9. Tutorial Analysis II for MCS
 Summer Term 2006

(T9.1)

Let $X \subseteq Y$ be a subspace of a complete metric space Y. Show that the following are equivalent.
(i) X is closed in Y.
(ii) X is complete.
(This is Proposition 6.15 in the handouts.)
(T9.2)
Let V and W be normed spaces over $\mathbb{K}, \mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Recall that we denote by $L(V, W)$ the set of continuous linear transformations from V to W. Prove the following.
(i) $L(V, W)$ is a vector space over \mathbb{K} with respect to pointwise vector addition and scalar multiplication. That is, $L(V, W)$ is a vector space over \mathbb{K} if we define addition

$$
(S, T) \mapsto S+T: L(V, W) \times L(V, W) \rightarrow L(V, W)
$$

on $L(V, W)$ by

$$
(S+T)(x):=S(x)+T(x)
$$

for all $S, T \in L(V, W)$ and $x \in V$, and scalar multiplication

$$
(r, T) \mapsto r \cdot T: \mathbb{K} \times L(V, W) \rightarrow L(V, W)
$$

on $L(V, W)$ by

$$
(r \cdot T)(x):=r \cdot T(x)
$$

for all $r \in \mathbb{K}, T \in L(V, W)$ and $x \in V$.
(ii) The function $\|\cdot\|: L(V, W) \rightarrow \mathbb{R}$, defined for every $T \in L(V, W)$ by

$$
\|T\|:=\sup \{\|T(x)\|: x \in V,\|x\| \leq 1\}
$$

is a norm on $L(V, W)$. Moreover, $\|T(x)\| \leq\|T\| \cdot\|x\|$ for all $x \in V$.
(iii) If W is a Banach space, then $L(V, W)$ is also a Banach space.
(This is Theorem 6.26 in the handouts.)

> Orientation Colloquium
> The Department of Mathematics' Research Groups present themselves.
> Monday, 19.06.2006 - $\mathbf{1 6 : 1 5 - 1 7 : 1 5 ~ - ~ S 2 0 7 / 1 0 9 ~}$
> Dr. rer. nat. Patrizio Neff
> FG Analysis
> "Exkursionen in die nichtlineare Elastizität und Plastizität Herausforderungen an die angewandte Mathematik"

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.

