RP witha+h e U

R(h) = (go f)(a+h)—(go f)la) = T2T1h.

The statement of the theorem follows if it can be shown that

IR

im =0.
=

We have for x € U and y € V

f(x)— f(a) =Ti(x —a) = ri(x—a)lz—al, hmrl(h):O

h—0

g(y) —g(b) = To(y —b) = 712y —b)|ly — bl lim ro(k) = 0.

k—0
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Since Ty is linear, we thus obtain for x = a + h and y = f(a + h)

R(h) = g(fla+h)—g (f(a))—Tz(f(a+h)—f(a))
+TQ( (a+h)— fla) — )
= ra(fla+h) = fla)fla+h) = fla)| + To(ri(R)[|2]]),

which yields

o RO

o [|7] ”w@JWA<G+M—fmmMﬂa+M—fmw

Fmramal) ]

Since f is differentiable at a, for ||h|| sufficiently small the estimate || f(a + h) — f(a)|| <

c|lh|| holds, cf. Theorem 4.7. Therefore, with the operator norm ||75|| we conclude that

tiny L < i [+ 1) = @) e+ 1Tl 0]

For the Jacobi-matrices of f : U — R", ¢g:V — R™ and h : U — R™ we thus obtain

O O 991 dg1 oh of
81‘1 (a) Ce axp (a) a_yl (b) . 8_yn (b) a:[jl ((I) axp (a)
Oh, Ohy, OGm OGm ofn ofn
B, (@) ... o, (a) 90, (b) ... 0. (b) B, (@) ... o, (a)
Thus,
Ohj  ~x—~ 995 ;.\ Of . o
axl(a)_ a )axl(a) 2_17"'7p7j_17---7m

Corollary 4.11 Let U be an open subset of R™, let a € U and let f : U — R be differen-
tiable at a and satisfy f(a) # 0. Then % 15 differentiable at a with derivative

(3) @ =5 (@)

f fla)?
Proof: Consider the differentiable function g : R\{0} — R defined by g(z) = %. Then
1
F=90f {reU|f@)#0} ~ R

is differentiable at ¢ with derivative
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() @ =g (@)@ =~

Assume that U and V are open subsets of R™ and that f : U — V is an invertible map
with inverse f~1: V — U.If a € U, if f is differentiable at a and if f~! is differentiable at
b = f(a) € V, then the derivative (f~')'(b) can be computed from f’(a) using the chain

rule. To see this, note that

f'(a). n

f_l o f = idy.
The identity mapping ¢dy is obtained as the restriction of the identity mapping idg» to
U. Since idgn is linear, it follows that idy is differentiable at every ¢ € U with derivative

(idy) (x) = idgn. Consequently

idg = (idy)'(a) = (f~" o f)'(a) = (f71)'(0) f'(a).

From linear algebra we know that this equation implies that (f~1)'(b) is the inverse of
f'(a). Consequently, (f’(oz))_1 exists and

or
-1

(@) = [ (f®)]
Thus, if one assumes that f’(a) exists and that the inverse mapping is differentiable at
f(a), one can conclude that the linear mapping f’(a) is invertible. On the other hand, if
one assumes that f’(a) exists and is invertible and that the inverse mapping is continuous
at f(a), one can conclude that the inverse mapping is differentiable at f(a). This is
shown in the following theorem. We remark that the linear mapping f’(a) is invertible if
and only if the determinant det f'(a) differs from zero, where f’(a) is identified with the

nxn-matrix representing the linear mapping f'(a).

Theorem 4.12 Let U C R"™ be an open subset, let a € U and let f: U — R™ be one-to-
one. If f is differentiable at a with invertible derivative f'(a), if the range f(U) contains
a neighborhood of b = f(a), and if the inverse mapping f~': f(U) — U of f is continuous
at b, then f~1 is differentiable at b with derivative

0 = (@) = (1 o)

Proof: For brevity we set ¢ = f~!. First it is shown that there is a neighborhood
V C f(U) of b and a constant ¢ > 0 such that

lg(y) — g(0)]
ly — bl
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forally e V.

Since f is differentiable at a, we have for x € U

f(@) = fa) = f'(a)(z — a) +r(z) [l — ol ()

where 7 is continuous at a and satisfies 7(a) = 0. Let y € f(U). Employing (**) with
x = ¢g(y) and noting that b = f(a), we obtain from the inverse triangle inequality that

lg(y) =gl llg(y) — all
ly — ol 1f (a(y)) — f(a)]
lg(y) — all

:HfWme—a%H%(DHg —aM

< |(f'(a)) "' f'(@)(9(v) —a) |
‘nfmxm>—am—nd<>MHu«>)l<><<>—@u

3 (@) 11 @) (o) — o)
I @(ow) - a)ll (1= I g 1))
(£ (@)l

= 1
L=l (g 1(f"(@) |
The inequality () is obtained from this estimate. To see this, note that by assumption
g is continuous at b and that r is continuous at a = ¢(b), hence r o g is continuous at b.
Thus,

limr(g(y)) =r(g(h)) =r(a) = 0.
Using (*) the theorem can be proved as follows: we have to show that

i 9®) = 90) = (@) "y~ b)

=0.
y=b ly — ol

Employing () again,

g(y) —a—(f'(a) " (y —b)
ly — 1]

gty —a— (@) (W) - f(a))
|y — b
g(y) —a— (f'(a)) " (f’(a) (9(y) —a) +7r(9() llg(y) — all)
B Iy — bl

(@) (rlat) 12500
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With a = g(b) we thus obtain from (x)
|1 =90~ (Fa@) -0,
ly — ol
< lim || /'@l Ir () ¢ = el (@)l 1im fIr (g(y)) 1| = 0.

lim

y—b

Example (Polar coordinates) Let
U:{(r,go)‘r>0, 0<<p<27r}§R2,
and let f = (f1, f2) : U — R? be defined by

x = fi(r,p) =rcosp
y = folr,p) =rsing.

This mapping is one-to-one with range

flU) = RQ\{(J',O) | x> 0},

and has a continuous inverse. From a theorem proved in the next section it follows that
f is differentiable. Thus,

) &(r, ) %(T, ©) cosg —r sin
B2 (r,) 3—{02 (r, ) sing 1 cosy

This matrix is invertible for (r,p) € U, hence the derivative (f~!)'(z,y) exists for every

(x,y) = f(r,p) = (r cosp, rsiny) and can be computed without having to determine

the inverse function f~':

(f Y (z,y) = (f’(r, 90))_1 _ COS@ —T sing

sinp 7 cosp

. . y
COSs S
— i T o Ve Ve

_ 1 1 _—Y _z
~siny - Cosp R P
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4.4 Mean value theorem

The mean value theorem for real functions can be generalized to real valued functions:

Theorem 4.13 (Mean value theorem) Let U be an open subset of R, let f: U — R
be differentiable, and let a,b € U be points such that the line segment connecting these

points is contained in U. Then there is a point ¢ from this line segment with

f(b) = fla) = f(c)(b—a).

Proof: Define a function v : [0,1] — U by t — ~v(t) := a + t(b — a). This function
maps the interval [0, 1] onto the line segment connecting a and b. The affine function ~y
is differentiable with derivative

Y(t)=b—a.

Let FF = f o~ be the composition. Since f and ~ are differentiable, F' : [0,1] — R
is differentiable. Thus, the mean value theorem for real functions implies that there is
¥ € (0,1) such that

where we have set ¢ = v(9). [

Of course, the mean value theorem can also be formulated as follows: If U contains
together with the points x and = + h also the line segment connecting these points, then

there is a number ¥ with 0 < ¥ < 1 such that
flx+h)— f(x)=f'(x+Ih)h.

The mean value theorem does not hold for functions f : U — R™ with m > 1, but the

following weaker result can often be used as a replacement for the mean value theorem:

Corollary 4.14 Let U C R" be open and let f : U — R™ be differentiable. Assume that
x and x + h are points from U such that the line segment ¢ = {x + th ’ 0<t< 1}

connecting x and x + h s contained in U. Then
1f(z+h) = fla) < ( sup [[f'(z+th)[])|R],
0<t<1

if the supremum exists.

To prove this corollary we need the following lemma, which we do not prove:
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Lemma 4.15 Let ||-|| be a norm on R™. Then to every u € R™ there is a linear mapping
A, R™ — R such that ||A,|| = 1 and A, (u) = |ul| .

Example: For the Euclidean norm || - || = | - | define A, by

A,(v)=—" v, veR™.

U 1 1
[l = qap A < il ul = 1A
= sup |Au(0)] = sup | o] < sup PP q
[v]<1 lv<1 |U| lv|<1 ’U|

Hence [|A,|| =1.

Proof of the corollary: To f(x+h)— f(x) € R™ choose the linear mapping A : R™ — R
such that ||A|| = 1 and A(f(z + h) — f(z)) = ||f(z 4+ h) — f(z)||. As a linear mapping,
A is differentiable with derivative A’(y) = A for all y € R™. Thus, from the mean value
theorem applied to the differentiable function F' = Ao f : U — R we conclude that a
number ¢ with 0 < 9 < 1 exists such that

If(z+h) = f@)ll = A(f(z + h) — f(z))
=A(f(z+h)) — A(f(z)) = F(z + h) — F(z) = F'(z + 9h)h
= Af'(x + In)h < LA || f (= + ORI [|h]] < (Osgggl 1f (2 + th) ) IRl

Theorem 4.16 Let U be an open and pathwise connected subset of R™, and let f : U —
R™ be differentiable. Then f is constant if and only if f'(x) =0 for allz € U .

To prove this theorem, the following lemma is needed:

Lemma 4.17 Let U C R" be open and pathwise connected. Then all points a,b € U can
be connected by a polygon in U, i.e. by a curve consisting of finitely many straight line

segments.

A proof of this lemma can be found in the book of Barner-Flohr, Analysis II, p. 56.
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Proof of the theorem: If f is constant, then evidently f'(x) = 0 for all x € U. To
prove the converse, assume that f'(x) =0 for all z € U. Let a,b be two arbitrary points

in U. These points can be connected in U by a polygon with the corner points
ay=0a, a,...,05_1, a =Db.

We apply Corollary 4.14 to the line segment connecting a; and a;;; for j =0,1,...,k—1.
Since f'(z) = 0 for all x € U, the operator norm || f'(x)|| is bounded on this line segment
by 0. Therefore Corollary 4.14 yields || f(a;+1) — f(a;)|| < 0, hence f(a;+1) = f(a;) for
all 7 =0,1,...,k — 1, which implies

From the existence of all the partial derivatives aan(a), Ce ;—f(a) at a, one cannot con-
1 Tn
clude that f is differentiable at a. However, we have the following useful criterion for

differentiability of f at a:

Theorem 4.18 Let U be an open subset of R™ with a € U and let f : U — R™. If all
partial derivatives g—z evistinU fori=1,...,nandj=1,...,m, and if all the functions

T %(m) : U — R are continuous at a, then f is differentiable at a.

Proof: It suffices to prove that all the component functions fi, ..., f,, are differentiable

at a. Thus, we can asssume that f : U — R is real valued. We have to show that

fla+h)— f(a) —Th

lim =0
h—0 1Pl
for the linear mapping 7" with the matrix representation
of of
r= (L., 2 ).
pr COLRREE wal C)
For h = (hy,...,h,) € R" define
ay = a
a; = ap-+ h161
ay = aj+ h262
a+h= a, = ap1+ hye,,
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where eq,...,e, is the canonical basis of R". Then

fla+h)—fla) = (f(a +h) - f(an—l)) + (f(an—l) - f(an—2)) .ot (f(CLl) - f(a)) - (%)

If 2 runs through the line segment connecting a;_; to a;, then only the component z; of x
is varying. Since by assumption the mapping z; — f(x1,...,z;,...,z,) is differentiable,
the mean value theorem can be applied to every term on the right hand side of (). Let

c¢; be the intermediate point on the line segment connecting a;_; to a;. Then

n

fla )= £(a) = 3 (fla) = Flay) = 3 2L 5

J=1 J=1
whence
Flath) —f@ -1 = |32 Zaz
=1 =17
—~ Of af
= ‘jZ(a—xj(Ca) " or ( ))h]|
af
< HhHooZ| ( )|
Because the intermediate points satisfy ||¢; — @l < ||h]|oo for all j =1,...,n, it follows

that limj,_,o ¢; = a for all intermediate points. The continuity of the partial derivatives at

a thus implies

o @t h) — fla) = TH HZl L

h—0 1Al

Example: Let s € R and let f: R"\{0} — R be defined by

flz) = (2] + ... +22)°

.+ al) 2

are continuous in R™\{0}.
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4.5 Continuously differentiable mappings, second derivative

Let U C R" be open and let f: U — R™ be differentiable at every x € U. Then
z— f'(z):U— LR",R™)

defines a mapping from U into the set of linear mappings from R" to R™. If one applies
the linear mapping f'(x) to a vector h € R™, a vector of R™ is obtained. Thus, f’ can

also be considered to be a mapping from U x R™ to R™:
(z,h) — f(x)h: U x R" — R™.

