Prof. Dr. M. Joswig Christina Collet Birgit Petri

Sommersemester 22.06.2006

2006

Lineare Algebra II

10. Übung

Gruppenübungen

Aufgabe G1 Welche der folgenden Aussagen sind richtig? Kreuzen Sie dabei entweder "wahr" oder "falsch" oder keines von beiden an.

		wahr	falsch
(i)	Ist $W \subset V$ ein F -invarianter Unterraum, so ist $\chi_{F W}$ ein Teiler		
	von χ_F .		
(ii)	Sei $\varphi:V\to V$ ein Endomorphismus eines n dimensionalen Vektor-		
	raumes und seien $\lambda_1, \ldots, \lambda_r$ die verschiedenen Eigenwerte von φ .		
	Dann gilt: $\dim V_{\lambda_1} + \cdots + \dim V_{\lambda_r} = n$		
(iii)	Die Matrix $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ ist nilpotent.		

Aufgabe G2

Definition: Unter einer Fahne (V_r) in einem n-dimensionalen Vektorraum V versteht man eine Kette

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_n = V$$

von Untervektorräumen mit dim $V_r = r$. Ist $F \in \text{End}(V)$, so heißt die Fahne F-invariant, wenn

$$F(V_r) \subset V_r$$
 für alle $r \in \{0, \dots, n\}$.

Bemerkung: Für $F \in \text{End}(V)$ sind folgende Bedingungen gleichwertig:

- (i) Es gibt eine F-invariante Fahne in V.
- (ii) Es gibt eine Basis \mathcal{B} von V, sodass $[F]_{\mathcal{B}}$ obere Dreiecksmatrix ist.

Ist das der Fall, so heißt F trigonalisierbar.

Machen Sie sich diesen Sachverhalt klar und übersetzen Sie diesen in den Matrizenkalkül. Sei

$$A := \begin{pmatrix} 3 & 0 & -2 \\ -2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

Betrachten Sie $A \cdot : \mathbb{C}^3 \to \mathbb{C}^3$ und finden Sie eine $(A \cdot)$ invariante Fahne des \mathbb{C}^3 .

Aufgabe G3 Sei V ein K-Vektorraum, F ein Automorphismus von V. Zeigen Sie: Ist

$$\{0\} \subsetneq V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V$$

eine F-invariante Fahne, so ist dies auch schon eine F^{-1} -invariante Fahne. Folgern Sie: Ist \mathcal{B} eine Basis, so dass $[F]^{\mathcal{B}}_{\mathcal{B}}$ obere Dreiecksmatrix ist, so ist auch $[F^{-1}]^{\mathcal{B}}_{\mathcal{B}}$ eine obere Dreiecksmatrix.

Hausübungen

Abgabe am: 29.06.2006

Aufgabe H1 Bestimmen Sie eine obere Dreiecksmatrix, die ähnlich zu

$$A := \begin{pmatrix} -1 & -3 & -4 \\ -1 & 0 & 3 \\ 1 & -2 & -5 \end{pmatrix}$$

ist.

Aufgabe H2 Zeigen Sie mit Induktion über $n = \dim V$: Ist V ein K-Vektorraum mit $\dim_K V = n < \infty$ und $F \in \operatorname{End}(V)$ nilpotent, so existiert eine Basis \mathcal{B} von V mit

$$[F]_{\mathcal{B}} = \begin{pmatrix} 0 & & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}$$

Aufgabe H3 Betrachten Sie die Basis

$$\mathcal{B}_1 = \left(\begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \right)$$

des \mathbb{R}^3 . Untersuchen Sie, ob die Abbildung F mit

$$[F]_{\mathcal{B}_1} = \begin{pmatrix} -2+i & -1+i & -1-i \\ 3-i & 2-i & 1+i \\ 1-i & 1-i & i \end{pmatrix}$$

unitär und selbstadjungiert ist.

Aufgabe H4 Wiederholung

Berechnen Sie das charakteristische und das Minimalpolynom der folgenden Matrizen.

(i)

$$\begin{pmatrix} 3 & 1 & 1 \\ -4 & -2 & -4 \\ 2 & 2 & 4 \end{pmatrix}$$

(ii)

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 5 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}$$

(iii) A, A^2, A^3, \dots für

$$A := \begin{pmatrix} 0 & e^{\pi} & 0 & 0 \\ 0 & 0 & \pi^e & 0 \\ 0 & 0 & 0 & 25^{130} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$