Fachbereich Mathematik

Prof. Dr. J. Lehn

A. Neuenkirch

B. Niese

A. Rößler

SS 2006 28.06.2006

Einführung in die Mathematische Statistik

10. Tutorium

Aufgabe 1 (Zusammenhang zwischen Konfidenzintervallen und Tests)

In dieser Aufgabe wird erläutert, wie aus einem Konfidenzschätzverfahren für einen unbekannten Parameter θ ein Test für die Nullhypothese $\theta = \theta_0$ gewonnen werden kann und umgekehrt.

Dazu seien X_1, \ldots, X_n unabhängige, identisch verteilte Zufallsvariablen. Es sei bekannt, daß die Verteilungsfunktion von X_1 zu einer Familie $\{F_{\theta} : \theta \in \Theta\}$ von Verteilungsfunktionen gehört, der Parameter θ sei unbekannt. $\Theta \subseteq \mathbb{R}$ sei hierbei die Menge der möglichen Parameterwerte. Außerdem sei α mit $0 < \alpha < 1$ gegeben.

1. Zum Konfidenzniveau $1-\alpha$ sei ein Konfidenzintervall

$$I(X_1,...,X_n) = [U(X_1,...,X_n), O(X_1,...,X_n)]$$

für θ bekannt. Liegt nun eine Realisierung $(x_1,\ldots,x_n)\in\mathbb{R}^n$ vor, so läßt sich für ein vorgegebenes $\theta_0\in\Theta$ die Nullhypothese $H_0:\theta=\theta_0$ bei der Alternative $H_1:\theta\neq\theta_0$ folgendermaßen überprüfen:

Falls $\theta_0 < U(x_1, \dots, x_n)$ oder $\theta_0 > O(x_1, \dots, x_n)$, so wird H_0 verworfen; anderenfalls wird gegen H_0 nichts eingewendet.

Zeigen Sie, daß dieses Vorgehen ein Testverfahren zum Signifikanz-Niveau α ist.

2. In Aufgabenteil a) wurde aus einem Konfidenzschätzverfahren ein Test entwickelt. Nun gehen wir umgekehrt vor.

Sei jetzt also für jedes $\theta_0 \in \Theta$ ein Signifikanz-Test zum Niveau α bekannt, der die Nullhypothese $H_0: \theta = \theta_0$ bei der Alternative $H_1: \theta \neq \theta_0$ überprüft. Der kritische Bereich dieses Tests sei mit K_{θ_0} bezeichnet. Nehmen Sie an, daß

$$I(x_1, ..., x_n) := \{\theta_0 \in \Theta : (x_1, ..., x_n) \notin K_{\theta_0}\}$$

für jede mögliche Realisierung $(x_1, \ldots, x_n) \in \mathbb{R}^n$ ein Intervall sei.

Zeigen Sie, daß das so definierte zufällige Intervall $I(X_1, \ldots, X_n)$ ein Konfidenzintervall für θ zum Konfidenzniveau $1 - \alpha$ ist.

Aufgabe 2 (Eine Anwendung von Aufgabe 1 a))

Die Zufallsvariablen X_1, \ldots, X_n seien unabhängig identisch $\operatorname{Exp}(\theta)$ -verteilt mit unbekanntem Parameter $\theta \in \Theta := (0, \infty)$, und sei $0 < \alpha < 1$. Man kann zeigen, daß dann $2\theta \sum_{i=1}^n X_i \sim \chi_{2n}^2$ gilt.

1. Zeigen Sie, daß durch

$$I(X_1, \dots, X_n) = \left[\frac{\chi_{2n; \frac{\alpha}{2}}^2}{2\sum_{i=1}^n X_i}, \frac{\chi_{2n; 1-\frac{\alpha}{2}}^2}{2\sum_{i=1}^n X_i} \right]$$

ein Konfidenzintervall für θ zum Konfidenzniveau $1-\alpha$ gegeben ist.

2. Für n = 10 ergab sich die konkrete Stichprobe

$$0.64 \ 0.13 \ 0.08 \ 0.50 \ 1.72 \ 1.18 \ 0.18 \ 0.74 \ 2.51 \ 0.07$$

mit $\sum_{i=1}^{10} x_i = 7.75$. Testen Sie mit einem geeigneten Testverfahren zum Signifikanz-Niveau $\alpha = 0.05$ die Nullhypothese $H_0: \theta = 2$ gegen die Alternative $H_1: \theta \neq 2$.

Aufgabe 3 (Eine Anwendung von Aufgabe 1 b))

Die Zufallsvariablen X_1, \ldots, X_n seien unabhängig identisch $R(0,\theta)$ -verteilt mit unbekanntem Parameter $\theta \in \Theta := (0, \infty)$. Wiederum sei $0 < \alpha < 1$.

1. Für $\theta_0 \in \Theta$ sei ein Testverfahren für die Nullhypothese $H_0: \theta = \theta_0$ bei der Alternative $H_1: \theta \neq \theta_0$ gegeben mit dem kritischen Bereich

$$K_{\theta_0} = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \max\{x_1, \dots, x_n\} < \theta_0 \sqrt[n]{\frac{\alpha}{2}} \text{ oder} \right.$$
$$\max\{x_1, \dots, x_n\} > \theta_0 \sqrt[n]{1 - \frac{\alpha}{2}} \right\}.$$

Zeigen Sie, daß dies ein Signifikanz-Test zum Niveau α ist.

- 2. Konstruieren Sie ein Konfidenzintervall für θ zum Konfidenzintervall $1-\alpha$.
- 3. Für n = 10 ergab sich die konkrete Stichprobe

Berechnen Sie ein konkretes Schätzintervall für θ zum Konfidenzniveau $1-\alpha=0.9$.