This mapping is linear with respect to the second argument. What view one takes depends

on the situation.

Since L(R™ R™) is a normed space, one can define continuity of the function f’ as

follows:
Definition 4.19 Let U C R"™ be an open set and let f : U — R™ be differentiable.

(i) f' :U — L(R",R™) is said to be continuous at a € U if to every e > 0 there is
d > 0 such that for all x € U with ||x —al| <6

1 () = fa)ll <e.

(ii)  f is said to be continuously differentiable if f': U — L(R™,R™) is continuous.

(iii) Let U,V CR" be open and let f : U — V be continuously differentiable and invert-
ible. If the inverse f~':V — U is also continuously differentiable, then f is called

a diffeomorphism.

Here || f'(z) — f'(a)| denotes the operator norm of the linear mapping (f'(z) — f'(a)) :

R™ — R™. The following result makes this definition less abstract:

Theorem 4.20 Let U C R"™ be open and let f : U — R™. Then the following statements

are equivalent:

(i) f is continuously differentiable.

(i1)  All partial derivatives %fj with1 <i<n,1 <75 <mexistinU and are continuous

functions

0

X +—
al’i

fi(z) : U —=R.

86



(iii) f s differentiable and the mapping x — f'(x)h : U — R™ is continuous for every
h € R™.

Proof: First we show that (i) and (ii) are equivalent. If f is differentiable, then all partial
derivatives exist in U. Conversely, if all partial derivatives exist in U and are continuous,
then by Theorem 4.18 the function f is differentiable. Hence, it remains to show that f’
is continuous if and only if all partial derivatives are continuous.

For a,xz € U let

= (a)]. (%)

By Theorem 3.50 there exist constants ¢, C' > 0, which are independent of x and a, such
that c||f'(x) — f'(a)||oo < ||f(x) — f(a)]] < C|f'(z) — f'(a)||- From this estimate and
from (%) we see that

lim [[(2) ~ /(@) = 0
holds if and only if

(%)= 5o

forall 1 <i<mn,1<j<m. By Definition 4.19 this means that f’ is continuous at a if

lim 01,

T—a a,j['l

and only if all partial derivatives are continuous at a.

To prove that (iii) is equivalent to the first two statements of the theorem it suffices to
remark that if f is differentiable, then
SN0,
z flm)h =) 89{2- (2)h; : U — R™.

=1

By choosing for h vectors from the standard basis eq,...,e, of R, we immediately see
from this equation that z — f’(x)h is continuous for every h € R™, if and only if all

partial derivatives are continuous. [ ]

The derivative f : U — R™ is a mapping f' : U — L(R",R™). Since L(R",R™) is a
normed space, it is possible to define the derivative of f’ at x, which is a linear mapping
from R™ to L(R™,R™). One denotes this derivative by f”(x) and calls it the second

derivative of f at x. Thus, if f is two times differentiable, then
fU— L(R”,L(R",Rm)) .
Less abstractly, I define the second derivative in the following equivalent way:
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Definition 4.21 (i) Let U C R™ be open and let f : U — R™ be differentiable. f is
said to be two times differentiable at a point x € U, if to every fired h € R™ the mapping
gn U — R™ defined by

is differentiable at x .
(ii) The function f"(x): R™ x R — R™ defined by
f"(@)(h, k) = gj,(x)(k)

is called the second derivative of f at x. If f: U — R™ is two times differentiable (i.e.,

two times differentiable at every x € U ), then
f":UxR* x R" — R™.

Theorem 4.22 Let U C R" be open with x € U and let f: U — R™ be differentiable.

() If f is two times differentiable at x, then all second partial derivatives of f at x exist,
and for h = (hy,...h,) € R" and k = (ky,...,k,) € R”

ZZ 0z; 8x, Jhik;

Jj=1 =1

(ii) f"(x) 1s bilinear, i.e. (h,k) — f"(x)(h, k) is linear in both arguments.

Proof: If f is two times differentiable at x, then by definition the function

Yy gr(y) y)h = Z%

is differentiable at y = x, hence

P (@) (k) = gh(a)k =Y 8%%@)’% > o o; <Z /)

Jj=1 Jj=1

With h = e; and k = e;, where e; and e; are vectors from the standard basis of R",

this formula implies that the second partial derivative % % (x) exists. Thus, in this
J 7

formula the partial derivative and the summation can be interchanged, hence the stated

representation formula for f”(x)(h, k) results. The bilinearity of f”(z) follows immediately

from this representation formula. ]
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For the second partial derivatives % 8%1_ f(z) of f one also uses the notation

o _0 0, P_0 0,
Note that

62
, 02,0, fi(z)
oF (x) = : e R™
ijé)xi N 9 ’ )
azvjﬁxi "

For m = 1, the second partial derivatives af—;ﬂ, f(x) are real numbers. Thus, for f: U —
J 7

R we obtain a matrix representation for f”(z) :

f"(x)(h, k) = Z Z 828% f(x)hik;

=1 =1
o0 f o*f
P e A B
— (b1, ) : — hHFE,
o0 f 0*f
ky,
0x10z,, S 0z (z)

with the Hessian matrix

o f
H= <al'ja$i>j,i—1 n

77777

(Ludwig Otto Hesse 1811 — 1874). For f : U — R™ with m > 1 one obtains
(f”(x))z(h, k) = hHk,

where H, is the Hessian matrix for the component function f, of f. In particular, this
yields
(f"(@)) (R, k) = (fo)" (x)(h, k),
i.e. the (~th component of f”(x) is the second derivative of the component function f;.
It is possible, that all second partial derivatives of f at x exist, even if f is not two
times differentiable at x. In this case the Hessian matrices H, can be formed, but they
do not represent the second derivative of f at x, which does not exist. If f is two times
differentiable at x, then the Hessian matrices H, are symmetric, i.e.
0? 0?
Oz ;0x; fulz) = O0x;0x;

for all 1 < 4,5 < n, hence the order of differentiation does not matter. This follows from

fo()

the following.
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Theorem 4.23 (of H.A. Schwarz) Let U C R" be open, let x € U and let f be two
times differentiable at x. Then for all h,k € R"

f(@)(h k) = f"(x)(k, h).
(Hermann Amandus Schwartz, 1843 — 1921)

Proof: Obviously the bilinear mapping f”(x) is symmetric, if and only if every component
function ((f”(z)), is symmetric. Therefore it suffices to show that every component is
symmetric. Since (f”(z)), = (f¢)”(x) and since f; : U — R is real valued, it is sufficient
to prove that for every real valued function f : U — R the second derivative f”(x) is
symmetric. We thus assume that f is real valued.

To prove symmetry, we show that for all A, k € R”
lim f(x+ sh+ sk) — f(x + sh) — f(x+ sk) + f(x)

s—0 52
s>0

The statement of the theorem ist a consequence of this formula, since the left hand side

= ["(x)(h, k). (%)

remains unchanged if A and k are interchanged.
By definition, f”(x)(h, k) is the derivative of the function z — f’(x)h. Thus, for all
h,k e R",

f'(@+ k)h = f/(x)h = f"(z)(h, k) + Ra(h, k)| K] (%)

with
lim R, (h, k) = 0.
k—0

R, (h, k) is linear with respect to h, since f'(z+k)h, f'(z)h and f”(x)(h, k) are linear with
respect to h. We show that a number ¢ with 0 < ¥ < 1 exists, which depends on h and
k, such that

fle+h+k)—fx+h)—flz+k)+ f(x) (+)
= f"(z)(h, k) + Ry(h,0h + k)||9h + k|| — R.(h,Vh)||9A]|.

For, let F': [0,1] — R be defined by
F(t) = f(x +th+ k) — f(z +th).
F is differentiable, whence the mean value theorem implies that 0 < ¥ < 1 exists with

F(1) — F(0) = F'(9).
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Therefore, with the definition of F' and with (xx),

fle+h+k)— f(z+h)— flx+k)+ f(x)=F(1) — F(0)
= F'(9)=f(x+9h+k)h— f(x+Ih)h
= (f'(z +0h+k)h— f'(x)h) — (f'(x + Oh)h — f'(z)h)
= (f”(:z:)(h, Yh+ k) + Ry(h,9h + k)||0h + k||)
—(f"(x)(h, 9R) + Ry (h, 0R)||[9A]|)
= f"(z)(h,k) + Ry(h,9h + k)||9h + k|| — R.(h,Oh)||VA],

which is (+). In the last step we used the linearity of f”(z) in the second argument.
Let s > 0. If one replaces in (+) the vector k by sk and the vector h by sh, then on
the right hand side the factor s? can be extracted, because of the bilinearity or linearity

or the positive homogeneity of all the terms. The result is

f(x+ sh+ sk) — f(x + sh) — f(x + sk) + f(x)
— & [f”(x)(h, k) + Ry (h, s(0h + k) |[9h + k|| — Ry (h, s9h)||[9h]]].

Since

lim Ry (h,s(9h +k)) =0, lim R, (h, sUh) =0,
this equation yields (x). [ |
Example: Let f : R? - R
f(z1,22) = aiws + 21 + 25,

The partial derivatives of every order exist and are continuous. This implies that f is

continuously differentiable. We have

of

()
grad f(z) = %? = (Qx?f?,—;;) )
8—1;2(33)

For h € R? the partial derivatives of

_of of

w— f'(x)h = grad f(z) - h = 3_:101(x) 1+ 8_@(I)h2
are D) a2f an
o, (f'(x)h) = Sope O+ g (@he, =12,
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hence these partial derivatives are continuous, and so z — f’(z)h is differentiable. Thus,

by definition f is two times differentiable with the Hessian matrix

2 2
J é(w il z 2r9 2x
f”(:L‘) — = 3x1 8x28x1 . 2 1
- o f _an - 2 6
x 5 () r, 619
02105 0x5

4.6 Higher derivatives, Taylor formula

Higher derivatives are defined by induction: Let U C R™ be open. The p-th derivative of
f:U— R™ at x is a mapping

fP(z):R*x ... x R" - R™
——_— ——
p-factors
obtained as follows: If f is (p—1)-times differentiable and if for all hy, ..., h,_; € R" the
mapping
= fC V(@) (hy,... hy) U —R™

is differentiable at z, then f is said to be p-times continuously differentiable at x with
p-th derivative f® () defined by

f(p) (m)<h17 T hp) = [fp71<'>(h17 T hp*1>],<x>hp7

for hq,..., h, € R".

The function (hy, ..., h,) — f®(z)(hy,..., hy) is linear in all its arguments, and from
the theorem of H.A. Schwartz one obtaines by induction that it is totally symmetric: For
I1<i<j<p

f(p)<x)<h17'"7hi7"'7hj7"'7hp>:f(p)(x>(h17"'7hj7"'7hi7"'7hp>'

From the representation formula for the second derivatives one immediately obtains by
induction for h® = (K, ... h{) e R"

n n 8Pf
SP@)RO, D) =37 s ()hy

i1=1 ip=1 p

In accordance with Theorem 4.20, one says that f is p-times continuously differentiable,
if f is p-times differentiable and the mapping = +— f® (2)(rRM,... ) : U — R™ is

continuous for all A1), ... h®) € R™. By choosing in the above representation formula of
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f® for AV ... h®) vectors from the standard basis eq, ..., e, of R", it is immediately

seen that f is p-times continuously differentiable, if and only if all partial derivatives of

f up to the order p exist and are continuous.

