Fachbereich Mathematik

Prof. Dr. M. Joswig Christina Collet Birgit Petri

Sommersemester 8.06.2006

2006

Lineare Algebra II

8. Übung

Gruppenübungen

Aufgabe G1 Welche der folgenden Aussagen sind richtig? Kreuzen Sie dabei entweder "wahr" oder "falsch" oder keines von beiden an. μ_A bzw. χ_A bezeichnet das Minimalpolynom bzw. das charakteristische Polynom von $A \in K^{n \times n}$.

		wanr	falsch
(i)	μ_A teilt χ_A .		
(ii)	Jede Nullstelle von χ_A ist auch Nullstelle von μ_A .		
(iii)	μ_A^n teilt χ_A .		

Aufgabe G2 Beweisen Sie den Satz von Cayley-Hamilton durch direkte Rechnung für Matrizen $A \in K^{2\times 2}$.

Aufgabe G3 Bestimmen Sie die Minimalpolynome der folgenden komplexen Matrizen

$$A := \begin{pmatrix} 1 & 3 \\ -2 & 0 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{pmatrix}$$

Stellen Sie B^3 und B^4 als Linear kombination von E,B und B^2 dar.

Aufgabe G4 Sei $F: V \to V$ ein Endomorphismus und $P \in K[t]$. Ist $\lambda \in K$ ein Eigenwert von F, so ist $P^*(\lambda)$ ein Eigenwert von $P^{**}(F)$.

Hausübungen

Abgabe am: 16/22.06.2006

Aufgabe H1

- (i) Sei K ein Körper und $X = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in K^{(m+n)\times(m+n)}$ eine Blockmatrix mit $A \in K^{m\times m}$, $B \in K^{m\times n}$ und $D \in K^{n\times n}$. Zeigen Sie, dass für die charakteristischen Polynome gilt: $\chi_X = \chi_A \cdot \chi_D$.
- (ii) Sei $\lambda \in K$. Bestimmen Sie die charakteristischen Polynome und die Minimalpolynome der Matrizen

$$A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \qquad B = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \qquad C = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

(iii) Verallgemeinert sich die Aussage von (i) über charakteristische Polynome auch auf Minimalpolynome?

Aufgabe H2 Seien G, H Endomorphismen von V, die diagonalisierbar sind.

Unter welcher Bedingung ist es möglich, eine Matrix $S \in GL(n, K)$ zu finden, so dass SGS^{-1} und SHS^{-1} Diagonalmatrizen sind?

In diesem Fall nennt man die Endomorphismen simultan diagonalisierbar.

- (i) Zeigen Sie, dass aus der simultanen Diagonalisierbarkeit von G, H die Kommuativität dieser beiden Endomorphisen, d.h. GH = HG
- (ii) Zeigen Sie, dass die Umkehrung obiger Aussage im folgenden Sinne gilt:
 - (a) Betrachten Sie zwei Zerlegungen von V in Eigenräume von G und H, die aufgrund der Diagonalisierbarkeit existieren. Zeigen Sie, dass die Eigenräume zu den Eigenwerten von G H-invariant sind und umgekehrt.
 - (b) Zeigen Sie: $G|_{\text{Eig}(G,\lambda_k)} \in \text{End}(\text{Eig}(G,\lambda_k)), k \in \{1,\ldots,n\}.$
 - (c) Zeigen Sie, dass jeder Eigenraum $\text{Eig}(G, \lambda)$ von G in eine direkte Summe von Unterräumen $E_i := \text{Eig}(G, \lambda) \cap \text{Eig}(H, \mu_i)$ zerlegt werden kann, wobei μ_i die Eigenwerte von H sind.
 - (d) Konstruieren Sie eine Basis von V bestehend aus Eigenvektoren von G und H, was die simultane Diagonalisierbarkeit zeigt.

Aufgabe H3 Testen Sie, ob die beiden unten stehenden Matrizen aus $\mathbb{R}^{4\times 4}$ simultan diagonalisierbar sind. Im Falle der simultanen Diagonalisierbarkeit bestimmen Sie eine Matrix $S \in GL(4; \mathbb{R})$, so dass SAS^{-1} und SBS^{-1} Diagonalmatrizen sind.

$$A = \begin{pmatrix} -5 & 1 & 6 & 6 \\ -12 & 2 & 12 & 12 \\ 1 & 1 & 0 & -2 \\ -4 & 0 & 4 & 6 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & -1 & -4 \\ -3 & 1 & 3 & 0 \\ 2 & 0 & -1 & -2 \\ 1 & 0 & -1 & -3 \end{pmatrix}$$

Aufgabe H4 Bestimmen Sie alle Nullstellen des Polynoms $p(t) = t^4 + 2t^2 + 1$

- (i) In \mathbb{R} ,
- (ii) In C.