6. Tutorial Analysis II for MCS
 Summer Term 2006

(T6.1)
Let $a<b \in \mathbb{R}$ and $C([a, b])$ be the set of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. For any $p \in \mathbb{R}, p \geq 1$, and for any $f \in C([a, b])$, define

$$
\|f\|_{p}:=\left(\int_{a}^{b}|f|^{p} d x\right)^{\frac{1}{p}} .
$$

Prove that $\|\cdot\|_{p}$ is a norm on the set $C([a, b])$, that is, that for any $f, g \in C([a, b])$, and for any $\lambda \in \mathbb{R}$ the following hold:
(i) $\|f\|_{p} \geq 0$ and $\left(\|f\|_{p}=0\right.$ if and only if $\left.f=0\right)$.
(ii) $\|\lambda f\|_{p}=|\lambda| \cdot\|f\|_{p}$.
(iii) $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.

Hint for (iii): Use the following intermediate steps:
(a) Let $a, b \geq 0$, and $p, q \in \mathbb{R}, p, q>1$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Prove the following inequality:

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{1}
\end{equation*}
$$

(b) Prove the Hölder Inequality: Let $p, q>1$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then for any functions $f, g \in C([a, b])$,

$$
\begin{equation*}
\int_{a}^{b}|f g| d x \leq\|f\|_{p} \cdot\|g\|_{q} \tag{2}
\end{equation*}
$$

(c) Prove the Minkowski Inequality: For any $p \geq 1$ and for any functions $f, g \in C([a, b])$,

$$
\begin{equation*}
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \tag{3}
\end{equation*}
$$

Orientation Colloquium
 The Department of Mathematics' Research Groups present themselves.

Monday, 29.05.2006-16:15-17:15 - S207/109 Prof. Dr. Burkhard Kümmerer
FG Algebra, Geometrie und Funktionalanalysis
"Im Dreiländereck Funktionalanalysis - Stochastik - Mathematische Physik"

After the talk there will be a relaxed get-together (coffee, tea and biscuits) in S215/219, where interested people can discuss the talk and become more acquainted with the lecturer.

