Prof. B. Farkas Martin Fuchssteiner Lisa Steiner

SS 06 17.07.2006

Analysis IV

13. Übung

Gruppenübungen

(G 1) Berechnung einiger Volumina

- (a) Berechnen Sie das Volumen $\lambda_3(M)$ des Ellipsoids $M := \{(x,y,z) \in \mathbb{R}^3 : (x/a)^2 + (y/b)^2 + (z/c)^2 \le 1\}$, wobei a,b,c>0. Hinweis: Benutzen Sie das Prinzip von Cavalieri und Aufgabe G1 vom 12. Übungsblatt.
- (b) Berechnen Sie mit dem Prinzip von Cavalieri das Volumen des Körpers $M:=K\cap Z$, der durch Schneiden der Kugel $K:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2\leq 1\}$ und des Zylinders $Z:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2\leq\frac{1}{2}\}$ entsteht.

(G 2) Volumen eines Rotationskörpers

Es sei $r: \mathbb{R} \to [0, \infty[$ eine messbare Funktion. Uns interessiert das Volumen des Rotationskörpers $M := \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} < r(z)\} = h^{-1}([0, \infty[)$

$$M := \{(x, y, z) \in \mathbb{R}^{2} : \sqrt{x^{2} + y^{2}} \le r(z)\} =$$

mit $h: \mathbb{R}^3 \to \mathbb{R}, \ h(x, y, z) := r(z) - \sqrt{x^2 + y^2}.$

- (a) Zeigen Sie, dass $M \in \mathcal{B}(\mathbb{R}^3)$.
- (b) Zeigen Sie, dass $\lambda_3(M) = \pi \int_{\mathbb{R}} r(z)^2 d\lambda_1(z)$.
- (c) Berechnen Sie für $\alpha>0$ das Volumen der Menge

$$M := \{(x, y, z) \in \mathbb{R}^3 : z \ge 1 \text{ und } \sqrt{x^2 + y^2} \le z^{-\alpha} \}.$$

(G 3) Volumen eines Rotationskörpers

(a) Sei $f:[a,b]\to\mathbb{R}_+$ messbar. Wir definieren in \mathbb{R}^{n+1} den Rotationskörper

$$K_f := \{(x, t) \in \mathbb{R}^n \times [a, b] : ||x|| \le f(t)\}.$$

Berechnen Sie das Volumen des Körpers K_f in Abhängigkeit des Volumens c_n der n-dimensionalen Einheitskugel mit Hilfe des Cavalierischen Prinzips.

(b) Berechnen Sie das Volumen des Körpers, der entsteht, wenn die Funktion $f: [-a, a] \to \mathbb{R}_+$ durch f(t) = |t| gegeben ist. Skizzieren Sie die Situation im Fall n = 2.

(G 4) Rechenaufgabe zu Flächenintegralen

Berechne das Flächenintegral

$$\int_{\mathbb{S}_2} x^2 y^2 dS_{\mathbb{S}_2}(x, y, z).$$

(G 5) Gaußscher Integralsatz

Satz (Gauß): Sei $K \subseteq \mathbb{R}^n$ kompakt mit glattem Rand, $\nu : \partial K \to \mathbb{R}^n$ äusseres Normalenfeld. Ferner sei $K \subseteq U, U \subseteq \mathbb{R}^n$ offen und $F \in C^1(U, \mathbb{R}^n)$. Dann gilt

$$\int_{K} \operatorname{div} F(x) d\lambda_{n}(x) = \int_{\partial K} F(x) \cdot \nu(x) dS_{\partial K}(x).$$

Wir betrachten die Menge $K:=\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^4+z^6\leq 1\}$ und das Vektorfeld

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
, $F(x, y, z) := (x^2y^3, xz + xy^4, \cos(xy))$.

- (a) Zeige, dass K ein Kompaktum mit glattem Rand ist.
- (b) Berechne das Flächenintegral

$$\int_{\partial K} \langle F(x,y,z), \, \nu(x,y,z) \rangle \, dS_{\partial K}(x,y,z) \,,$$

indem Du es als ein geeignetes Volumenintegral umschreibst; hierbei ist $\nu \colon \partial K \to \mathbb{R}^3$ das äußere Normalenfeld von K.

Beachte, dass wir ν gar nicht explizit ausrechnen müssen!

(G 6) Divergenz als Flussdichte

Es sei $F: \mathbb{R}^3 \to \mathbb{R}^3$ ein stetig differenzierbares Vektorfeld und $x_0 \in \mathbb{R}^3$. Für r > 0 bezeichne K_r die abgeschlossene Kugel vom Radius r um x_0 . Wir betrachten den sogenannten "Fluss" $\int_{\partial K_r} \langle F(x), \nu(x) \rangle \, dS_{\partial K_r}(x)$ von F durch die Sphäre ∂K_r vom Radius r um x_0 (wobei $\nu: \partial K_r \to \mathbb{R}^3$ jeweils das äußere Normalenfeld ist).

Zeigen Sie mit dem Gaußschen Integralsatz, dass

$$\lim_{r \to 0} \frac{\int_{\partial K_r} \langle F(x), \nu(x) \rangle dS_{\partial K_r}(x)}{\lambda_3(K_r)} = \operatorname{div} F(x_0).$$

Hinweis: Schreiben Sie div $F(x_0) = \frac{1}{\lambda_3(K_r)} \int_{K_r} \operatorname{div} F(x_0) d\lambda_3(x)$.