If f® exists for all p € N, then f is said to be infinitely differentiable. This happens

if and only if all partial derivatives of any order exist in U.

Theorem 4.24 (Taylor formula) Let U be an open subset of R", let f : U — R be
(p+ 1)-times differentiable, and assume that the points x and x + h together with the line

segment connecting these points belong to U. Then there is a number ¥ with 0 < 9 < 1

p-times

such that
! 1 " 1 p
flo+h)=f@)+ [(@)h+ 5 f (a:)(h,h)+...+ﬁf()(a:)(h,...,h)+Rp(x,h),
where .
_ (p+1)
R,(z,h) = (p+1)!f Dz +9h)( h,...,h ).

p+1-times

Proof: Let v :[0,1] — U be defined by v(t) = x +th. To FF = fo~:[0,1] — R apply

the Taylor formula for real functions:

Insertion of the derivatives
F'(t) = f'(y(®)Y () = f(v@®)h,
F'(t) = f"(v(t) (b (1) = f"(v(1)) (h, h)

FPt) = PP (v(@) (.. (1) = (v () (R, ...

into this formula yields the statement.

7h>7

Using the representation of f*) by partial derivatives the Taylor formula can also be

written as
"1 & f(x
— J: ., - Oy,

1 Z OPTL f(z + Oh)

h
8$i1 e 8xip+1

h

iy - -

ipt1



In this formula the notation can be simplified using multi-indices. For a multi-index

a=(a,...,0,) € Ny and for x = (xq,...,2,) € R" set

la] = o +...+a, (length of «)
al = ol oyl
x® = ait.oadn,
ool f(x
D*f(x) = (z)

oMy ...0%x,
If a is a fixed multi-index with length |a| = 7, then the sum
iy .. h,
Z 81'21 . (?x

i
11,...,85=1

contains Q,J—', terms, which are obtained from D®f(x)h® by interchanging the order,
1op!
in which the derivatives are taken. Using this, the Taylor formula can be written in the

compact form

flx+h) = ZZ Do‘f e+ > —'Daf(x+19h)h

=0 al=j ' la|=p+1
1 o o 1 (0% o
= > Do) + > — D f(x+ Om)h®.
la|<p la|=p+1
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5 Local extreme values, inverse function and implicit function

5.1 Local extreme values

Definition 5.1 Let U C R" be open, let f : U — R be differentiable and let a € U. If
f'(a) =0, then a is called critical point of f.

Theorem 5.2 Let U C R"™ be open and let f : U — R be differentiable. If f has a local

extreme value at a, then a is a critical point of f.

Proof: Without restriction of generality we assume that f has a local maximum at a.
Then there is a neighborhood V' of a such that f(z) < f(a) for all z € V. Let h € R"
and choose 0 > 0 small enough such that a + th € V for all ¢ € R with [t| < 0. Let
F :[=6,0] — R be defined by

F(t) = f(a+th).

Then F' has a local maximum at ¢ = 0, hence
0=F'0)= f'(a)h.
Since this holds for every h € R, it follows that f’(a) = 0. n

Thus, if f has a local extreme value at a, then a is necessarily a critical point. For
example, the saddle point a in the following picture is a critical point, but f has not an

extreme value there.
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This example shows that for functions of several variables the situation is more compli-
cated than for functions of one variable. Still, also for functions of several variables the
second derivative can be used to formulate a sufficient criterion for an extreme value.
To this end some definitions and results for quadratic forms are needed, which we state

without proof:

Definition 5.3 Let QQ : R x R — R be a bilinear mapping. Then the mapping h —
Q(h,h) : R™ — R is called a quadratic form. A quadratic form is called

i)  positive definite, if Q(h,h) >0 for all h #0,

ii) positvie semi-definite, if Q(h,h) >0 for all h,

(

(

(i) negative definite, if Q(h,h) <0 for all h # 0,
(iv) negative semi definite, if Q(h,h) <0 for all h,
(

v) indefinite, if Q(h,h) has positive and negative values.
To a quadratic form one can always find a symmetric coefficient matrix

Ci1 ... Cin

Ch1 --- Cpn

such that .
Q(h,h) = cizhih; =h-Ch.
ij=1
From this representation it follows that for a quadratic form the mapping h — Q(h, h) :
R™ — R is continuous. The quadratic form Q(h, h) is positive definite, if

C11 Ci2 (13
C11 €12
Cll > O, det > O, det 621 622 C23 > 0 g oo ,det(cl‘j)iﬂ‘:l

Co1 (22

€31 T32 C33
If f:U — Ris two times differentiable at © € U, then (h,k) — f”(z)(h,k) is bilinear,

hence h +— f"(z)(h,h) is a quadratic form. Since

0*f(x)
(%ﬁi@xj hZh] ’

IKODEDY

,j=1
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the coefficient matrix to this quadratic form is the Hessian matrix

- (g:cjja(g > ij=1,..m

.....

By the theorem of H.A. Schwarz, this matrix is symmetric.

Now we can formulate a sufficient criterion for extreme values:

Theorem 5.4 Let U C R"™ be open, let f : U — R be two times continuously differen-
tiable, and let a € U be a critical point of f. If the quadratic form f"(a)(h,h)

(1) is positive definite, then f has a local minimum at a,
(ii) is negative definite, then f has a local mazimum at a,

(iii) is indefinite, then f does not have an extreme value at a.

Proof: The Taylor formula yields

F(r) = f(a) + f' (@) — @) + 3 f"(a+ Ofa — ) (& — a,7 — a),

with a suitable 0 < 9 < 1. Thus, since f'(a) =0,

flx) = f(a)—ir%f”(a—l—ﬁ(w—a))(m—a,x—a) (%)
= Jl@)+ 3 /@) a0 — @)+ R — 0,0 - a),
with
R()(h ) = %f”(a e =)k - 5 1@ k)
fla+d(z—a)) 0°f(a)
- _MZ_ < Ox;0x; B &riaxj)hjki'

Since by assumption f is two times continuously differentiable, the second partial deriva-
tives are continuous. Hence to every € > 0 there is 6 > 0 such that for all x € U with

|t —al]| <dand forall 1 <i, j<n

Prlatit-a) o 2

0x,0x; 0z,0x, n?
Consequently, for z € U with ||z —al| <§
1 2 -
[R(@)(h. ) < 5 D, 5 [hllso Il < IR, (+)

1,j=1
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where in the last step we used that there is a constant ¢ > 0 with |||l < c||h] for all
h € R".

Assume now that f”(a)(h,h) > 0 is a positive definite quadratic form. Then
f"(a)(h,h) > 0 for all h € R™ with h # 0, and since the continuous mapping
h — f"(a)(h,h) : R* — R attains the minimum on the closed and bounded, hence

compact set {h € R" | |h]| = 1} at a point hg from this set, it follows for all h € R™ with

h#0

@) b b) = @) (i ) = DA min £ ) =

lImll=1
with
k= f"(a)(ho, ho) > 0.

Now choose € = ;% . Then this estimate and (x), (+) yield that there is ¢ > 0 such that
for all x € U with ||z —a|| < ¢

fe)~ fla) = 50w —az—a)+ R(a)(w— a2~ a)
> Clr—al? = Flle —al = Zlle —al? = 0

This means that f attains a local minimum at a .

In the same way one proves that a local maximum is attained at a if f”(a)(h,h) is
negative definite. If f”(a)(h,h) is indefinite, there is hy € R", ky € R™ with ||hg|| =
lko|| = 1 and with

Rl = f”((l)(ho, ho) >0, Ky:= f//(a,)(k?(), k?o) <1.

From these relations we conclude as above that for all points x on the straight line through
a with direction vector hy sufficiently close to a the difference f(z)— f(a) is positive, and
for x on the straight line through a with direction vector kq sufficiently close to a the

difference f(x) — f(a) is negative. Thus, f does not attain an extreme value at a. ]

Example: Let f : R? — R be defined by f(z,y) = 6zy —3y? —2x3. All partial derivatives
of all orders exist, hence f is infinitely differentiable. Therefore the assumptions of the

Theorems 5.2 and 5.4 are satisfied. Thus, if (z,y) is a critical point, then
of

(z,9) 6y — 622
TN A G
ay 7y y
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which yields for the critical points (x,y) = (0,0) and (x,y) = (1,1).
To determine, whether these critical points are extremal points, the Hessian matrix

must be computed at these points. The Hessian is

0? 0?
D2 (z,y) Gy(?xf(x’y) —12¢ 6
H(z,y) = o 52 =

The quadratic form f”(0,0)(h, h) defined by the Hessian matrix

H(O,O):(g _g)

is indefinite. For, if h = (1,1) then

o ()¢ )0)-() )

and if h = (0,1) then

e ()¢ )0)-()(2)

Therefore (0,0) is not an extremal point of f. On the other hand, the quadratic form
f"(1,1)(h, h) defined by the matrix

H(1,1) = <_162 _66>

is negative definite. For, by the criterion given above the matrix —H(1,1) is positive

12 -6
det =72-36>0.
-6 6

Consequently H(1,1) is negative definite and (1,1) a local maximum of f.

definite since 12 > 0 and

5.2 Banach’s fixed point theorem

In this section we state and prove the Banach fixed point theorem, a tool which we need

in the later investigations and which has many important applications in mathematics.

Definition 5.5 Let X be a set and let d : X x X — R be a mapping with the properties
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i) d(z,y) >0, dz,y)=0&x=y
(i) d(z,y) =d(y,x) (symmetry)
(i) d(z,y) < d(x,z)+d(z,y) (triangle inequality)

Then d is called a metric on X , and (X, d) is called a metric space. d(x,y) is called the

distance of x and y.

Examples 1.) Let X be a normed vector space. We denote the norm by || - ||. Then a
metric is defined by d(z,y) := ||z — y||. With this definition of the norm, every normed

space becomes a metric space. In particular, R™ is a metric space.

2.) Let X be a nonempty set. We define a metric on X by

L z#y
d(z,y) =
0, z=vy.
This metric is called degenerate.
3.) On R a metric is defined by
|z — ]
dlz,y) = ————.
(@) 1+ |z —y

To see that this is a metric, note that the properties (i) and (ii) of Definition 5.5 are

obviously satisfied. It remains to show that the triangle inequality holds. To this end

note that ¢ — 1L+t : [0,00) — [0, 00) is strictly increasing, since £ 1L+t = %H(l - 1L+t> > 0.

Thus, for z,y,z € R

|z —y z — 2|+ |z — |

d _
@) = e S T+r—a+l—yl

|z — 2| 2 —y
+ =d(x,z)+d(z,y).
1+|z—2 1+ |z—y| (z,2) (2,9)

On a metric space X, a topology can be defined. For example, an e-neighborhood B, (x)

of the point x € X is defined by
Be(z)={y € X | d(z,y) <e} .

Based on this definition, open and closed sets and continuous functions between metric
spaces can be defined. A subset of a metric space is called compact, if it has the Heine-

Borel covering property.

100



Definition 5.6 Let (X,d) be a metric space.
(i) A sequence {xn}zo:l with x, € X 1is said to converge, if x € X ewxists such that to
every € > 0 there is ng € N with

d(zp,x) <e

for all n > ng. The element x is called the limit of {x,} ;.
(ii) A sequence {x,} ~, with x, € X is said to be a Cauchy sequence, if to every ¢ > 0

there is ng such that for all n,k > ng
d(xp, x) < €.
Every converging sequence is a Cauchy sequence, but the converse is not necessarily true.

Definition 5.7 A metric space (X, d) with the property that every Cauchy sequence con-

verges, is called a complete metric space.

Definition 5.8 Let (X,d) be a metric space. A mapping T : X — X is said to be a
contraction, if there is a number ¢ with 0 < ¢ < 1 such that for all x,y € X

d(Tz,Ty) < dd(z,y) .

Theorem 5.9 (Banach fixed point theorem) Let (X,d) be a complete metric space
and let T : X — X be a contraction. Then T possesses exactly one fized point x , 1i.e.

there is exactly one x € X such that
Tr =x.

