Prof. B. Farkas Martin Fuchssteiner Lisa Steiner



SS 2006

30. Mai 2006

# Analysis IV

## 6. Übung

## Gruppenübungen

#### (G 1) Lebesgue-Borel-Maß einiger Borelmengen

Wir betrachten die Borel- $\sigma$ -Algebra  $\mathcal{B}(\mathbb{R})$  auf  $\mathbb{R}$ . Zeigen Sie, daß folgenden Mengen Borelmengen sind und berechnen Sie ihr Lebesgue-Maß:

- (a) ]0,1[
- (b) [0,1]
- (c)  $\{0\}$
- $(d) \mathbb{Q}$
- (e)  $[0,1] \cap \mathbb{Q}$  (f)  $[0,1] \setminus \mathbb{Q}$

#### (G 2) Hyperebenen

- (a) Welches Maß hat die n-1-Fläche  $[0,1]^{n-1} \times \{0\}$  im  $\mathbb{R}^n$ ?
- (b) Welches Maß hat die Hyperebene  $\mathbb{R}^{n-1} \times \{0\}$  im  $\mathbb{R}^n$ ?
- (c) Welches Maß haben beliebige affine Ebenen geringerer Dimension im  $\mathbb{R}^n$ ?

## (G 3) Die verallgemeinerte Cantormenge

Es sei  $(\alpha_n)$  eine Folge reeller Zahlen mit  $\alpha_n \in ]0,1[$  für alle  $n \in \mathbb{N}$ . Wir definieren nun eine Folge  $A_n$  von Teilmengen von  $\mathbb{R}$ .  $A_0 = [0, 1]$  sei das Einheitsintervall. Aus  $A_0$  entfernen wir das offene Teilintervall der Länge  $\alpha_1$  mit Mittelpunkt  $\frac{1}{2}$  und definieren  $A_1$  als die Vereinigung der verblieben Intervalle  $I_{1,1}$  und  $I_{1,2}$ . Die Mengen  $A_n$  werden nun rekursiv definiert. Haben wir  $A_n$  als vereinigung der Intervalle  $I_{n,1},\ldots,I_{n,2^n}$  erhalten so entfernen wir aus den Intervallen  $I_{n,j}$  die offenen Teilintervalle  $\alpha_{n+1}I_{n,j}$ , deren Mittelpunkte mit denen von  $I_{n,j}$ übereinstimmen und erhalten die Menge  $A_{n+1}$  als Vereinigung der verbleibenden Intervalle  $I_{n+1,1},\ldots,I_{n,2^{n+1}}$ . Den Schnitt  $C=\bigcap A_n$  nennen wir eine verallgemeinerte Cantor-Menge. Beweisen sie  $\lambda(C) = \prod_{n=1}^{\infty} (1 - \alpha_n)$ 

#### (G 4) Dichte, offene Mengen von kleinem Maß

(a) Da  $\mathbb{Q}$  eine abzählbare unendliche Menge ist, gibt es eine Bijektion  $q: \mathbb{N} \to \mathbb{Q}, n \mapsto q_n$ . Zeigen Sie, dass die Menge

$$U := \mathbb{R} \setminus \bigcup_{n \in \mathbb{N}} ]q_n - 2^{-n}, \ q_n + 2^{-n}[$$

nicht leer ist.

(b) Finden Sie zu  $\varepsilon > 0$  eine offene Teilmenge  $U \subseteq \mathbb{R}$  vom Maß  $\lambda(U) \leq \varepsilon$  derart, dass U in  $\mathbb{R}$  dicht ist (d.h. daß  $U \cap V \neq \emptyset$  für jede nicht-leere offene Teilmenge  $V \subseteq \mathbb{R}$  gilt).

#### (G 5) Urbilder borelscher Mengen

Es sei  $f:\mathbb{R}^n\to\mathbb{R}^n$  eine stetige Funktion. Beweisen Sie, daß Urbilder von Borelmengen unter f wieder Borelmengen sind.

#### Hausübungen

#### (H 1) Bilder stetiger Funktionen

Zeigen Sie, daß das Bild einer stetigen Funktion  $f: \mathbb{R} \to \mathbb{R}^2$  in  $\mathbb{R}^2$  nicht immer Maß 0 hat. *Hinweis:* Betrachten Sie eine Peano-Kurve.

#### (H 2) Etwas verzwicktere Teilmengen

Für  $n \in \mathbb{N}$  sei  $A_n$  die Menge aller reellen Zahlen im Intervall [0,1[, deren Dezimalbruchentwicklung bis zur Stelle n keine 7 enthält, A die Menge aller reellen Zahlen im Intervall [0,1[, deren Dezimalbruchentwicklung keine 7 enthält sowie B die Menge aller reellen Zahlen im Intervall [0,1[, deren Dezimalbruchentwicklung mindestens eine 7 enthält. (Hierbei betrachten wir nur Dezimalbrüche ohne Neunerperiode).

Zeigen Sie, dass  $A_n$ , A und B Borelmengen sind und berechnen Sie das Lebesgue-Borel-Maß dieser Mengen.