Fachbereich Mathematik Dr. L. Leuştean K. Altmann, E. Briseid, S. Herrmann

13.06.2006

9. Tutorial Analysis II for MCS Summer Term 2006

(T9.1)

Let $X \subseteq Y$ be a subspace of a complete metric space Y. Show that the following are equivalent.

- (i) X is closed in Y.
- (ii) X is complete.

(This is Proposition 6.15 in the handouts.)

(T9.2)

Let V and W be normed spaces over \mathbb{K} , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Recall that we denote by L(V, W) the set of continuous linear transformations from V to W. Prove the following.

(i) L(V, W) is a vector space over \mathbb{K} with respect to pointwise vector addition and scalar multiplication. That is, L(V, W) is a vector space over \mathbb{K} if we define addition

 $(S,T) \mapsto S + T : L(V,W) \times L(V,W) \to L(V,W)$

on L(V, W) by

$$(S+T)(x) := S(x) + T(x),$$

for all $S, T \in L(V, W)$ and $x \in V$, and scalar multiplication

$$(r,T) \mapsto r \cdot T : \mathbb{K} \times L(V,W) \to L(V,W)$$

on L(V, W) by

 $(r \cdot T)(x) := r \cdot T(x),$

for all $r \in \mathbb{K}$, $T \in L(V, W)$ and $x \in V$.

(ii) The function $\|\cdot\|: L(V, W) \to \mathbb{R}$, defined for every $T \in L(V, W)$ by

 $||T|| := \sup\{||T(x)|| : x \in V, ||x|| \le 1\},\$

is a norm on L(V, W). Moreover, $||T(x)|| \le ||T|| \cdot ||x||$ for all $x \in V$.

(iii) If W is a Banach space, then L(V, W) is also a Banach space.

(This is Theorem 6.26 in the handouts.)

Orientation Colloquium

The Department of Mathematics' Research Groups present themselves.

Monday, 19.06.2006 - 16:15-17:15 - S207/109

Dr. rer. nat. Patrizio Neff

FG Analysis

"Exkursionen in die nichtlineare Elastizität und Plastizität – Herausforderungen an die angewandte Mathematik"

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.