For arbitrary xo € X define the sequence {xy}o, by

Ty = Tuag
Tpp1 = Tay.
Then
ﬁk
d(w, zy) < 37— d(@, 20)
hence
Jin 2=
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Proof: First we show that 7' can have at most one fixed point. Let z,y € X be fixed
points, hence Tx = x, Ty = y. Then

d(x,y) = d(Tx, Ty) < dd(x,y),

which implies (1 — ¢) d(z,y) = 0, whence d(z,y) =0, and so z = y.
Next we show that a fixed point exists. Let {x;};, be the sequence defined above.
Then for k£ > 1
d(zps1,x) = d(Tag, Tag—y) < 9d(xg, Tr—1) .

The triangle inequality yields
d(Tpre, 21) < A(Trre; Thopo-1) + d(Thpo1, Thopo2) + o+ d(Try, 1)
thus

d($k+g, {L"k) < (196—1 + 92 + ...+ + 1) d(ZBk_H, ZBk)

11— vk

< k <
< 1_19’19 d(&?l,xo)_l_ﬁ

d(xy,x0) . (%)

Since limg o 9% = 0, if follows from this estimate that {z}},, is a Cauchy sequence.
Since the space X is complete, it has a limit . For this limit we obtain
d(Tz,x) = klim d(Tz,x)

< lim [d(Tz, Tag) + d(Txy, Tp41) + d(T11, 7))

k—o0

< lim [ﬁd(m,xk) + d(Tpq1, Tpgr) + d(xk+17x)} =0,

k—oo

hence Tx = z, which shows that x is the uniquely determined fixed point. Moreover, (x)

yields

d(z,zx) = lim d(z,xy)

{—00

. vk
< Zlfglo [d(x, 2rse) + d(Tppe, 21)] < -

d(l’l, JIO> .
5.3 Local invertibility

Since f’(a) is an approximation to f in a neighborhood of @, one can ask whether invert-

ibility of f’(a) (i.e. det f'(a) # 0) already suffices to conclude that f is one-to—one in a
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neigborhood of a. The following example shows that in general this is not true:
Example: Let f:(—1,1) — R be defined by

1
x + 3x%sin — | x#0
flz) = T
0, z = 0.

f is differentiable for all |z| < 1 with derivative

) = 1+6xsin£—3008£, x#0
1, x = 0.

In every neighborhood of 0 there are infinitely many intervals, which belong to (0, c0),
and in which f’ is continuous and has negative values. Thus, in such an interval one
can find 0 < xy < xo with f(x;) > f(z2) > 0. On the other hand, since f is continuous
and satisfies f(0) = 0, the intermediate value theorem implies that the interval (0, z;)
contains a point x3 with f(z3) = f(x3). Hence in no neighborhood of 0 the function f is
one—to—one.

Since f’(0) = 1 and since in every neighborhood of 0 there are points x with f'(z) < 0,
it follows that f’ is not continuous at 0. Requiring that f’ is continuous, changes the

situation:

Theorem 5.10 Let U C R" be open, let a € U, let f: U — R™ be continuously differ-
entiable, and assume that the derivative f'(a) is invertible. Let b = f(a). Then there is a
netghborhood V' of a and a neighborhood W of b, such that f|v : V. — W is bijective with
a continuously differentiable inverse g : W — V. (Clearly, ¢'(y) = [f'(g9(y))]™*.)

Proof: We first assume that a = 0, f(0) =0, hence b =0, and f'(0) = I, where [ : R" —
R"™ is the identity mapping. It suffices to show that there is an open neighborhood W of
0 and a neighborhood W’ of 0, such that every y € W has a unique inverse image under
fin W’. Since f is continuous, it follows that f~!(¥) is open, hence V = f~1(W) N W’
is a neighborhood of 0, and f : V — W is invertible.

To construct W, we define for y € R" the mapping ®, : U — R" by

®y(x) =z — f(x) +y.

x is a fixed point of this mapping if and only if = is an inverse image of y under f. We
choose W = U,(0) and show that if » > 0 is sufficiently small, then for every y € U,(0)

the mapping @, has a unique fixed point in the closed ball W’ = U,,(0). This follows from
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the Banach fixed point theorem, if we can show that ®, maps Us,,(0) into itself and is a
contraction on Uy, (0).

To prove this we choose r > 0 such that for all x € Us,(0) with the operator norm

. (5.1)

N | —

1@ ()| = I = f'(@)]| = [1(0) = f(@)I| <

This is possible because of the continuity of f’. For x € Us,.(0) the line segment ¢

—~

connecting this point to 0 is contained in Us,(0), hence Corollary 4.14 together with (5.1)
yields for such = and for y € U,.(0) that

1
19y (2)] = () = @o(0) +y| < sup 1@l + Nyl < Sllll + llyll < 2r.

Consequently, ®, maps Us,(0) into itself. To prove that @, : Us.(0) — U, (0) is a

contraction for every y € U,(0), we use again Corollary 4.14. Since for z, z € Us,.(0) also

the line segment connecting these points is contained in Us,(0), it follows from (5.1) that
1
12y () = @y (2)]| < 5 [l — =].

Consequently, for every y € U,(0) the mapping ®,, is a contraction on the complete metric

space Us,.(0), whence has a unique fixed point = € Us,.(0). Since x is an inverse image of

y under f, a local inverse g : W — V of f is defined by

9(y) = .

We must show that ¢ is continuously differentiable. Note first that if x; is a fixed point

of &, and x5 is a fixed point of ®,,, then
|21 — 2] = ||Py, (21) — Py, (w2)|| < [|Po(w1) — Po(z2)| + [ly1 — 1]l
1
< 5 |21 — ol + [[11 — w2,

which implies
lg(y1) — g(wa)ll = llz1 — w2l < 2[lyr — v2]|-

Hence, g is continuous. To verify that g is differentiable, we infer from (5.1) for x € Us,.(0)

and h € R™ with h # 0 that
1
LF (@)l = 1 (z) = Dh+ Al = 2]l = [/ () = Zl[[|All = S]] # 0,

hence f'(z) is invertible. Therefore, since the inverse g is continuous, Theorem 4.12 implies

that g is differentiable. Finally, from the formula



it follows that ¢’ is continuous. Here we use that the coefficients of the inverse (f(z))™!
are determined via determinants (Cramer’s rule), and thus depend continuously on the
coefficients of f'(x).

To prove the theorem for a function f with the properties stated in the theorem,

consider the two affine invertible mappings A, B : R — R" defined by

Axr = x+a,
By = (f'(@) (y-0).
Then H = Bo fo A is defined in the open set U —a = {z — a } x € U} containing 0,
H(0) = (f'(a))~"(f(a) = b) = 0, and
H'(0) = B'f (@4’ = (f'(a)) f'(a) =1
The preceding considerations show that neighborhoods V', W' of 0 exist such that H :
V' — W' is invertible. Since f = B! o H o A7!, it thus follows that f has the local

mverse

g=AoH 'oB:W =V
with the neighborhoods W = B™Y(W’) of b and V = A(V”) of a. The local inverse H ! is

continuously differentiable, hence also g is continuously differentiable. m

Example: Let f: R? — R3 be defined by

filzr,20,23) = x1+ 22+ 23,
fo(@1, xa, x3) = Tows + x3w1 + T122,
f3(9€1, X2, 1’3) = T1X2X3.

Since all partial derivatives exist and are continuous, it follows that f is continuously
differentiable with

1 1 1
fllo)=as+a m3+a v+ |,
o3 r123 1T
hence
1 0 0
det f'(z) = |a3+a0 a1 — 19 r1— T3

Tol3 (l’l — l’g)l’g (£C1 — .1'3).1'2
= (Il — .CCQ)(.Tl — $3)$2 — (.Tl — 372)(131 — .Tg)]?g

= (z1 —x9) (21 — x3) (22 — 23) .
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Thus, let b = f(a) with (a; — ag)(a; — a3)(as — az) # 0. Then there are neighborhoods V/
of a and W of b, such that the system of equations

Y1 = T+ T2+ T3
Yo = Tals + X3T1 + X122
Ys = T1X2%3

has a unique solution x € V' to every y € W.

We remark that the local invertibility does not imply global invertibility. One can see
this at the following example: Let f : {(z,y) € R? } y >0} — R? be defined by

filz,y) = ycosx
faz,y) = ysinz.
f is continuously differentiable with

—ysinx cosT

detf’($,y):‘ Z—ysin2x—y0082x:—y7é0

ycosT sinx
for all (z,y) from the domain of definition. Consequently f is locally invertible at every
point. Yet, f is not globally invertible, since f is 2w-perodic with respect to the x variable.
5.4 Implicit functions

Let a function f : R"™™ — R" be given with the components fi,..., f,, and let y =

(y1,---,Ym) be given. Can one determine z = (z1,...,x,) € R such that the equations

fl(xla-'~7xn7y1a"'7ym) =0

folT, oyt o Ym) = 0

hold? These are n equations for n unknowns xy, ..., x,. First we study the situation for

a linear function f = A : R"t™ — R",

Ay(z,y) a1y + ...+ apTy + by + bimYm
Alz,y) = : =1 :
An(Ia CL) Ap1T1 +...+ Apndn + bnlyl + bnmym

Suppose that A has the property
A(h,0)=0=h=0.
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A has this property, if and only if the matrix

0A 0A
ay; ... QAip 3711 e 87;
ap1 ... QApp a_ftl I m

is invertible, hence if and only if

dot (2y 4y,

ig=1,
Under this condition the mapping
h— Ch:= A(h,0) : R" — R"
is invertible, consequently the system of equations
A(h,k) = A(h,0) + A(0,k) = Ch + A(0,k) =0
has for every k € R™ the unique solution
h=p(k):=—-C"1A0,k).

For ¢ : R™ — R” one has
A(90<k)>k) = O,

for all £ € R™. One says that the function ¢ is implicitly given by this equation.
The theorem about implicit functions concerns the same situation for continuously

differentiable functions f, which are not necessarily linear:

Theorem 5.11 (about implicit functions) Let D C R™™™ be open and let f : D —
R™ be continuously differentiable. Suppose that there is a € R, b € R™ with (a,b) € D,
such that f(a,b) =0 and

%(a, b) ... %(a, b)
det | : #0. (5.2)
g%(a, b) ... g%(a, b)

Then there is a neighborhood U C R™ of b and a uniquely determined continuously dif-
ferentiable function ¢ : U — R™ such that ¢(b) = a and for ally € U

fle(y),y) =0.



Proof: Consider the mapping F' : D — R"*™

F(z,y) = (f(z.y),y) e R™™.

Then
Fla,b) = (£(a,b),) = (0,5).
Since f is continuously differentiable, all the partial derivatives of F' exist and are con-

tinuous in D, hence F' is continuously differentiable in D. The derivative F’(a, b) is given
by

ofh of of ofi
Or1 " Ozy Oy1 T Oym
Ofn Ofn  Ofn Ofn
F,<a, b) — oz e B.T,‘n 8y1 e 8ym 7
0O ... 0 1 ... 0
0 ... 0 0 1

where the partial derivatives are computed at (a,b). We expand the determinant of this

matrix succesively with respect to the last m rows and conclude from (5.2) that

detF'(a,b):det<afi>u X # 0.
ij=1,m

Xj/i,j=1,.,

This implies that the linear mapping F’(a,b) is invertible, whence the assumptions of
Theorem 5.10 are satisfied, and it follows that there are neighborhoods V' of (a,b) and W
of (0,b) in R™™™ such that

F P VW

is invertible. The inverse F~!: W — V is of the form
F i (z,w) = (qb(z,w),w),
with a continuously differentiable function ¢ : W — R". Now set
U={weR"|(0,w) e W} CR"

and define ¢ : U — R" by
p(w) = ¢(0,w).
U is a neighborhood of b since W is a neighborhood of (0, b), and for all w € U

(0,w) = F(F_l(O,w)) = F(gb(O,w),w) = F(gp(w),w) = (f(cp(w),w),w) ,
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whence
fp(w),w) =
[
The derivative of the function ¢ can be computed using the chain rule: For the derivative

d% (gp(y), y) of the function y — f(gp(y)7 gp) we obtain

0 = d%f(sﬁ(y),y) = <a%f’ a%f) (e(y),y) (w’(y))

tdgm

= (N0 00 + (5N (o).

