Fachbereich Mathematik

Dr. L. Leuştean

K. Altmann, E. Briseid, S. Herrmann



23.05.2006

## 6. Tutorial Analysis II for MCS Summer Term 2006

(T6.1)

Let  $a < b \in \mathbb{R}$  and C([a, b]) be the set of all continuous functions  $f : [a, b] \to \mathbb{R}$ . For any  $p \in \mathbb{R}, p \geq 1$ , and for any  $f \in C([a, b])$ , define

$$||f||_p := \left(\int_a^b |f|^p dx\right)^{\frac{1}{p}}.$$

Prove that  $\|\cdot\|_p$  is a norm on the set C([a,b]), that is, that for any  $f,g\in C([a,b])$ , and for any  $\lambda\in\mathbb{R}$  the following hold:

- (i)  $||f||_p \ge 0$  and  $(||f||_p = 0$  if and only if f = 0).
- (ii)  $\|\lambda f\|_p = |\lambda| \cdot \|f\|_p$ .
- (iii)  $||f + g||_p \le ||f||_p + ||g||_p$ .

Hint for (iii): Use the following intermediate steps:

(a) Let  $a, b \ge 0$ , and  $p, q \in \mathbb{R}, p, q > 1$  be such that  $\frac{1}{p} + \frac{1}{q} = 1$ . Prove the following inequality:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}. (1)$$

(b) Prove the **Hölder Inequality**: Let p, q > 1 be such that  $\frac{1}{p} + \frac{1}{q} = 1$ . Then for any functions  $f, g \in C([a, b])$ ,

$$\int_{a}^{b} |fg| \, dx \le ||f||_{p} \cdot ||g||_{q}. \tag{2}$$

(c) Prove the **Minkowski Inequality**: For any  $p \geq 1$  and for any functions  $f, g \in C([a, b])$ ,

$$||f+g||_p \le ||f||_p + ||g||_p.$$
 (3)

## **Orientation Colloquium**

The Department of Mathematics' Research Groups present themselves.

Monday, 29.05.2006 - 16:15-17:15 - S207/109

Prof. Dr. Burkhard Kümmerer
FG Algebra, Geometrie und Funktionalanalysis
"Im Dreiländereck Funktionalanalysis – Stochastik – Mathematische
Physik"

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.