Fachbereich Mathematik

Prof. B. Farkas Martin Fuchssteiner Lisa Steiner

SS 2006

4. Juli 2006

Analysis IV

10. Übung

Gruppenübungen

(G 1) Monotone Konvergenz

Es sei $(f_n) \subset \mathcal{M}^+$ eine Funktionenfolge die fast überall gegen eine Funktion $f \in \mathcal{M}^+$ konvergiert. Weiterhin sei die Folge (f_n) fast überall monoton steigend (,d.h. es gilt $f_1 \leq f_2 \leq f_3 \cdots$ fast überall). Zeigen sie $\int f d\mu = \lim \int f_n d\mu$.

(G 2) Lemma von Fatou

Es sei $(f_n) \subset \mathcal{M}^+$ eine Funktionenfolge die fast überall gegen eine Funktion $f \in \mathcal{M}^+$ konvergiert. Zeigen sie $\int f d\mu \leq \liminf_{n\to\infty} \int f_n d\mu$.

(G 3) Integrabilität

Es sei $f \in \mathcal{M}^+$ eine integrable Funktion (,d.h. $\int f d\mu < \infty$). Beweisen Sie, daß die Menge $\{x \in X : f(x) = \infty\}$ eine μ -Nullmenge ist.

(G 4) Parameter-abhängige Integrale/Satz von Lebesgue

Es sei μ ein endliches Maß auf \mathbb{R} und $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Funktion. Weiterhin gebe es eine integrierbare Funktion $h: \mathbb{R} \to \mathbb{R}$ mit $\left|\frac{\partial f}{\partial y}(x,y)\right| \leq h(x)$. Zeigen Sie, daß die Funktion

$$g(y) := \int_{\mathbb{R}} f(\cdot, y) \, d\mu$$

differenzierbar ist und sich die Ableitung durch

$$g'(y) := \int_{\mathbb{R}} \frac{\partial f}{\partial y}(\bullet, y) \, d\mu$$

berechnet.

(G 5) Parameter-abhängige Integrale

Es sei μ ein endliches Maß (d.h. $\mu(\mathbb{R}) < \infty$) auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ derart, daß die Funktion $\mathrm{id}_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$, $\mathrm{id}_{\mathbb{R}}(x) := x$ bzgl. μ über \mathbb{R} integrierbar ist. Zeigen Sie, daß

$$g: \mathbb{R} \to \mathbb{R}, \quad g(y) := \int_{\mathbb{R}} \sin(xy) \ d\mu(x)$$

stetig differenzierbar ist und finden Sie die Ableitung q'.

(G 6) L^1 -Räume

Es seien $f,g\in L^1.$ Beweisen Sie die Äquivalenz der folgenden Aussagen

(a)
$$\forall A \in \mathcal{M}$$
 $\int_A f \, d\mu = \int_A g \, d\mu$ (b) $\int_X |f - g| \, d\mu = 0$ (c) $f = g$ fast überall.

(G7)

Es sei (X, \mathcal{M}, μ) ein endlicher Maßraum und $1 \le r \le p \le \infty$. Beweisen Sie folgende Aussagen:

(a)
$$L^p(X,\mu) \subseteq L^r(X,\mu)$$

(b) Aus
$$\mu(X) < \infty$$
 folgt $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$

Hausübungen

(H 1) L^p -Räume

Wir betrachten den Funktionenraum $L^p((0,1)^d)$ und die Funktionen $f(x) = |x|^{\alpha}$ für $\alpha \in \mathbb{R}$. Für welche $1 \le p \le \infty$ liegt f in L^p ?

(H 2) Der Raum L^{∞}

In dieser Aufgabe betrachten wir den Raum $\mathcal{L}^{\infty}(\mu, \mathbb{R})$ der reellen meßbaren außerhalb einer Nullmenge beschränkten Funktionen:

$$\mathcal{L}^{\infty}(\mu, \mathbb{R}) := \{ f \mid f \text{ ist meßbar}, \exists M \in \mathbb{R} : \mu(|f|^{(-1)}((M, \infty]) = 0 \}.$$

Auf diesem definieren wir durch $||f||_{\infty} := \inf\{M \in \mathbb{R} \mid \mu(|f|^{(-1)}((M,\infty]) = 0\}$ das wesentliche Supremum $||\cdot||_{\infty}$. Im folgenden betrachten wir nur Funktionen und Funktionenfolgen in $\mathcal{L}^{\infty}(\mu,\mathbb{R})$. Beweisen Sie folgende Aussagen:

- (a) $|f| \leq ||f||_{\infty} \mu$ -fast überall.
- (b) $\|\cdot\|_{\infty}$ ist eine Halbnorm auf \mathcal{L}^{∞} und induziert eine Norm auf L^{∞} .
- (c) $||f_n f||_{\infty} \to 0 \Longrightarrow$ es existiert eine meßbare Menge A mit $\mu(A^c) = 0$ und $f_n \to f$ gleichmäßig auf A.
- (d) $(L^{\infty}(\mu), \|\cdot\|_{\infty})$ ist ein Banachraum.
- (e) Es sei $(\mathbb{R}^d, \mathcal{M}, \mu)$ der Lebesgue-Maßraum in \mathbb{R}^d und $f \in \mathcal{L}^{\infty}(\mu, \mathbb{R})$ eine stetige Funktion. Dann ist $\sup_{x \in \mathbb{R}^d} |f(x)|$ das wesentliche Supremum $||f||_{\infty}$ von f.