Thus,

Here we have set

0 of;

el = (), .,

%) of;

a_f( 7y) = (a;( ’ ))]—1 ,,,,, n,i=1,....m

Examples:

1.) Let an equation
f(z1,...,2,) =0

be given with continuously differentiable f : R® — R. To given zq,...,x,_1 we seek z,
such that this equation is satisfied, i.e. we want to solve this equation for z,. Assume

that a = (ay,...,a,) € R™ is given such that

f(al,...,an) =0

and

aa—le(al,...,an)#O.

Then the implicit function theorem implies that there is a neighborhood U C R"™! of
(ay,...,a,_1), such that to every (x1,...,2,-1) € U a unique z, = ¢(z1,...,T,_1) can

be found, which solves the equation

flz,. . xp1,2,) =0,
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and which is a continuously differentiable function of (zy,...,z,_1) and satisfies z,, = a,

for (z1,...,2,_1) = (a1,...,a,_1). For the derivative of the function ¢ one obtaines
d
~1 Ly e
grad p(zy, ..., 70 1) = —5 grad, f(z1,...,2,) = 57 : ,
E (Il,...,xn) E 9
dwnflf

where x,, = p(x1,...2y_1).

2.) Let f: R3 — R? be defined by
filz,y,2) = 32 +ay—2—3
folz,y,2) = 2wz+y* +ay.

We have f(1,0,0) = 0. To given z € R from a neighborhood of 0 we seek (z,y) € R? such
that f(z,y,z) = 0. To this end we must test, whether the matrix

%(x’:%z) %_J;l(x7yaz) - 6I+y T
%(xvyaz) %—]E(w,y,z) 22+y 3y2—|—:lj'
is invertible at (z,y,2) = (1,0,0). At this point, the determinant of this matrix is
6 1
— 640,
01

hence the matrix is invertible. Consequently, a sufficiently small number § > 0 and a
continuously differentiable function ¢ : (—4,d) — R? with »(0) = (1,0) can be found
such that f(p1(2), ¢2(2),2) = 0 for all z with |z| < §. For the derivative of ¢ we obtain

with (z,y) = (=)

—1
, 635+y € %(az,y,z)
vz) = -

22+y 3y*+u %(:p’yjz)

B —1 3y> +x —x -1
(BB +a) — w22+ y) \—(22+y) 6z+y) \ 22

B -1 —3y? — x — 22
6z +y)(3y2 +2) —2(22 +y) \22+y+1222 + 22y

Since p(0) = (1,0), we obtain in particular

med3)-(0)
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6 Integration of functions of several variables

6.1 Definition of the integral

Let © be a bounded subset of R? and let f : Q@ — R be a real valued function. If f is

continuous, then graph f is a surface in R®. We want to define the integral

/Q F(w)da

such that its value is equal to the volume of the subset K of R?, which lies between the

graph of f and the xy, zo-plane.

graph f

\/

Definition 6.1 Let
Q={zeR"|a;<z; <b,i=1,...,n}
be a bounded, half open interval in R™. A partition P of () is a cartesian product
P=P x...xP,,
where P, = {a:(()i), . ,x,(;)} is a partition of [a;, b;], for every i =1,... n.
Q) is partitioned into k = k1 - ko ... k, half open subintervals @1, ... Q) of the form

1
Q; = [x},ll),xélll) X ... x [z

n (n)
;n) ? xpn+1 ) :
The number

1 n n
Qi1 = (b — 2Dy (@l — )
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is called measure of @);. For a bounded function f : ) — R define

M; = sup f(Q;), m; = inf f(Q;),
k k
UPPS) = Y MIQl, LIPS = D mylQyl.
j=1 j=1
The upper and lower Darboux integrals are
/fdm = inf{U(P, f) | P is a partition of Q},
Q

/fdx = sup{L(P, f) | P is a partition of Q}.
Q

Definition 6.2 A bounded function f : () — R is called Riemann integrable, if the upper

and lower Darboux integrals coincide. The common value is denoted by

/Qfdx or /Qf($)d$

and is called the Riemann integral of f.

To define the integral on more general domains, let 2 C R™ be a bounded subset and let
f :Q — R. Choose a bounded interval ) such that 2 C @) and extend f to a function
Jo:@Q — Rby

flz), xe€qQ,

0, r € Q\Q.
Definition 6.3 A bounded function f : Q — R is called Riemann integrable over € if

fo(z) =

the extension fg is integrable over ). We set

| st = /Q folw) da.

The multi-dimensional integral shares most of the properties with the one-dimensional
integral. We do not repeat the proofs, since they are almost the same. Differences arise
mainly from the more complicated structure of the domain of integration. Whether a
function is integrable over a domain €2 depends not only on the properties of the function

but also on the properties of ().

Definition 6.4 A bounded set 2 C R" is called Jordan-measurable, if the characteristic

function yq : R” — R defined by
1, z€Q
Xa(z) =
0, zeR"\Q

is integrable. In this case |Q| = [, 1dx is called the Jordan measure of €.
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Of course, a bounded interval () C R" is measurable, and the previously given definition

of |@Q| coincides with the new definition.

Theorem 6.5 If the compact domain Q2 C R" is Jordan measurable and if f : Q — R is

continuous, then f is integrable.

A proof of this theorem can be found in the book ”Lehrbuch der Analysis, Teil 2“ of H.
Heuser, p. 455.

6.2 Convergence of integrals, parameter dependent integrals

Here we study the behavior of integrals, which depend on a discret or continuous param-

eter.

Theorem 6.6 Let 2 C R™ be a bounded set and let {fi}3>, be a sequence of Riemann
integrable functions fr : € — R, which converges uniformly to a Riemann integrable
function f : Q — R. Then

lim /Q fo(w)da = /Q F(@)da.

Remark It can be shown that the uniform limit f of a sequence of integrable functions

is automatically integrable.

Proof Let ¢ > 0. Then there is ky € N such that for all £ > kq and all x € €) we have

[fe(x) = fz)] <e,
hence
[ (o) = s@)aa] < [ 15u@) = e < [ cie < i)
By definition, this means that limy_.. [, fi(z)dz = [, f(z)dz. n

Corollary 6.7 Let D C R* and let Q C R™ be a bounded interval. If f : D x Q — R is

continuous, then the function F': D — R defined by the parameter dependent integral
Flz) = / Fla, )t
Q

15 continuous.

Proof Let o € D and let {x;}32, be a sequence with x; € D and limy_.o zx = .

Then xy is the only accumulation point of the set M = {z) | k € N} U {x¢}, from which
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it is immediately seen that M x @ is closed and bounded, hence it is a compact subset
of D x Q. Therefore the continuous function f is uniformly continuous on M x Q. This
implies that to every € > 0 there is ¢ > 0 such that for all y € M with |y — x¢| < § and
all t € @ we have

|f(y,t) = f(zo, )] <e.
Choose ko € N such that |z, — 2| < §. This implies for k > kg and for all ¢ € @) that

|f($k,t) - f(x07t)| <§g,

which shows that the sequence {f}32, of continuous functions f; : @ — R defined by
fx(t) = f(zg,t) converges uniformly to the continuous function f.(t) = f(zo,t). The

preceding lemma implies

hmF:ck—hm/ka, t)dt = /f:ct F(z).

k—o0 k—o0

Therefore F' is continuous. ]

6.3 The Theorem of Fubini
Let
Q = {xER”]aZ§x1<b“2:1,,n}
Ql = {m'ERn_l\aiﬁxi<bi,i:1,...,n—1}
be half open intervals. If
P=P xPx...xP,

is a partition of @, then P’ = P, x ... x P,_; is a partition of Q'. Let Q},...,Q} be
the subintervals of Q) generated by P’ and let Iy,..., Iy C [an,b,) be the half open
subintervals generated by P,. Then all the subintervals of ) generated by P are given by

We have
Q% x 1| = 1Q}| - 1]

For a step function s : () — R of the form



with given numbers r;, € R we thus have

/Qs(x)dx = Z rje | X@xr.l
bn
= Z < Z TjZ‘XQH)‘IA:/ /S(x”xn)dz’d;vn.
_ =1,k an 4 Q'

For step functions the n-dimensional integral can thus be computed as an iterated integral.
The next theorem generalizes this result.
Theorem 6.8 (Guido Fubini, 1879 — 1943) Let

Q = {;EE]R”]ai§$i<bi,2’:1,...,n}

Q = {ZeR" g <zi<b,i=1,...,n—1}.

Then for every continuous function f : Q — R the function F : [a,,b,] — R defined by

F(z,) = [ f(@ x,)da
o

18 1ntegrable and

br, brn
de = | F(x,)dz, — ' p)da de,,. 6.1
| s@e = [P, = [ ] aaas (61)

Proof By Corollary 6.7 the function F is continuous, whence it is integrable. To verify
(6.1) we approximate f by step functions. Choose a sequence of partitions { PV}, of Q
such that

.....

where Q?), e ng) are the subintervals of @@ generated by the partition P®. Choose

xgg) € Qy]) and define step functions sy : ) — R by

si@) = flal)xgo ).

Since the continuous function f is uniformly continuous on the compact set @, it follows

that the sequence {s,}72, converges uniformly to f. Theorem 6.6 thus yields

lim QSg(x)dm:/Qf(x)dx. (6.2)

l—o00

115



Moreover, for Sy : [an, b,] — R defined by

Se(xy,) = / se(2', x,)da!
it follows that
|F(wn) = Se(wn)| < [ [f(2,20) = se(a’, zn)| da’ < sup[f(y) — se(y)| 1Q']-
Q’ yeQ
The right hand side is independent of z,, and converges to zero for { — oo, hence {S,}72,
converges to F' uniformly on [a,, b,]. Theorem 6.6 therefore implies

by bn,
lim Se(zy)dz, :/ F(x,)dx,.

l—00 an

Since (6.1) holds for step functions, it follows from this equation and from (6.2) that

{—00

bn, bn,
/ F(z,)dz, = lim Se(zy)dz,

l—o0 {—00

aZn
= lim/ / se(2', x,)da' dz,, = lim S@(IL’)dIL’:/f(l')dl'. ]
an ! Q Q

Remarks By repeated application of this theorem we obtain that

by by
/f(f)dﬁz/ flxy, ... xy)dxy ... dxy,.
Q an a

1
It is obvious from the proof that in the Theorem of Fubini the coordinate x, can be
replaced by any other coordinate. Therefore the order of integration in the iterated
integral can be replaced by any other order.

The Theorem of Fubini holds not only for continuous functions, but for any integrable
function. In the general case both the formulation of the theorem and the proof are more

complicated.

6.4 The transformation formula

The transformation formula generalizes the rule of substitution for one-dimensional inte-
gral. We need the following decomposition theorem, whose proof is based on the inverse

function theorem.

Theorem 6.9 Let U C R"™ be an open set with O € U and let'T' : EE — R"™ be continuously
differentiable such that T(0) = 0 with invertible derivative T'(0) : R™ — R"™. Then there

1s a netghborhood V' of 0 in R™ in which a representation
T(z) = h(g(Bz))
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is valid, where h,g : V — R™ are of the form

X1 hl(flf)
T) = ; , h(x)= E , 6.3
9(x) . (x) h () (6.3)
gn() Ln

and are continuously differentiable with deth’ # 0, det g’ # 0 in V. Moreover, there is
Jj€A{1,...,n} such that the linear operator B : R™ — R"™ merely interchanges the x; and

., —coordinate.

Proof The last row of the Jacobi matrix 7"(0) = (gg‘g (0))”.:1 _, contains at least one
non-zero element, since otherwise 7"(0) would not be invertible. Let this be 2%2(0). Now
define

15

g(x) =
Tp—1
Tn(flfl, e ,iL‘jfl, LT, iL‘j+1, Ce ,xn,1,$j)

Then g : U — R™ is continuously differentiable with ¢g(0) = 0 and

1
, 1
g'(x) = :
ox1 Ox;

whence det ¢'(0) = 2L (0) # 0. Consequently the inverse function theorem implies that
J
1

g is one-to-one in a neighborhood V' of 0 and that the local inverse ¢~ is continuously

differentiable with nonvanishing determinant det(g~')". Of course, we have g~1(0) = 0.

