5. Tutorial Analysis II for MCS Summer Term 2006

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. For any partition $P=\left(a=x_{0}<x_{1}<\ldots<\right.$ $x_{n}=b$) of $[a, b]$ define

$$
\begin{aligned}
\|P\| & :=\max \left\{x_{i}-x_{i-1}: 1 \leq i \leq n\right\} \\
\sigma(P, f, \xi) & :=\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right), \quad \text { where } \xi_{i} \in\left[x_{i-1}, x_{i}\right], \quad 1 \leq i \leq n .
\end{aligned}
$$

The sums $\sigma(P, f, \xi)$ are called the Riemann sums associated with the function f, the partition P, and the system of intermediate points $\xi=\left(\xi_{i}\right)_{i=1}^{n}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.
(T5.1)
(i) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Prove that the following are equivalent.
(1) f is integrable.
(2) There is an $I \in \mathbb{R}$ such that for any $\varepsilon>0$ there is $\delta>0$ such that

$$
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)-I\right|<\varepsilon
$$

for any partition $P=\left(a=x_{0}<x_{1}<\ldots x_{n}=b\right)$ of $[a, b]$ with $\|P\|<\delta$ and for every choice of points ξ_{1}, \ldots, ξ_{n} with $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ for $1 \leq i \leq n$.
In case such an $I \in \mathbb{R}$ as specified above exists, it is the integral of f. Riemann defined the integral of $f:[a, b] \rightarrow \mathbb{R}$ as outlined in this exercise, rather than the way it is done in Hofmann's book.
Hint: For $(1) \Rightarrow(2)$, argue that there exist step functions s, t with $s \leq f \leq t$ and $\int t-\int s<\varepsilon / 2$ and associated partition $P^{\prime}=\left(a=y_{0}<y_{1}<\ldots<y_{m}=b\right)$. Now consider a partition $P=\left(a=x_{0}<x_{1}<\ldots<x_{n}=b\right)$ and let $\xi=(\xi)_{i=1}^{n}$ be a choice of points with $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ for $1 \leq i \leq n$. Consider the union Π of those intervals $] x_{i-1}, x_{i}\left[\right.$ such that there exists a $1 \leq j \leq m$ with $\left.\left[x_{i-1}, x_{i}\right] \subseteq\right] y_{j-1}, y_{j}[$. Notice that there can be at most $2 m$ intervals $] x_{i-1}, x_{i}[$ such that $] x_{i-1}, x_{i}[\nsubseteq \Pi$.
(ii) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable. Prove that for every sequence $\left(P_{n}\right)_{n \in \mathbb{N}}$ of partitions $P_{n}=\left(a=x_{0}^{(n)}<x_{1}^{(n)}<\ldots<x_{p_{n}}^{(n)}=b\right)$ with $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$, and for all systems $\xi^{(n)}=\left(\xi_{i}^{(n)}\right)_{i=1}^{p_{n}}$ of intermediate points with $\xi_{i}^{(n)} \in\left[x_{i-1}^{(n)}, x_{i}^{(n)}\right]\left(n \in \mathbb{N}, 1 \leq i \leq p_{n}\right)$,

$$
\lim _{n \rightarrow \infty} \sigma\left(P_{n}, f, \xi^{(n)}\right)=\int_{a}^{b} f d x .
$$

(T5.2) Let $a<b \in \mathbb{R}$, and let $\exp :[a, b] \rightarrow \mathbb{R}$ be the exponential function. Use (T5.1)(ii) to compute its integral.