Now set
hy) =T (Bg'(y))- (6.4)

Then h is continuously differentiable with h(0) = 0. Also, for y = g(z) we obtain from
the definition of g that

hn(y) = Tn(Bg*1 (g(x))) =T,(Bz) =T(21,....%pn, ..., 2j) = gn(T) = Yn.
This shows that h has the form required in (6.3). From (6.4) we obtain
T:ToBog_logoB:hogoB7
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which is the decomposition required in the theorem. The chain rule yields
T = (hogoB) = (W ogoB)(g o B)B,

whence detT"(z) = det &' (g(Bz)) det ¢'(Bz) det B. Since det T"(0) # 0 and since det 1"
is continuous, we have det 7"(z) # 0 for all z in a neighborhood of zero, hence the last
equation yields det A’ # 0 and det ¢’ # 0 in this neighborhood. [

The next theorem generalizes the rule of substitution.

Theorem 6.10 (Transformation rule) Let U C R" be open and let T : U — R" be a
continuously differentiable transformation such that | det T'(x)| > 0 for allz € U. Suppose
that Q is a compact Jordan-measurable subset of U and that f : T(Q)) — R is continuous.
Then T'(Q2) is a Jordan measurable subset of R™, the function f is integrable over T'(2)

and

| twin= [ £(T@) T @) ds (6.5)
T(Q) Q

For simplicity we prove this theorem only in the special case when €2 is connected and
when f is a continuous function with support contained in 7'(€2). The support is defined

as follows:

Definition 6.11 Let f : R" — R be continuous. The set

supp f = {z € R | f(z) # 0}
is called the support of f.

Proof Assume that ) is compact and connected. Let f : R® — R be a continuous
function with supp f C T'(Q2). Since f vanishes outside of T'(€2) and foT vanishes outside
of Q, we can extend both integrals in (6.5) to R™.

Consider first the case n = 1. By assumption {2 is compact and connected, hence §2
is an interval [a, b]. Since det T"(x) = T"(x) vanishes nowhere, 7"(z) is either everywhere
positive in [a,b] or everywhere negative. In the first case we have T'(a) < T'(b), in the
second case T'(b) < T'(a). If we take the plus sign in the first case and the minus sign in
the second case we obtain from the rule of substitution

T

) b
/ fwdy = = [ fly)dy==+ / f(T(@)T(z) da
T([a,b]) a

T(a)
b b
_ /f(T(x))|T’(as)|d$:/ F(T(2))|det T'(z)] d.
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Therefore (6.5) holds for n = 1. Assume next that n > 2 and that (6.5) holds for n — 1.
We shall prove that this implies that (6.5) holds for n, from which the statement of the
theorem follows by induction.

Assume first that the transformation is of the special form T(x) = T(2/,x,) =
(¢/,Tn(a',2,,)). Then the Theorem of Fubini yields

dy = ') dy, dyf
Rnf(y) Y /Rn_l/Rf(y,y) Yn dy

- / FU T 2o T ) i
Rn-1 ox,,

- /R 1/]’ )| det 7" (x )|dxndx’:/ f(T(x))] det T'(z)| da,

n

since det T"(z) = =T, (z). The transformation formula thus holds in this case. Next,
assume that the transformation is of the special form T(z) = (T(x ,Tp), Tp) With
T(z,z,) € R"'. With the Jacobi matrix 0,71 (z) = (gff (x)) we have

J 3,5=1,..., n—1

det T'(x) = det
0 1

Since by assumption the transformation rule holds for n — 1, we thus have

1y dy—/ 1 o) dy dy,
Rn Rn— 1
- // T2, ), xn)|det (8 T(a, xn))|dx’dxn
Rn— 1

_ / F(T(2))] det T'(2)] d.

The transformation formula (6.5) therefore holds also in this case. It also holds when the
transformation 7' is a linear operator B, which merely interchanges coordinates, since this
amounts to a change of the order of integration when the integral is computed iteratively,
and by the Theorem of Fubini the order of integration does not matter.

If (6.5) holds for the transformations R and S, then it also holds for the transformation
T=RoS. For,

[z = [ r(Rw)|det R ) dy
_ /R F(R(S(x)))| det R (S(2))]| det S'(z)] da
= /Rn f(T(J:))| det (R’(S(:v))S'(:v))|d:v = / f(T(x))|det T'(z)| dz,

n
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since by the determinant multiplication theorem for n x n-matrices M; and M, we have
det M, det My = det (M, Ms).

If T has the properties stated in the theorem and if y € U, then the transformation
T(x —y) = T(x) — T(y) satisfies all assumptions of Theorem 6.9, since 7(0) = 0. It
follows by this theorem that there is a neighborhood V' of y such that the decomposition

T(x) =T(y) + h(9(B(z —y)))

holds for x € V' with elementary transformations h, g and B, for which we showed above
that (6.5) holds; since (6.5) also holds for the transformations which merely consist in
subtraction of y or addition of T'(y), it also holds for the composition T of these elementary
transformations. We thus proved that each point y € U has a neighborhood V' (y) such
that (6.5) holds for all continuous f, for which supp (f o T) C V(y).

Since det T"(y) # 0, the inverse function theorem implies that 7" is locally a diffeo-
morphismus. Therefore T'(V (y)) contains a neighborhood of T'(y). If supp f is a subset
of this neighborhood, we have supp (foT") C V(y), whence (6.5) holds for all such f. We
conclude that each point z € T'(§2) has a neighborhood W (y) such that (6.5) holds for all
continuous f whose support lies in W (z).

We can choose W(z) to be a ball. Let r(z) be the radius of this ball. Since T'(Q2) is
compact, there are points 21, ..., z, in 7'(€2) such that the union of the open balls W with
center z; and radius 3r(z;) covers T(€2). For 1 <4 < p, let 3; be a continuous function on
R™ with support in W(z;), such that 3;(z) = 1 for z € W/. Put oy = ; and

aj = (1—=01)(1—F2)--- (1= B-1)B

for 2 < 7 < p. Every «; is a continuous function. By induction one obtains that for
1<i<p,

ot =1 (1= A1~ i) (1 B,
Every z € T'(Q2) belongs to at least one W/, hence 1 — f;(z) = 0. For [ = p the product
on the right hand side thus vanishes on 7'(€2), so that Y %, o;(z) = 1 for all z € T(Q). If

f is a continuous function with supp f C T'(2), we thus have for every z € R”

p

f(z) = f(z) Zai(:r) = (@) f(2)).

i=1

Since supp (a; f) € supp a; C supp 3; € W (z;), the transformation equation (6.5) holds

for every «; f, whence it holds for the sum of these functions, which is f. [ |
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Remark The set {a;}]_; of continuous functions is called a partition of unity on 7T'(£2)
subordinate to the covering {W(z;)}'_; of T(£2).

121



7 p-dimensionale Flachen im R™, Flachenintegrale, Gauf3scher

und Stokescher Satz

7.1 p-dimensionale Flachenstiicke, Untermannigfaltigkeiten

Definition 7.1 Sei A : R" — R™ eine lineare Abbildung. Dann ist A(R™) ein linearer
Unterraum von R™. Als Rang von A bezeichnet man die Dimension dieses Unterraumes.

Eine lineare Abbildung A : R? — R™ mit Rang p ist injektiv.

Definition 7.2 Sei U C RP eine offene Menge und sei p < n. Die Abbildung v: U — R"

sei stetig differenzierbar und die Ableitung
7'(u) € L(R”,R")

habe fiir alle u € U den Rang p. Dann heifit v Parameterdarstellung eines p-dimensionalen

Flachenstiickes im R"™. Ist p = 1, dann heif3t v Parameterdarstellung einer Kurve im R".

Man beachte, dal v nicht injektiv zu sein braucht. Die Flache kann “Doppelpunkte”
haben.

Beispiel 1: Sei U = {(u,v) € R*|u? 4+ v* < 1} und sei v : U — R? definiert durch

Vl(uv U) U
Yro) = | ) | = v
v3(u, ) 1 — (u?+v?)

Dann ist 7 die Parameterdarstellung der oberen Hélfte der Einheitssphire im R3. Denn
es gilt
1 0

f}//(u, 1)) = 0 1

V1@t (@)
Die beiden Spalten in dieser Matrix sind fiir alle (u,v) € U linear unabhéingig, also ist
der Rang 2.

Beispiel 2: Im vorangehenden Beispiel ist das Flachenstiick durch den Graphen einer
Funktion gegeben. Allgemeiner sei U C RP eine offene Menge und sei f : U — R"7P stetig

differenzierbar. Dann ist der Graph von f ein in den R" eingebettetes p-dimensionales

122



Flachenstiick. Die Abbildung v : U — R",

nu) = w
Yo(u) = u
Vp(u) = Up
’Yp—&—l(u) = fl(ul--'vup>
Yo(u) = fop(ur... up)

ist eine Parameterdarstellung dieser Flache . Denn es gilt

1 . 0
) — 0 .. 1
K O fi) . O filw) |
Or, fn—p(u) S aﬂcp Jn—p (u)

und alle Spalten dieser Matrix sind linear unabhéngig, also ist der Rang p.

Beispiel 3: Durch stereographische Projektion kann die am Siidpol gelochte Sphére mit
Mittelpunkt im Ursprung eineindeutig auf die Ebene abgebildet werden, also umgekehrt
auch die Ebene auf die gelochte Sphare:

Siidpol

oo \/u2+v2—\/fy%+7§_\/u2—|—1)2

2 2 2
) ) + + =1.
™ v o 1 YT V2 T3
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Aus den in der Abbildung angegebenen, aus den geometrischen Verhéltnissen abgeleiteten
Gleichungen erhilt man fiir die Abbildung « : R? — R? der stereographischen Projektion,
daf

( ) 2u
uv) = —
R 1+ u? 4 02
( ) 2v
u,v) = —
2 ) 1 +u2 +1)2
() = 1—u?—1?
T v) = 1+ u2 402’
Die Ableitung ist
5 1 — u? + v? —2uv
')/('Uq U) = m —QU'U ]_ + u2 - UZ
—2u —2v

Fiir u? 4+ v? # 1 ist

am1 T (u7 U) aﬂ?z/yl (u7 U)

= (14 (*—u?)(1 — (v* —u?)) — 4uv?
0, pouw) By | T (1= ( ))

= 1— (@ —u?)? —4*®=1-(*+u?)? #£0.
Fiir u # 0 gilt

890172 (u7 U) 82272(7“‘7 U)

= duwv? + 2u(l + v — v?)
81173 (uv U) 8932’73(“7 U)

= 2u(l+u*+v%) #0,
und fiir v # 0 entsprechend

896171 (u7 U) 85132’71 (u7 U)

= —20(1+u®+v?) #£0,
aj51'7/3(u7 U) 8:13273 (U, U)

also hat 4 immer den Rang 2, und somit ist 7 eine Parameterdarstellung der Ein-

heitssphare bei herausgenommenem Stidpol.

Beispiel 4: Es sei ¥ die Einschrankung der Parametrisierung v aus Beispiel 3 auf die
Einheitskreisscheibe U = {(u,v) € R? | u* + v* < 1}. Dies liefert eine Parametrisierung
der oberen Halfte der Einheitssphare, die sich von der Parametrisierung aus Beispiel 1

unterscheidet.
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Definition 7.3 Seien U,V C RP? offene Mengen, v : U — R", ¥ : V — R" seien Param-
eterdarstellungen von p-dimensionalen Flachenstiicken. v und 4 heiflen aquivalent, wenn

ein Diffeomorphismus ¢ : V' — U existiert mit

T=q0p.

Dies ist eine Aquivalenzrelation unter den Parameterdarstellungen von Flichenstiicken.

Die zugehérigen Aquivalenzklassen bezeichnet man als p-dimensionale Flichenstiicke.

Beispiel 5: Sei v : U — R? die Parametrisierung der oberen Hilfte der Einheitssphire
aus Beispiel 1 und sei 4 : U — R? die entsprechende Parametrisierung aus Beispiel 4.
Diese Parametrisierungen sind aquivalent. Denn ein Diffeomorphismus ¢ : U — U ist

gegeben durch

1+u2 402
Sp(u’ U) - 2v
14u2 402
Fiir diesen Diffeomorphismus gilt
1—&-112% 2u
1
2v ~
(vop)(u,v) = Tru210? RN 20 = J(u,v).
e 1—u? =02

In Beispiel 3 ist eine Parameterdarstellung fiir die gelochte Sphéare angegeben. Fiir die

gesamte Sphare gibt es jedoch keine Parameterdarstellung
v:U—R3.

Um die gesamte Sphére darzustellen, mufl man sie daher in mindestens zwei
(iiberlappende) Flachenstiicke aufteilen und fiir jedes eine Parameterdarstellung angeben.

Daher definiert man:

Definition 7.4 Sei U C RP? eine offene Menge. Eine Parametrisierung v : U — R" eines

p—dimensionalen Flachenstiickes heifit einfach, wenn
(i) v injektiv ist
(i) 7! stetig ist.
Ein p—dimensionales Flachenstiick heifit einfach, wenn es eine einfache Parametrisierung

zulafit, d. h. wenn die Aquivalenzklasse eine einfache Parametrisierung enthalt.
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U = (a,b)

T f i 7 T ‘ )
a ul U b a 7L (y) b

7 ist nicht injektiv: y = y(u1) = y(u2). v~1 ist nicht stetig: Jede Kugel um y

1 abgebildet in eine ein-

wird durch v~
seitige Umgebung von b und in eine

Umgebung von vy~ (y) # b.

Definition 7.5 Eine Teilmenge M C R™ heifit p-dimensionale Untermannigfaltigkeit des
R™, wenn es zu jedem x € M eine n-dimensionale Umgebung V' (z) und eine Abbildung

v, gibt mit folgenden Eigenschaften:

(i)  V(z) N M is ein einfaches p-dimensionales Fléchenstiick und ~, ist eine einfache

Parametrisierung dieses Flachenstiicks.

(ii) Sind z und y zwei Punkte aus M mit
N=V(@)nM)n(V(y)nM) #0,

dann sind 7, : 7, '(N) — M, , : 7,/ "(N) — M dquivalente Parametrisierungen von
N.

Die Umkehrabbildung k =y~ : VN M — U C R" einer einfachen Parameterdarstellung
v:U — VN M des Flachenstiicks V' N M heifit Karte der Untermannigfaltigkeit M.

Definition 7.6 Es sei M eine p-dimensionale Untermannigfaltigkeit des R™ und x ein
Punkt von M. Ist v eine Parametrisierung von M in einer Umgebung von x mit x = y(u),
dann ist der Wertebereich der linearen Abbildung 7/(u) ein p-dimensionaler Unterraum
von R™. Dieser Wertebereich heifit Tangentialraum von M im Punkt . Man schreibt
daftr T,(M).

Die Definition von T, (M) héngt nicht von der gewéhlten Parametrisierung ab. Denn ist
7 eine zu v dquivalente Parametrisierung mit = = 4(a) und ist ¢ ein Diffeomorphismus

mit v = 4 o ¢ und mit @ = p(u), dann liefert die Kettenregel



Weil ¢'(u) eine invertierbare lineare Abbildung ist folgt, dass 7/(u) und 4'(@) denselben
Wertebereich haben.

7.2 Integration auf Flachenstiicken

Sei U C RP eine offene Menge und sei v : U — M eine Parameterdarstellug eines p-
dimensionalen Flachenstiickes im R™. Die Bildmenge sei M = ~(U). Obwohl nicht
vorausgesetzt ist, dafl M ein einfaches Flachenstiick ist, werde ich im folgenden doch M
als p-dimensionales Flachenstiick bezeichnen und dabei annehmen, dal M mit ~ oder
einer dazu aquivalenten Parametrisierung parametrisiert wird.

Fiir 1 <+¢,7 < p seien die stetigen Funktionen g;; : U — R definiert durch

%(U) %(u)
g(u> — 8'7 (u) 8'7 (u) B 0 z: | J: Z 8’)% a’Yk )
’ aul auj 1o ' 9 ‘ 8Uz 3uj
ey )\ 2w
Definition 7.7 Fir u € U sei
gll(U) C. glp(u)
G(u) = | :
g (u) ... gpp(u)

Die durch g(u) := det(G(u)) definierte Funktion g : U — R heifit Gramsche Determinante

zur Parameterdarstellung ~.

Zur Motivation sei U C RP und v : U — M C R" die Parametrisierung eines p-

dimensionalen Flachenstiickes im R™.

h — y(u) +~'(u)h

ist dann die Parameterdarstellung eines ebenen Fliachenstiickes, das im Punkt y(u) tangen-

tial ist an das Flachenstiick w — y(u). Die partiellen Ableitungen g—;(u) s %(u} sind

Vektoren, die im Tangentialraum von M im Punkt vy(u) liegen, einem p-dimensionalen

linearen Unterraum von RP?, und diesen Unterraum sogar aufspannen, weil die Matrix
b )

Oy Oy

7'(u) nach Voraussetzung den Rang p hat. z-(u),..., T%(u) heiflen Tangentialvektoren

von M im Punkt y(u).
Die Menge

p

P = {ng—l(u)

=1

mGR,OSmSl}

ist eine Teilmenge des Tangentialraumes, ein Parallelotop.
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Satz 7.8 Es gilt g(u) > 0 und \/g(u) ist gleich dem p-dimensionalen Volumen des Par-
allelotops P.

Der Einfachheit halber beweisen wir diesen Satz nur fur n = 2. Im diesem Fall ist P das

im Bild dargestellte Parallelogramm.

Buz
g(u) = /det(G(u))
59_171(”) 59_171(“) %(U) (98—172(“ _ a? ab cos o
B%(“)'aa_&“) a%(u) a%(u) abcosa b

= Va2b? — a2b? cos? o = aby/1 — cos?« = absinae = b-h = Flaiche von P. =

Definition 7.9 Sei f : M — R eine Funktion. f heisst integrierbar iiber dem p-
dimensionalen Flachenstiick M, falls die Funktion

u— f(v(u)vg(u)

iiber U integrierbar ist. Man definiert dann das Integral von f iiber M durch

/f )dS(x /f (w)\/g(uw)du.

Man nennt dS(x) das p-dimensionale Fléchenelement von M an der Stelle . Symbolisch
gilt

— Volwdu, ©=~(u).

Als néchstes zeigen wir, dass diese Definition sinnvoll ist, d. h. dass der Wert des Integrals

f f(y(u))\/g(u)du sich nicht &ndert wenn die Parametrisierung v durch eine dquivalente

ersetzt wird.
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Satz 7.10 Seien U,U C R? offene Mengen, seien v : U — M sowie 7% : U — M
dquivalente Parameterdarstellungen des Flichenstiickes M und sei ¢ : U — U ein Diffeo-
morphismus mit v = yop. Die Gramschen Determinanten zu den Parameterdarstellungen

v und v werden mit g : U — R beziehungsweise g : U — R bezeichnet.

(i) Dann gilt
g(z) = g(e(x))| det ¢ (z)*

fiir alle x € U.
(i) Ist (f o~)\/g tber U integrierbar, dann auch (f o 7)\/g tber U und es gilt

/ F(/()Va@)de = / FG)Vaw)dy

Beweis: (i) Es gilt

i OVe(u) Ove(u)

9ialu) = Ou;  Ouj
i j

k=1

also ist
G(u) = [y (w)]" (u) .
Nach der Kettenregel und dem Determinantenmultiplikationssatz gilt also
§ = detG = det([¥]"3)
= det([(7 o p)¢'T" (v o)) = det(0" [v 0 9] [v 0 pl¢')

= (det ') det([y o @] [y o ¢])(det @) = (det ¢')*(g 0 @) .

(ii) Nach dem Transformationssatz ist (f ov),/g iiber U integrierbar, genau dann wenn
(foyop)/gop|dety| = (foF)y/g iiber U integrierbar ist. AuBerdem ergeben Teil (i)

der Behauptung und der Transformationssatz, daf3

/f(v(fv))\/g(x)dfv = /f((vow)(y))\/g(sf)(y))!dew’(y)ldy
— [ 16wVl

U
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7.3 Integration auf Untermannigfaltigkeiten

Nun soll die Definition des Integrals von Flachenstiicken auf Untermannigfaltigkeiten
verallgemeinert werden. Ich beschranke mich dabei auf p-dimensionale Untermannig-
faltigkeiten M des R", die durch endlich viele Karten tiberdeckt werden kénnen. Genauer
nehme ich an, daf es endlich viele Karten x; : V; € M — U; gebe mit M = U Vj.

Nach Definition von Karten sind dabei U; C R offene Mengen und gibt es offene Mengen
T; € R® mit V; = T; N M. Die Umkehrabbildungen v; = lij : U; — Vj sind einfache

Parametrisierungen.

Definition 7.11 Unter einer der Uberdeckung {Vi},—i. . von M untergeordneten Zer-

legung der Eins aus lokal integrierbaren Funktionen versteht man m Funktionen
=M-—-R |, j7=1,....m
mit
1) 0<a; <1 , ajay, =0
2.) ilaj(x) =1 firallex e M
j=
3.) Die Funktion o o+, : U; — R ist lokal integrierbar, d. h. fiir alle R > 0 existiere

|t

U; N {|u|<R}

das Integral

Definition 7.12 Es sei M eine p-dimensionale Untermannigfaltigkeit des R", zu der eine
endliche Uberdeckung {(Vitie,
Eine Funktion f : M — R heiit integrierbar iiber M, falls f, fir alle j integrierbar ist.

/f )dS(x :Z:/ 2)dS (z)

mit einer der Uberdeckung {V;}7-, von M untergeordneten Partition der Eins {a;}",

existiere mit einfachen Parametrisierungen v; : U; — Vj.

Man setzt dann

Man beachte, dafl wegen der vorausgesetzten Eigenschaften von «; die Funktion o () f(z)
tiber V; integrierbar ist. Denn nach Voraussetzung ist (f o v;),/g; liber U; integrierbar
mit der Gramschen Determinanten g; zur Parametrisierung ;. Wegen 0 < «a;(z) < 1 ist
also auch (o o 7;)(f ©;),/g; iiber U; integrierbar als Produkt einer integrierbaren und

einer beschrankten, lokal integrierbaren Funktion.
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Es mufl noch gezeigt werden, dafl die Definition des Integrals unabhangig von der Wahl
der Uberdeckung von M durch Karten und von der Wahl der Partition der Eins ist:

Satz 7.13 Sei M eine p-dimensionale Untermannigfaltigkeit im R"™ und seien

")/kiUk—>Vk, kzl,...,m
6/]0]%‘7]7 jzl,,l

einfache Parametrisierungen mit U Vi = U V; =M. Gilt
k=1 i=

Dy =V;NVy #£0,

dann seien

Ui =% "'Djr), Ui =7;"(Ds) .
Jordan-messbare Mengen und ~, : Uy, — D, 7 : Uy — Dy seien dquivalente
Parametrisierungen.

Das Funktionensystem {ay},_, sei eine der Uberdeckung {Vi}ie, und das System
!

{6]-}2:1 eine der Uberdeckung {‘N/]} untergeordnete Zerlegung der Eins. Dann gilt
j=1

m

> [ Z/ﬁ] ().

k:le Jj= l~‘

Beweis:  Zunachst zeige ich, dafl ;a4 f sowohl iiber Vj, als auch iiber ‘7] integrierbar ist

/5j(:£)ak(x)f(:v)d5(:c) = /ﬁj(:n)ozk(:n)f(a:)dS(x).
Vi Vi

Um dies einzusehen, seien g5, beziehungsweise g; die Gramschen Determinanten zu v, und

;. Wenn die Funktion [(ayf) © 1%]y/gx iber Uy integrierbar ist, dann ist diese Funktion

mit

auch iiber Uy; integrierbar, weil Uy, eine messbare Teilmenge von Uy, ist. Nach Satz 7.10
ist dann [(o f) © 7;]4/3; tiber U, integrierbar. Nach Voraussetzung ist §; o 7; iiber U;
lokal integrierbar, also ist diese Funktion auch tiber (]}k lokal integrierbar, weil (]}k eine
messbare Teilmenge von Uj ist. Wegen 0 < 3; 07, <1 folgt, dafl das Produkt

[(Bsanf) 0 33]8/35 = (B 0 3) () © 31\/35
iiber Ujk integrierbar ist, und wegen der Aquivalenz der Parametrisierungen ~; : Ukj —
Djk7 :Vj . Ujk — Djk ergibt sich
[ (Baws) o 5Vadu= [ (i) 0wl vaudu.

Ujk Ukj
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Da (Bj04)(z) = 0 fiir alle x € M \ Dy, ist [(Bjcuf) 0 ;] (u) = 0 fiir alle u € U; \ Uy, und
[(Bjaif) o vkl (u) = 0 fiir alle w € Uy, \ Uy, also konnen in der obenstehenden Formel die

Integrationsbereiche jeweils ausgedehnt werden ohne Anderung der Integrale. Es folgt

/ (B0 f) 0 ;)3 Grdu = / (B0 ) 0 1ly/Gndu

Uj Uy

Weil ; : Uj — \7] und 7 : U — Vi Parametrisierungen sind, bedeutet dies

/ (8,01 f)dS (x) = / (B0 f)dS x)

Z i

4 m
Es folgt wegen > B;(x) =1 und ) ax(z) =1, da
=

> [aw@)f@is@) =Y [ 3 si@aes@)as()
=3y / B(@)ag(x) f(z)dS(x) = Y / fi(x)ay(x) f(x)dS (x)
=3 [ S aws@iwise = [seiasa.

7.4 Der Gauflsche Integralsatz

Zur Formulierung des Gauflschen Satzes bendtige ich zwei Definitionen:

Definition 7.14

(i) Sei A C R" eine kompakte Menge. Man sagt, A habe glatten Rand, wenn 0A eine

(n — 1)-dimensionale Untermannigfaltigkeit von R™ ist.

(ii) Seix € A. Ist der von Null verschiedene Vektor v € R™ orthogonal zu allen Vektoren
im Tangentialraum 7, (0A) von 0A im Punkt z, dann heifit » Normalenvektor zu
JA im Punkt z. Gilt |v| = 1, dann heifit v Einheitsnormalenvektor. Zeigt v ins

AuBere von A, dann heift v duBerer Normalenvektor.
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Definition 7.15 (Divergenz) Sei U C R" eine offene Menge und f : U — R sei
differenzierbar. Dann ist die Funktion div f : U — R definiert durch

"9
div f(r) = > 5 fil@).

Man nennt div f die Divergenz von f.

Satz 7.16 (Gauflscher Integralsatz) Sei A C R" eine kompakte Menge mit glattem
Rand, U C R"™ sei eine offene Menge mit A C U und f : U — R"™ sei stetig differenzierbar.

v(x) bezeichne den dufSeren Einheitsnormalenvektor an OA im Punkt x. Dann gilt

/V(x) - f(z)dS(x) = /div f(z)dz .
DA A
Fiir n = 1 lautet der Satz: Seien a,b € R, a < b. Dann ist
b

£6) — fla) = [ 2 paydr,

und man sieht, dafl der Gaufische Satz die Verallgemeinerung des Hauptsatzes der

Differential- und Integralrechnung auf den R™ ist.

Anwendungsbeispiel: Ein Korper A befinde sich in einer Fliissigkeit mit dem spezi-
fischen Gewicht ¢, deren Oberflache mit der Ebene z3 = 0 zusammenfalle. Der Druck im
Punkt z = (21, 29, 73) € R? ist dann

—CIs3 .
Ist x € 0A, dann erzeugt dieser Druck in diesem Punkt die Kraft
—cr3(—v(x)) = cxsv(x)

pro Flacheneinheit. v(z) ist die &uere Normale an 0A im Punkt z. Fiir die gesamte

Oberflachenkraft erhalt man dann

K
K= Ky, | = /cxgu(x)dS(a:).
K 9A

Durch komponentenweise Anwendung des Gauflschen Satzes erhélt man

Ky = [ cxsvi(x)dS(z) = fca%lxgdx =0
A

9A
Ky = [ casvo(x)dS(z) = [ cgzasdz =0
94 a o7
K3 = [ cagus(x)dS(z) = [ czlusdr = ¢ [ dr = cVol (A) .
9A A A
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K ist also in Richtung der positiven x3-Achse gerichtet, also erfahrt A einen Auftrieb.
Die Grofle der Auftriebskraft ist

cVol (A) = Gewicht der verdrangten Fliissigkeit .

7.5 Greensche Formeln

Es sei U C R" eine offene Menge, A C U sei eine kompakte Menge mit glattem Rand,

und fiir x € 0A sei v(z) die &uBere Einheitsnormale an 0A im Punkt .

Definition 7.17 Die Funktion f : U — R sei stetig differenzierbar. Dann definiert man
die Normalableitung von f auf 0A durch

0
L (0) = e = (o) - grad S0 Zaxzz

(Die Normalableitung von f ist die Richtungsableitung von f in Richtung von v.)

Ist f: U — R zweimal differenzierbar, dann definiert man die Funktion

Af:U—-R
durch
92
Af(z) = Qf( z) .

A heifit Laplace-Operator.

Satz 7.18 Seien f,g € C*(U,R). Dann gilt

1. Erste Greensche Formel:

[ Swise) = [lgnd @) gradgla) + f@)ag)is

A

= /(Vf~Vg+ng)dx

A
mit Vf = grad f .
2. Zweite Greensche Formel:

J1@5 @) — o) 5 @lds(a) =

0A

— /[f(a:)Ag(x) — g(2)Af(x)]dx = /(ng — gAf)dx

A
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Beweis:  Zum Beweis der ersten Greenschen Formel wende den Gaufischen Integralsatz

auf die stetig differenzierbare Funktion
feradg: U — R"
an. Es folgt

[ 1@ 2 @asew) = [ @) (¢ gradg)(e)aso
0A

0A

= /div (fgrad g)(x)dx = /(gradf -grad g + fAg)dx .
A A
Fir den Beweis der zweiten Greenschen Formel beniitzt man die erste Greensche Formel:

/

0A

Danach gilt:

F) 22 @) — () 2L ()]s ()

—

e

(Vf-Vg+ fAg)dr - / (Vf-Vg+ gAf)de

A

(fAg —gAf)dz.

7.6 Der Stokesche Integralsatz

Sei U C R? eine offene Menge und sei A C U eine kompakte Menge mit glattem Rand.
Dann ist der Rand 0A eine stetig differenzierbare Kurve.
Sei g : U — R? stetig differenzierbar. Der Gaufische Satz lautet nun
0 0
(52 + 520 do = [r@ae) + ona)ise
A DA

mit dem &uBeren Normalenvektor v(z) = (v1(z), vo(x)). Ist f : U — R? eine andere stetig

differenzierbare Funktion und wahlt man fiir g im Gauflschen Satz die Funktion

o= (50))
dann erhalt man

[ (523w de = [or@)ho) - mosiwhasta
A

(9:61 81‘2
0A

- /T(x) - f(z)ds(z)

0A
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T(z) = <—1/2(x)> :
n(z)
7(z) ist ein Einheitsvektor, der senkrecht auf dem Normalenvektor v(z) steht, also ist 7(x)
ein Einheitstangentenvektor an A im Punkt = € A, und zwar derjenige, den man aus
v(z) durch Drehung um 90° im mathematisch positiven Sinn erhélt. Fiir differenzierbares
f : U — R? definiert man die Rotation von f durch
0 0

- a_ﬁ(x) - 8—2(@«) |

Hiermit lautet die obenstehende Formel

/rot f(z)dx = /T(J;) - f(x)ds(x) .

A 0A

Diese Formel heiffit Stokescher Satz in der Ebene. Man beachte, daffi A nicht als

zusammenhangend oder einfach zusammenhangend vorausgesetzt wurde:

rot f(z)

Man kann die Teilmenge A C R? mit einer ebenen Untermannigfaltigkeit im R?® identi-
fizieren und das Integral iiber A im Stokeschen Satz mit dem Flachenintegral iiber diese
Untermannigfaltigkeit. Diese Interpretation legt die Vermutung nahe, dal diese Formel
verallgemeinert werden kann und der Stokesche Satz nicht nur fiir ebene Untermannig-
faltigkeiten, sondern fiir allgemeinere 2-dimensionale Untermannigfaltigkeiten des R? gilt.
In der Tat gilt der Stokesche Satz fiir orientierbare Untermannigfaltigkeiten des R?, die

folgendermaflen definiert sind:

Definition 7.19 Sei M C R? eine 2-dimensionale Untermannigfaltigkeit. Unter einem

Einheitsnormalenfeld v von M versteht man eine stetige Abbildung
v:M —R3
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mit der Eigenschaft, daf fiir jedes a € M der Vektor v(a) ein Einheitsnormalenvektor von

M in a ist.

Definition 7.20 Eine 2-dimensionale Untermannigfaltigkeit M des R? heiit orientierbar,

wenn ein Einheitsnormalenfeld auf M existiert.

Beispiel: Die Einheitssphire M = {z € R® | |z| = 1} ist orientierbar. Ein Einheitsnor-
malenfeld ist v(a) = o, a€M.

a

Dagegen ist das Mobiusband nicht orientierbar:

225

Mobiusband

Definition 7.21 Sei U C R? eine offene Menge und f : U — R? differenzierbar. Die

Funktion
rot f : U — R?

sei definiert durch
oh O\ |, L,
0x2 8ZE3 ! J

rot f(x) := Oh Ok [_|o o 0

Ors 01y Or; Oxy Oxs
92 Oh A
8.1'1 8302

Man bezeichnet rot f als Rotation der Funktion f.

Satz 7.22 (von Stokes fiir Untermannigfaltigkeiten) Sei M eine 2-dimensionale

orientierbare Untermannigfaltigkeit des R?, und seiv : M — R? ein Einheitsnormalenfeld.
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Sei B C M eine kompakte Menge mit glattem Rand (d. h. OB sei eine differenzierbare
Kurve.) Fiir x € 0B sei u(x) € T,M der aus B hinausweisende Einheitsnormalenvektor.
Auflerdem sei

T(z) =v(z) X p(zr) = €IB.

7(x) ist ein Einheitstangentenvektor an OB. Schlieflich seien U C R? eine offene Menge
mit BC U und f : U — R3 eine stetig differenzierbare Funktion. Dann gilt:

/V(ZL’) -rot f(z)dS(z) = /T(ac) - f(x)ds(x) .

B 0B

Beispiel: Sei Q C R? ein Gebiet im R?. In 2 existiere ein elektrisches Feld E, das vom
Ort x € Q und der Zeit t € R abhéngt. Also gilt

E: QxR —R3,

Ebenso sei
B: QxR —R3

die magnetische Induktion.

Sei I' C ) eine Drahtschleife. Diese Drahtschleife berande eine Flache M C Q:

=U =

In T’ wird durch die Anderung von B eine elektrische Spannung U induziert. Diese Span-

nung kann folgendermaflen berechnet werden: Es gilt fiir alle (x,t) € Q x R

rot, E(z,t) = —%B(m,t) :

138



Dies ist eine der Maxwellschen Gleichungen. Also folgt aus dem Stokeschen Satz mit

einem Einheitsnormalenfeld v : M — R?

ut) = /T(x) - E(x,t)ds(x) = /V(x) -rot, E(x,t)dS(z)

= —/V(a:) : %B(m,t)dS(x) = —%/V(ZL‘) - B(z,t)dS(z) .
M M
Das Integral [ v(z)- B(z,t)dS(z) heit Flufl der magnetischen Induktion durch M.
M

Somit ist U(t) gleich der negativen zeitlichen Anderung des Flusses von B durch M.
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